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Abstract. The electrostatic problems are mathematically very similar to the solution of heat 
conduction problem. For the low-frequency problems addressed by this paper, a subset of 
Maxwell’s equations (Gauss’ Law and Ampere’s loop law) is used. Using an analogy of 
electrostatic and heat transfer problems, software PAK-E is developed. The program solves 
potential over a user-defined domain for user-defined sources and boundary conditions. 
Dirichlet boundary condition is used, which gives the value of the potential on specified 
boundaries. Electric displacement and field intensity are related to one another via the 
constitutive relationship. 

In example shown in this paper the electrostatic potential in linear dielectric material is 
calculated. The geometry studied is a symmetric quadrant of a plane capacitor. Solution 
calculated by in-house software modul PAK-E is compared by solutions of other software. 
Various field variables as well as physical parameters can be calculated based on the 
potential. Solution calculated by in-house software PAK-E is equivalent to solutions of 
world leading software. 

 
 
 

1. Introduction 
 
Electrostatic interactions between charges govern much of physics, chemistry and biology. 
The charges are static in the sense of charge amount (it is constant in time) and their 
positions in space (charges are not moving relatively to each other). Electrostatic problems 
consider the behavior of electric field intensity, E, and electric flux density D. Quantities of 
interest in electrostatic analysis are voltages, electric fields, capacitances, and electric 
forces. Electrostatic analysis is used to design or analyze variety of capacitive systems. 

 

2. Mathematical Description of Physical Phenomena 
 
Numerical solution of problem can begin when the laws governing these processes have 
been expressed in mathematical form, generally in terms of differential equations. In this 
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section, some basic equations of used theories are briefly reviewed. Emphasis is on the 
presentation of various differential equations and boundary conditions that define 
boundary-value problems to be solved by finite element analysis. 
 

2. 1 Governing Differential Equations for Electrostatics 
 
According to classical electrodynamics theory, Maxwell’s equations are set of fundamental 
equations that govern all macroscopic electromagnetic phenomena. An entire set of 
fundamental laws of electromagnetic field theory are the result of observation and 
experiment. The field equations are expressed in terms of the derived field quantities, 
Equations (1)-(5) 

 
B

E
t


  


, (1) 

 
D

H J
t


  


, (2) 

 D    , (3) 

 , (4) 0B 

 J
t


   


. (5) 

where  is electric field,  is electric flux density, is magnetic field, is magnetic 
flux density, is electric current density, and 

E D H B
J   is electric charge density. 

Constitutive relations. The constitutive relationships describe the macroscopic properties of 
medium being considered. In the most general case, derived fields are complicated 
nonlocal, nonlinear functional of the primary fields and B . Under certain conditions, we 
may assume that the response of a substance to the fields may be approximated as a linear 
one. For linear materials the fields and fluxes are simply related, so that: 

E

 D E , (6) 

 B H , (7) 

 J E . (8) 

The constitutive parameters  ,  , denote, respectively, the permittivity (farads/meter), 

permeability (henrys/meter), and conductivity (siemens/meter) of the medium. These 
parameters are tensors for anisotropic media, and scalars for isotropic media. For 
inhomogeneous media, they are function of position, whereas for homogenous media they 
are not. 
The final form of electric permittivity   depends on the material properties. Electrically 
nonlinear materials are materials in which the electric permittivity depends on the electric 
field intensity: 

 . (9)  E 
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The permittivity 0 r    is defined through the permittivity of vacuum 0  and the relative 

permittivity of the material r . That means that the derived fields are linearly proportional 

to the primary fields and that the electric displacement is only dependent on the electric 
field. 
When the field quantities do not vary with time, the field is called static. In this case, 
Equations (1) can be written as: 

 , (10) 0E 

In this case there are no interactions between electric and magnetic fields. Therefore, we 
can have separately either an electrostatic or a magnetostatic case. 
To solve Maxwell’s equations, one may first convert the first order differential equations 
involving two field quantities into second-order involving only one field quantity. As it is 
mentioned above, the electrostatic field is governed by equations (1) and (6). The latter can 
be satisfied by representing the electric field as: 

 , (11)    E r rΦ 

where  is called electric scalar potential. Substituting Φ (11) into (1) with aid of (9), one 
obtains 

  Φ     , (12) 

or 

 2Φ  ε  , (13) 

which is second-order differential equation governing Φ . Equation (12) is the Poison 
equation which is one of the Maxwell’s equations. 
 
Initial and boundary conditions. While there are many functions that satisfy the differential 
equations given above in the domain of interest, only one of them is the real solution to the 
problem. Complete description of a problem should include information about both 
differential equations and boundary conditions. There is a unique solution for given 
boundary conditions.  
In general, boundary conditions can be: prescribed potential at  part 1S (14), interface 

between different media at  part 2S (15), given surface charge density at  part 3S (16), 

  s , , ,Φ Φ x y z t , (14) 

  1 2 s  n D D , (15) 

  , ,s s ρ ρ x y z , (16) 

where s is surface charge density and  and  are parts of the surface , as 

symbolically represented in Figure 1. 
1 2,S S 3S S

Problem is linear, due to a fact that all differential equations that describe problem and 
boundary conditions are linear dependent on electric potential. 
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  Figure 1. Boundary conditions for the electrostatic problem. 

 
2.2. Governing Differential Equations for Heat transfer 
 
Differential equation of energy balance equation is based on fundamental principle of 
energy conservation. In case when material characteristics do not depend on temperature 
and radiation does not exist as a boundary condition, problem is linear, due to a fact that all 
differential equations that describe heat conduction law and boundary conditions are linear 
dependent on temperature.  
Complete derivation of these equations, considering heat transfer boundary conditions, is 
given in the literature [1], [2] and [3]. 
 

2.3. Heat transfer – Electrostatics analogy 
 
The electrostatic problems are mathematically very similar to the solution of heat 
conduction problem. Equations describing electrostatic field (13) and heat transfer are 
second order differential equations of the same form. Analogies that exist between 
particular quantities are given in Table 1. 
 
Table 1. Electrostatic – Heat Transfer Analogy 

Heat transfer  Electrostatics 
Temperature T   Field Potential Φ  
/ /  Electrostatic Field Φ E  

/ /  Electric Displacement   D E  

Heat Flux 2q k T     
Electric Charge 
Density 

2Φ     

Thermal Conductivity 
Tensor 

0 0

0 0

0 0

x

y

z

k

k k

k

 
   
  

  
Electric Permittivity 
Tensor 

0 0

0 0

0 0

x

y

z

 
   
  


 


 

 
3. Incremental finite element equations implemented in PAK-E software 
 
The derivation of the finite element balance equations is based on equations given in 
the previous text. Galerkin method is then applied, for derivation of FE equations. 
Based on Poison differential equation (13), the following can be written 

913



Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 D-01 

 

 
3

I j I
j jj=1V V

d d 0 I 1, 2,
x

Φ
h V h V

x

              
  , N






, (17) 

where  are interpolation functions and N is number of nodes per element, and V  is 

finite element volume. Three-dimensional (3D) isoparametric finite element is applied, 
as defined in 

Ih

[2]. Interpolation functions, geometry and number of nodes are also 
adopted. Electric potential Φ  in a point of element, defined in natural coordinates 

 is given as: , ,r s t

 , (18)  
N

I
I

I=1

, ,Φ r s t h Φ

or in matrix form, 

 , (19) Φ  HΦ

where 

 , (20) 1 2 N  h h h H

 , (21) T 1 2 N  Φ Φ Φ Φ

are row matrix of interpolation functions and column matrix of nodal potentials, 
respectively. 
Applying the partial integration and Gauss theorem on the first integral in (17), the 
following is obtained 

 

 
3

J
I j J,j

jj=1V

3 3
J s

j I,j J,j j j
jj=1 j=1V S

d

d dI

h h V
x

h h V h n S
x

    
  

    


      
     



  


. (22) 

When element surface heat flux  is given and based on, the following can be written nq

 n

3
qs s

I j j I n I
jj=1S S

d dh n S h q S
x

    
  

  Q , (23) 

where  are electric charge density column matrix components and  are 

interpolation functions for nodes on surface . 

nq
IQ s

Ih

2S

Using (22)-(23), (17) and (18), the system of equations of the following form is 
obtained 

 , (24) KΦ = Q
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

I

where matrix components for  and column matrix  are determined as K Q

 , (25) IJ IJ IJ=  K K K

 nqq
I I I= + Q Q Q Q . (26) 

Coefficients of electric permittivity matrix IJK  are given by 

 , (27)  
3

IJ j I,j J,j x I,x J,x y I,y J,y z I,z J,z
j=1V V

d dh h V h h h h h h V
 
        
 
 
 K

where derivatives of interpolation functions are given by I,x I J,z J, ,h h x h h z     . 

By using interpolation matrix , defined by row matrix according toH (20), matrices in (24) 
can be written in a next form 

 , (28) T

V

= dV K B B

 , (29) sT

S

= s K H H dS






 , (30) q T

V

dV Q H

 . (31) nq sT

S

dS Q H

Row matrices  contain interpolation functions  for the surfaces. The matrix  in sH s
Ih B

(28) has a next form like 

 , (32) 1 2 N= ...
B B B B

where, the submatrix for the node I  consist of derivatives of interpolation functions 
with respect to coordinates x, y and z 

 . (33) 
I,x

I
I,y

I,z

=

h

h

h

 
 

 
  

B

Equation (24) represents energy balance equation for 3D finite element. Total number 
of equations is equal to number of nodes. One potential value corresponds to each 
node. In case of 2D, previous expressions remain unchanged, except that integrals over 
a volume V  are practically reduced to integrals over surface  of the finite element, 

as shown in 

S

[2]. Interpolation functions  have appropriate forms for 2D problem. Ih
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To solve the balance equation of the structure, we observe steady electric field in most 
general case when material constants depend on the electric potential. The implicit iterative 
scheme for solution of system equations (24) is analog to developed in the literature [1], [2] 
and [3]. 
Iterative procedure is continued until potential increment at nodes is not sufficiently low, 
what can be expressed in the following form 

  i
a Φ , (34) 

or 

 

 

 1

i

r





Φ

Φ
, (35) 

where a and r are selected absolute and relative tolerances and  iΦ  is electric potential 

increment norm. 
 
4. Example: Capacitor with a Square Cross-Section 
 
This example will show analyzing of a capacitor with a square cross-section. The geometry 
studied is a symmetric quadrant of a plane capacitor having a rectangular hole in inner 
plate. The outer square has a 40 mm size and the inner square has a 20 mm size, as shown 
below in Figure 2. The geometry extends for 1000 mm in the into-the-page direction. 
Because of the symmetry, only one quarter of the device need be modeled. 

  
  Figure 2. Square Capacitor Cross-Section and  

Computational mesh used in simulations. 

 
Finite element model was created in the software Femap [11]. The dielectric between the 
plates is air, with unit electrical permittivity. Inner conductor (nodes at lines x=10mm and 
y=10mm) is at the potential of 1V and outer conductor (nodes at lines x=20mm and 
y=20mm) is grounded. Nodes at lines x=0 and y=10 have symmetry as boundary condition. 
The model consists of 300 elements and 341 nodes. The finished, ready for analysis model, 
looks like as pictured in Figure 2. 
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5. Results of calculations 
 
PAK-E numerical results of previously described example are compared with the results 
obtained by COMSOL Multiphysics. COMSOL Multiphysics [10] is a software 
environment for the modeling and simulation of any physics-based system. A particular 
strength is its ability to account for multiphysics phenomena. Optional modules add 
discipline-specific tools for acoustics, batteries & fuel cells, chemical engineering, earth 
science, electromagnetic (linear/nonlinear magnetostatic problems, linear/nonlinear time 
harmonic magnetic problems, linear electrostatic problems), fluid dynamics, heat transfer, 
MEMS, plasma, and structural analysis. Software is composed of an interactive shell 
encompassing graphical pre- and post-processing; a mesh generator; and various solvers. 
Post-processing of the PAK-E calculation results is performed in software FEMAP. 
Interface between the FEM solver PAK-E and software for results post-processing FEMAP 
has been made through *.neu file [8], [9]. 
Figure 3 shows the scalar field of electric potential numerically calculated by software 
COMSOL Multiphysics. Figure 4 shows the scalar field of electric potential numerically 
calculated by software PAK-E. 
Comparison of the numerical analysis results (Figure 5) was done by the potential values 
observationat the nodes numbered 1 to 11 in Figure 2. There are insignificant differences in 
numerical results available in the third decimals, which can be attributed to numerical error. 
Developed software gives excellent results compared to the world's leading software for 
solving coupled problems COMSOL Multiphysics [10]. 
 
 

 
  Figure 3. Solution to the example calculated by solver COMSOL. 
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  Figure 4. Solution to the example calculated by solver PAK. 
 
 
 
 

 
  Figure 5. Comparative review of analysis results, according to nodes on Figure 2. 
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6. Conclusion 
 
There are two conditions that quantities describing electric field must obey. The first 
condition is the differential form of Gauss’ Law, which says that the flux out of any closed 
volume is equal to the charge contained within the volume. The second is the differential 
form of Ampere’s loop law. Displacement and field intensity are related to one another via 
the constitutive relationship. The program employs the electric scalar potentialΦ  to 
simplify the computation of fields. The program solves for potential over a user-defined 
domain with user-defined sources and boundary conditions.  

Φ

PAK-E can perform linear and nonlinear electrostatic analysis for 2-D, axisymmetric and 
3D models. Following options are available for electrostatic analysis: (a) Material 
properties: orthotropic materials with constant and variable permittivity , (b) Loading 
sources: voltages V , and electric charge density  , (c) Boundary conditions: prescribed 

potential values (voltages), prescribed values for surface charges, and prescribed constraints 
for constant potential boundaries with given total charges, (d) Post-processing results: 
voltages, electric fields, gradients of electric field, flux densities (electric displacements) 
and surface charges. 
This case presents solving for electric potential. Electrostatic potential in linear dielectric 
material and in conducting medium is calculated. Various field variables as well as physical 
parameters can be calculated based on the potential. The setting of this kind can be used to 
study the effects of geometrical features on the capacitance and on the electrostatic force, 
which both are meaningful quantities for further coupled simulations in e.g. micro-electro-
mechanical systems. 
Compared with most of academic software that solves these types of problems, program 
PAK-E has considerably more advanced features (3D elements, surface charges distribution 
as function of position, nonlinear analyses…).  Solution calculated by in-house software 
PAK-E is equivalent to solutions of world leading software. 

Acknowledgement. The part of this research is supported by Ministry of Education and 
Science, Republic of Serbia, Grant TR32036. 
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ABSTRACT. In this paper, based on mathematical model of projectile flight with 6DoF, 
the effect of various angles of installed rocket motors nozzles to the gyro-stabilized 
projectile roll rate was analyzed. The dynamic stability and dissipation of hits on the target 
place in the range and direction was analyzed. For the particular projectile it was solved a 
problem due to wrench of warhead as a result of excessive rotation. The minimal roll rate 
around the projectile longitudinal axis, from the standpoint of the rocket dynamic stability 
was determined. 

 

1. Introduction 
 

Statically unstable projectiles can be stabilized on the trajectory by the rotation around its 
longitudinal axis. One possibility to achieve this is to mount rocket motor nozzles at an 
angle  , as it was shown in Fig.1. 

In the pre-project phase for the active-reactive projectiles it is necessary to prescribe 
minimal roll rate around the longitudinal axis, which ensure stable flight in both phases: 
active phase – with the thrust, and the passive phase – without the thrust. 
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Fig. 1 Projectile rotation caused by the angled nozzles 
 

In the first assumption we can consider that stability is guaranteed towards whole trajectory 
if the minimal roll rate is achieved [3]: 

min

2

y

R I e
xn

I

 



  

where : 
R – resultant aerodynamic force, 
e – distance between the center of inertia and the thrust center, 
Ix , Iy - projectile longitudinal and transverse moments of inertia. 
 
During the flight along the trajectory, projectile changes its speed, intensity and position of 
aerodynamic force R . This type of stabilization provides only the oscillatory nature of 
change of cinematic quantities of disturbed movement. Decrease or increase of the 
amplitude of oscillatory movement is related for the problems of dynamic stability, and it 
depends on the forces and moments acting the projectile – mainly on the damping and 
Magnus moment. 
In the passive phase of the flight projectile acceleration (slowdown) is small, so the changes 
of dynamic coefficients in the equations of motion are also small.  
In the active phase of the flight, due to the large changes of the flight speed, dynamic 
coefficients changes notable. This system is significantly unsteady, so that considerably 
complicates the study of stability. 

2. Factors affecting the projectile movement 
 

We considered the projectile as a rigid body in the space with six degrees of freedom of 
motion, with changeable mass, and forces and moments acting on it, changes in relation of 
its speed. So they are defined in the function of Mach number. 

2.1. Coefficients of reactive moment due to angled nozzles  
 

Stabilizing moment from n nozzles, according the Fig. 1 can be presented as: 

o1 2
m

st

d
M F n    (1) 
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o1F - tangential force at one nozzle, 

md - mean diameter at which there are nozzles, 

t a

o

P I t

F P tg



 
 - total axial and tangential forces of all nozzles, 

0

at

tI P dt  - rocket motor total impulse, 

at - rocket motor burn-out time. 
Reactive moment from nozzles can be defined through the coefficient of reactive moment 

xr
m , and than we have: 

xr xr refM m l P    (2) 

 
By equating expressions (1) and (2), we get: 

2
m

xr

ref

d tg
m

l





  

and it is function of a nozzle geometry. 

2.2 Aerodynamic forces and moments 
 

For the stabilization of statically unstable projectiles we need a high spin and therefore in 
the equations for the total force and moment Magnus force and moment must be included. 
Calculation of these quantities is very complicated process with unreliable outputs with 
regard to the fact that this phenomenon is manifested in the boundary layer. 
In the [1] a detail theoretical analysis of Magnus effects, for the configuration of cylindrical 
body with ogive nose, was presented. This analysis was also verified experimentally. 
Theory presented in [1] predicts a sudden increase of Magnus coefficient in transonic 
region which leads to the unstable projectile flight as a consequence. It was shown that the 
Magnus coefficient is directly proportional to the boundary layer thickness. 
Forming of the vortices on the downstream side of the cylindrical projectile body generates 
nonlinearity of Magnus moment versus angle of attack. 
 
Moments in the pitching and yaw planes are: 

q pM M M q M p          pitching 

r pN N N r N p          yawing 

where: 
2 22 2

( / 2 ) 2 2p

ref refm
p m

p ref

q S l q S lM c
M c

p l u u u
 

     
    
       

  

 
The last terms in the above equations for the moments are Magnus coefficients with 
respectively changed indexes. 

922



 

 

2.2.1 Coefficients of Magnus moment MpC   and force NpC    

For the symmetrical projectiles there are relations between aerodynamic coefficients in the 
fixed and aero-ballistic coordinate systems, so we have: 

� Mp p pm n
C C C      

 
According to the [2], coefficients of Magnus moment and force, determinated by the 
experiment, are shown in the Fig. 2 and Fig. 3. 
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Fig. 2 Coefficient of Magnus moment 
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Fig. 3 Coefficient of Magnus force 

 

3. Gyroscopic and dynamic stability 
 

The limit curve of the gyroscopic and dynamic stability for a stable flight in the passive 
phase is shown in Fig. 5 (solid line) [2]. The criterion is derived from the linearized 
equation of projectile motion in the side plane versus complex angle of attack.  

In the classical ballistic the factor of gyroscopic stability gS  is defined as: 

2 2

2
1

2 


 
     

x
g

y m

I p
S

I S d V C
 (3) 

while the dynamic stability factor dS  is: 

 
 
2

2

2  

 





 


   

L x mp

d

L D y mq m

C k C
S

C C k C C
 (4) 

where: 
2

2
x

x

m d
k

I
 
 , 

2
2

y
y

m d
k

I
 
 , 

LC  - derivative of normal force coefficient with angle of attack, 

DC - axial force coefficient at zero angle of attack, 

 mq mC C   - derivatives of pitching moments coefficients due to pitch rate and due to  , 

shown in Fig.4. 
These two derivatives are difficult to separate even in the experiment. 
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Fig. 4 Derivatives of pitching moments 

 
For the statically unstable projectiles gyroscopic stability is a necessity but not a sufficient 
condition to be dynamically stable. In other words, gyroscopic stable projectile may be or 
may be not dynamically stable, but gyroscopic unstable projectile is always dynamically 
unstable. From this it follows: 

1. If the dynamic stability factor dS is inside the range 0 2dS  , a statically 

unstable projectile can be always stabilized by the rotation. 

2. If the dynamic stability factor dS is outside of this range, statically unstable 

projectile could not be dynamically stabilized at any level of rotation. 
Previous statements can be presented by next relation: 

 
1

2g
d d

S
S S




 (5) 

by other words, coefficient dS  must be within boundary curve defined by this inequality. 

If the coefficient dS  is inside the range 0.8 1.2dS  , and if 1gS   this is sufficient 

condition for the projectile to be stable by both criteria. 
 

4. Numerical simulation and experiment 
 

For the particular projectile, with the nozzle mounting angle of 14   , the experiment 

was carried out by the shooting at the test field. Several projectiles had a lot shortened 
trajectory compared to the calculated trajectory, which generate suspicion that some 
anomalies arises. The check out of dynamic stability was done, and it is shown in Fig.5. 

According to the analysis, in the one small part, the experimental curve gS - dS (red line) is 
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outside of the boundary curve (black line, generated by the equation 5). This is 
understandable because that section is related to the active phase of the flight, and a 
criterion was derived for passive phase of the flight. In the Fig. 6 it is shown that projectile 

accomplish the condition 1 - 0 2dS  , for the dynamic stability. 
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Fig. 5 Gyroscopic stability factor gS  versus dynamic stability factor dS  
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Fig. 6 Dynamic stability factor dS  
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Next step was checking out the values of Magnus moment coefficient. By numerical 
simulation, this coefficient was hypothetically increased for 20%. This change caused 

significant decrease of range and increase of angle of attack, up to 15   . With the 
respect to the fact that unguided projectiles regularly fly with: 

 , 1.5     (6) 

this case was dismissed. 

5. The selection of the minimal nozzle mounting angle 
 

According to the equation (2) stabilized – reactive moment is directly proportional to the 
nozzle mounting angle. In order to choose the minimal mounting angle of nozzle which 
accomplish stability criteria and condition given by (6), the various angles were used in 

numerical simulations: 10 ,11 ,12 ,14      . 

5.1 Dynamical behavior of projectile 
 
For the different values of nozzle mounting angle, obtained results by numerical simulation 

are presented in the diagram gS  versus dS . It was shown in the Fig. 7. 
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Fig. 7 Stability factors for the various nozzle mounting angles 

 
According to the diagrams in the Fig. 7, all varied mounting angles produce rotation that 
satisfies conditions for projectile to be gyroscopically and dynamically stable. 
Also, it is necessary to analyze the change of the angle of attack   and slide angle  , to 

see behavior of the projectile and damping during the flight. 

927



 

 

For all variants of nozzle mounting angle we have restriction (6). The simulation results are 
shown in Fig. 8 and Fig. 9. 
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Fig. 8 The change of the angle of attack during the flight 
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Fig. 9  Angle of attack versus slide angle for various nozzle mounting angles 

 

With the nozzle mounting angle of 10   projectile achieve to the too high angle of 

attack and slide angle, and later becomes stable. Therefore this variant does not satisfy 
condition (6).  

Minimal nozzle mounting angle that satisfy conditions of stable flying is 11   . 
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6. Conclusion 
 

By the numerical simulation of projectile flight, with the model of 6DoF, we get next 

results. With decreasing nozzle mounting angle from 14    to 11    we obtained: 

- reducing the roll rate for 7000 min-1, and by this avoided unnecessary additional 
mechanical security of the warhead – rocket motor assemble, 

- solving problem due to wrench of warhead during the flight, 
- reducing projectile diversion due to derivation for amount of 250 m at the maximal 

range, 
- increasing the maximal range for 1.2% due to saving rotation energy, 
- insignificant contribution to the dispersion of the hits at the target place. 
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ABSTRACT. The guidance law of the ground-to-ground missile guidance system is based 
on the deviation of the actual trajectory from the nominal ballistic trajectory. Estimation of 
the missile trajectory parameters the navigation algorithm in spherical axis system is 
developed with assumption that specific forces and angular rates of the missile in body axis 
system is known. The measurement errors of the accelerometers and rate gyros are modeled 
as a function of the scale factor, bias instability, dead band and noise. These measurement 
parameters for commercial IMU ADIS16365 are determined in laboratory. IMU 
measurement errors are dominant for impact point dispersion of the guided surface-to-
surface missile. There is no practical influence of the external disturbances to the impact 
points dispersion. The imapct point dispersion of the guided surface-to-surface missile is one 
fifth of the dispersion of the unguided ballistic missile of the same range. 

 

1. Introduction 
 
Basic requirements for the ground-to-ground rockets are increase of the range and increase 
of the accuracy. In order to minimize the influence of disturbances to the impact points 
dispersion, extensive study is oriented to the development of a cost effective guidance and 
control system which can be added to the ground-to-ground rockets [1],[2],[3],[4]. 
Elimination of the disturbances to the ground-to-ground missile is achieved by guidance 
law which relates flight path angle correction to the deviation of the disturbed trajectory 
from nominal trajectory (calculated ballistic trajectory without disturbances) [5]. The same 
guidance law is valid for vertical and horizontal plane. 

 ( ) ( ) Δ ( ) ( ) Δ ( )c c
c x x h x x V x

h V

 


 
  

 
. (1) 

where:  - flight path angle correction in vertical plane,  - trajectory deviations in 

vertical plane from nominal trajectory, Δ  - missile velocity deviation from nominal 
c Δh

V
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value, c

h




 partial derivatives of the flight path angle relative to the trajectory deviation, 

and c

V




 - partial derivatives of the flight path angle relative to the velocity deviation.  

Desired flight path angle in vertical plane ( c ) is obtained by adding the corrections  to 

the nominal value of the flight path angle (
c

 ). 

 ( ) ( ) ( )c cx x x     (2) 

The flight path guidance system with synthetic pitch autopilot with accelerometer and rate 
gyro is used to steer the rocket to the target (Fig. 1). The procedure of the guidance loop 
Synthesis and normal acceleration autopilot design is given in [6],[7],[8].  

 
Figure 1. Guidance loop in the vertical plane 

Analysis of the guidance law efficiency is done with assumption that the there is no IMU 
measurement errors. 
Estimation of the rocket position in the space is done by SDINS (Strap Dawn Inertial 
Navigation System) which is composed of Inertial Measurement Unit (IMU) and 
Navigation Algotitham. 
The purpose of this paper is to analyze of the mathematical model of SDINS navigation 
algorithm, IMU Analog Devices ADIS 16365 accelerometers and rate gyros measurements 
errors and influence of the IMU measurement errors and disturbances to the guided ground-
to-ground missile impact points dispersion. 
 

2. SDINS Mathematical Model 

2.1 Mathematical Model of Navigation Algorithm 
 
Strap-down inertial system (SDINS) navigation is widely used for estimation of the rocket 
position and velocity. Block diagram of the general navigation algorithm is given in Fig. 2 
[9]. Position and velocity estimation is based on the known initial position and initial 
velocity, and on measured specific forces and angular rates. Navigation algorithm includes 
correction of the measured acceleration by gravity and Coriolis acceleration. 
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Figure 2. Guidance loop in the vertical plane 

Differential equation of the rocket velocity in arbitrary navigation axis system [9] is 

  (3) 2n n n n n
e ie en e      v f ω ω v g n

l

Position of the target relative to the launching position is defined by the basic axis system 
which is Earth fixed axis system ( 0F ). The origin of the basic axis system coincides with the 

launch point.  axis is directed to the target. The plane  is tangent to the Earth's 

surface and the axis  is directed vertically down (along the gravity vector). The position 

of 

0Ox 0 0Ox y

0Oz

0F  is determined by the azimuth angle 0A  with respect to the local Earth fixed reference 

frame leF  (Fig. 3) [10]. 

 
Figure 3. Basic and Local Earth fixed and basic axis system 
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Since guidance of the ground to ground rockets requires correction of the rocket position 
relative to the ballistic trajectory, the spherical axis system ( SF ) is used for navigation 

system. Position of the spherical axis system relative to the basic axis system is defined by 
range angle y  and deviation angle x  (Fig. 4). 

 
Figure 4. Spherical axis system 

 
Differential equation of the kinematic velocity in arbitrary navigation can be applied to the 
spherical axis system. 

 2s s s s s
e i e e s e      v f ω ω v g s

l  (4) 

where s
ev  is kinematic velocity of the rocket in spherical axis system 

  (5) 
s s

T
s
e x y zv v v v

s




Angular rate of the Earth relative to the inertial axis system in spherical axis system ( s
ieω ) 

can be obtained by multiplication of the angular rate of the Earth in Earth axis system 

 and transformation matrix from Earth axis system to spherical axis 

system. 

0 0
Te

ie ω 

 0
0

s s l e s
i e l e i e e i e ω C C C ω C ωe  (6) 

Angular rate of the spherical axis system relative to the basic axis system is defined by two 
angular rates x  and y . These two angular rates depends on rocket velocity relative to 

Earth in spherical axis system 
Sxv ,  and rocket altitude . 

Syv h

 0
0 0

0 0 S S

T
T x ys

s y x

v v

R h R h
 

 
        

ω    (7) 
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Specific force in spherical axis system sf  is determined by specific force in body axis 
system  and transformation matrix from body to spherical axis system bf  , ,s

b   C .  

  , ,s s
b   f C fb  (8) 

Gravity has only the components in sz  direction of the spherical axis system 

  0 0
Ts g h g   (9) 

where  g h

)

 depends on rocket altitude ( ) and gravity acceleration on Earth surface h

0 (g  . 

  
 

0
2

0

( )

1 /

g
g h

h R





 (10) 

where   is latitude. 

Rate of change of direction cosine matrix s
bC
  depends on angular rate of the body relative 

to spherical axis system in body axis system b
s bω . 

  (11) s s b
b b s bC C ω 

where  is skew symmetric matrix of  b
s b ω b

s bω  which is function of angular rate in body 

axis system . b
i bω

 0
b b b s s
s b i b s i e s    ω ω C ω ω  (12) 

Position of the rocket in basic axis system is defined by kinematic velocity of the rocket in 
spherical axis system. 

 

0 0

1 1

S S

S

T

T x y

z

v v
x y h v

h h

R R

 
 

        

    (13) 

 

2.2 Mathematical model of the accelerometer and rate gyro measurements error 
 
Specific forces  and angular rates ( ) of the rockets are measured by accelerometers 

and rate gyros. The outputs of the accelerometers ( ) and rate gyros ( ) can be 

expressed mathematically in terms of the input values and errors of measurements (Fig. 5) 
[9].  

bf b
i bω

accf r.gω
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Figure 5. Measurement model 

 
If cross-coupling coefficients and vibro-pendulous coefficients are neglected, the simplified 
mathematical model of measurements are function of scale factor (S ), residual fixed bias 
(B ), random bias error (n ) and noise ( ). w

  (14) acc acc acc acc acc( ) b    f I S f B n w

  for acc accf w acc d.bf f  (15) 

  (16) r.g r.g r.g r.g r.g( ) b
ib    ω I S ω B n w

  for r.g r.gω w r.g d.bω w  (17) 

where - dead band of the accelerometers and - dead band of rate gyros. For 

compensated accelerometers and rate gyros residual fixed bias is equal zero ( , 

). 

d.bf

0

d.bw

acc 0B

r.g B

The calculated values of the acceleration  (14) and angular rates  (16) must be 

included in navigation algorithm in order to analyze influence of the IMU measurement 
errors to the estimation of the missile position and velocity. The specific force  in (8) is 

replaced by  and angular rate in body axis system  in (12) is replaced by .  

accf r.gω

bf

r.ωaccf
b
i bω g

  (18)   acc, ,s s
b   f C f

 r.g 0
b b s s
s b s i e s    ω ω C ω ω  (19) 
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3
 

. Parameters of IMU Measurment Errors 

Inertial measurement unit (IMU) consists of three mutually perpendicular gyroscopes and 
three mutually perpendicular accelerometers. The increased accuracy of IMU based on 
MEMS technology permits to use them in guidance system of the ground-to-ground 
missile. 
Investigation of the possibility to use low cost IMU based on MEMS technology for 
ground-to-ground missile guidance system requires determination of the IMU measurement 
errors to the missile impact point dispersions. 
The low cost IMU Analog Device ADIS 16365 is taken as representative for analysis of 
ground-to-ground missile impact point dispersion due to IMU measurement errors. The 
gyroscopes measurement range are 300 s   and accelerometers measurement range are 

10g . The shock survivability of this device is 2000g . Considering accelerations and 

angular rates of the ground-to-ground missile, this type of IMU can not be used for 
measurement of the axial acceleration of the missile. Axial acceleration of the missile can 
be done by single accelerometer with higher range of measurement ( 50g ). 

The catalog characteristics of the IMU Analog Device ADIS 16365 are verified in 
labarotary in order to define measurement errors [8]. Measurements of the ADIS16365 
sensor parameters are done on two-axis test table CARCO T-922 with following 
characteristics: minimum angular rate 0.0001 s , maximum angular rate 999 s , 

velocity resolution 0.0001 s , position accuracy  and position resolution 0. . 0.0001 0001

 
3.1 Random bias instability 
 
Two methods, Allan variance and Power spectral density, are used to determine velocity 
random walk and bias instability of the Analog Device ADIS 16365 gyroscopes and 
accelerometers [8]. It is shown that the better results, close to the catalog values, are 
obtained by Allan variance method. 
Random bias instability of the accelerometers ( ) and rate gyros ( ) are determined 

from diagram of Allan variance. Diagram of the standard deviation of Allan variance of the 
measured specific force 

accn r.gn

xf  for three sampling rates 0.01,0t .1,3.6 s   and of the 

measured angular rate x  for  four sampling  rates 0.01,0.1,1t s.0,3.6    are given in 

Fig. 6.  
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Figure 6. Standard deviations of accelerations and angular rates along x  axis 
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The similar diagrams are obtained for the other two accelerometers and rate gyros of the 
Analog Device ADIS 16365. The 0.66  of the bias instability value is equal to the 
stationary value of the standard deviation at higher sampling rates. The bias instability of 
the Analog Device ADIS 16365 accelerometers and rate gyros are given in Table 1. 

4

                                  Table 1 
Axis Accelerometers Rate gyros 

  accn g  rgn s  
  

x  0.00021 0.0135 
y  0.00031 0.0105 
z  0.00026 0.0121 

 
3.2 Output noise 
 
The noise of the accelerometers and rate gyros are determined from the measured specific 
forces and angular rates for zero demanded values. Diagrams of the measured specific 
forces and angular rates along x axis with sampling interval 10  are given in Fig. 7.  ms
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Figure 7. Measured specific forces xf  and angular rates x  for zero demanded values 

 
Standard deviations (σ) of the all IMU accelerometers and rate gyros noise (Table 2) are 

calculated by formula    2

1

1
N

i
i

x x N


    where ix  is measured values,  is 

number of measured values and 

N

1

N

i
i

x x N


   is mean values of the measurements.  

                               Table 2 
Axis Accelerometers Rate gyros 

 σacc [g] σrg [°/s] 

x 0.001613 0.191961 

y 0.002193 0.169030 

z 0.002130 0.190003 
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3.3 Dead band 
 
Dead band of the accelerometers ( ) and rate gyros ( ) are determined from the 

diagram of the measured specific forces and angular rates in function of required specific 
forces and required angular rates. The diagrams of the measured specific forces in function 
of required specific forces and measured angular rates in function of required angular rates 
along 

d.bf d.bw

x  axis with designated area of dead band are given in Fig. 8. 
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Figure 8. Dead band of accelerometer and rate gyro 

 
Applying the same procedure all three IMU accelerometers and rate gyros, the determined 
dead band are given in Table 3. 
                                  Table 3 

Axis Accelerometers Rate gyros 

  dbf g  rgn s  
  

x  -0.0017 0.00087  -0.05 +0.07  
y  -0.0052 0.0052  -0.09 +0.07  
z  -0.0035 0.00698  -0.05 +0.07  

 
4. Numerical simulation 
 
In order to verify the influence of the IMU accelerometers and rate gyros measurement 
errors to the accuracy of the ground-to-ground missile guidance system, the complex 
software for missile guidance is built. It is composed of following modules: 6 DOF 
mathematical model of the missile flight, SDINS navigation algorithm, and mathematical 
model of the IMU measurement errors, guidance system of the ground-to-ground missile 
with lateral acceleration autopilot in the inner loop and CEP calculation of the impact 
points dispersion by Monte Carlo simulation. 
The most dominant external disturbances (thrust deviation, thrust excentrity and wind) are 
considered for analysis of the guidance system accuracy: 

 Variation of the thrust has normal Gaussian distribution low ( , ( ))NF FN  where 

( ) 0.5%NF F  , 

 Variation of the thrust excentrity magnitude ( F ) has normal normal Gaussian 

distribution low (0, ( ))F N . Usual value of mrad( ) 1.0F   . Angular position 
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of the lateral thrust has uniform distribution (0, 2 )

F
U   in the plane normal to 

the longitudinal axis, 
 Axial and lateral wind has normal distribution (0, )wN  with zero mean values and 

standard dispersion 1.0 /
x yw w m s   . 

Without loosing generality of the problem it is taken that the parameters of accelerometers 
and rate gyros measurements are the same for all three axis (Table 4). 
         Table 4  

 Accelerometer Rate gyros 
Scale factor 0.1 %accs   . 0.1 %r gs   

Random bias instability 0.002accn mg  0.008rgn s   

Noise 9.0acc mg   1rg s    

Dead band 
. 0.005d bf mg  

. 0.07d b s    

 
It is shown in [7] that ground-to-ground missile guidance system can compensate all 
external disturbances without miss of the target. In order to verify the influence of IMU 
measurement errors to the missile trajectory parameters estimation and to the guidance 
system accuracy, the numerical simulation of the guided ground-to-ground missile is done 
with IMU measurement error parameters (Table 4) and without external disturbances. The 
impact points dispersion of the guided ground-to-ground missile at the range of 40  

with IMU measurement errors only (Fig. 10) is obtained by Monte Carlo simulation of 100  
trajectories. 
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Figure 10. Impact point dispersion due to IMU measurement errors 
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When the external disturbances are included in numerical simulation the impact points 
dispersion are equal to the impact points dispersion due to errors IMU measurement unit 
(Fig. 11). 
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Figure 11. Influence of the external disturbances to the impact points dispersions 

 
Efficiency of the ground-to-ground missile guidance system with IMU ADIS16365 is 
obtained by comparing impact points dispersion of the guided surface-to-surface missile 
relative to the impact points dispersion of the unguided ballistic flight with the same 
external disturbances (Fig. 12) 
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Figure12 Impact points dispersion of due to external disturbances 
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5. Conclusion 
 
The guidance law of the ground-to-ground missile guidance system is based on the 
deviation of the actual trajectory from nominal ballistic trajectory. In order to estimate 
missile trajectory parameters the navigation algorithm in spherical axis system is developed 
with assumption that specific forces and angular rates of the missile in body axis system is 
known. Since the specific forces are measured by accelerometers and angular rates by rate 
gyros, the accelerometers and rate gyros measurement errors are modeled as a function of 
the scale factor, bias instability, dead band and noise. These measurement parameters for 
commercial IMU ADIS16365 are determined in laboratory. 
Efficiency of the surface-to-surface missile guidance system with commercial IMU 
ADIS16365 is analyzed by numerical simulation. It is shown that IMU measurement errors 
are dominant for impact point dispersion of the guided surface-to-surface missile. There is 
no practical influence of the external disturbances to the impact points dispersion. 
It is also shown that the guidance system of the ground-to-ground missile with commercial 
IMU ADIS16365 can increase accuracy by five times relative to the ballistic missile of the 
same range. 
 

References  
 
[1] Gregor Gregoriou (1988) CEP Calculation for a Rocket with Different Control System, J. Guidance, Vol. 11, 

No. 3, May-June. 
[2] A.E. Gamble, P.N. Jenkins: Low Cost Guidance for the Multiple Launch Rocket System (MLRS) Artillery 

Rocket, IEEE AES System Magazine, January 2001. 
[3] Siouris,M.G (2004) Missile Guidance and Control Systems, Springer-Verlag, New York. 
[4] Ćuk D., Mandić S. (2006) Guidance and Control Laws Design, Theoretical Manual, MTI, Belgrade. 
[5] Mandić S (2009) Guidance of Ground to Ground Rockets Using Flight Path Steering Method, Scientific 

Technical Review, Vol.LIX, No.3-4, Belgrade, pp. 3-11. 
[6] Garnel P (1980) Guided Weapon System, Pergamon Press, New York. 
[7] Blakelock,J.H. (1991) Automatic Control of Aircraft and Missiles, John Willy and Sons. 
[8] Ćuk D., Ćurčin M., Mandić S. (2004) Autopilot Design, Theoretical Manual, MTI, Belgrade. 
[9] D.H. Titterton, J.L.Weston (2009) Strapdown Inertial Navigation Tehnology, American Institute of 

Aeronautics and Astronautics, Inc, 2009. 
[10] Ćuk D. (2008) GMTC-6D, Theoretical Manual, MTI, Belgrade. 
[11] Vukmirica V., Trajkovski I., Asanović N., 2010, Two Method for Inertial Seneors Parameters Determination, 

Scientific Technical Review, Vol.LX, No.3-4, pp., ISSN 1820-0206, Belgrade 
[12] Six Degrees of Freedom Inertial Sensor ADIS16360/16365, ANALOG DEVICES. 
[13] IEEE Std 528-1994, IEEE Standard for Inertial Sensor Terminology, IEEE 1994. 
[14] IEEE Std 1293-1996, IEEE Standard Specification Format Guide and Test Procedure for Linear, Single –axis, 

Nongyroscopic Accelerometers, IEEE 1996. 

 

941



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 D-04 

 
 
 
THE OPTIMIZATION OF LAUNCHING CADENCES FROM SELF-

PROPELLED MULTIPLE LAUNCHERS 
 

Milan Milošević1, Dragoslav Živanić2, Vlado Đurković3 

 
1 Military Technical Institute, Belgrade,  
Ratka Resanovića. 1, Belgrade   
e-mail: marija.m@beotel.net  
2 Military Technical Institute, Belgrade,  
Ratka Resanovića. 1, Belgrade 
e-mail: dragoslav@ptt.rs 
3 Military Academy,Belgrade,  
Pavla Jjurišića Šturma 33, Belgrade 
e-mail: svskom@scnet.rs 

 

Abstract. Based on mechanical and mathematical model of missile launcher, the influential 
parameters which launcher device transmits to the wrap-around cruciform unguided missile 
at the moment of leaving the launching tube were analyzed in this paper. The ballistic 
module for determining firing elements based on six degrees of freedom motion was 
presented. The launcher displacements were taken as initial conditions for the missile flight. 
The analysis of optimization of the launching cadence and dispersion of the hits, at the place 
of the target, was shown in this paper. It was also shown the partial CEP due to the 
interaction launcher – missile, for the multiple missile launcher BM-21. 

Key words: missile launcher, missile, missile dispersion, oscillation, trajectory.  

 
 
 

1. Introduction  
 
The development of missile systems, both in history and in the new era, the missile has 
always been at the center of attention, and all other elements of the system were neglected 
and stayed in the background. Only after the appearance of multi tubes "Katyusha", on the 
battlefield of the Second World War, the perception had changed and come to affirm the 
launcher as a weapon, we can see their significant role in achieving efficiency. 
Scientifically and by experiments it was proved that the accuracy and precision of unguided 
missiles can be quite close to conventional systems, with a perspective to reach this level. A 
prerequisite for this is the equal study of the entire missile system in which launchers have 
an important role. 
 

2. Mechanical- mathematical model of missile launcher 
 

Mechanical model of multi tubes missile launcher displayed on the Fig.1 that is suggested, 
consists of stiff bodies (point mass) and deformable elastic damping elements with 
connections reference [1,3,4]. The mechanical model of missile launcher presents the 
launcher missile that consists of special purpose vehicles (position 1), launcher device 

942



Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 D-04 

 
(position 2), the device for elastic system disconnection (position 3), the traversing 
mechanism and the elevating mechanism (position 4) and ammunition (missiles) (position 
5). The bearing or the lower part of the vehicle and the vehicle frame has two longitudinal 
reinforced box profile fixed with the cross elements of great stiffness. The system for the 
elastic disconnection of the vehicle is detached to the frame of the vehicle and it consists of 
four legs supported on the ground. Legs are represented as the elastic damping support, the 
stiffness of the springs equals the reduced stiffness of support and ground.  
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Fig. 2 - Mechanical model multi tube missile launcher  

 

According to the given model missile launcher, during the movement of the missile in the 
tube and after its release we define the displacement from eight generalized coordinates:  

 z  - vertical displacement of the vehicle frame, 
   - rotation of  the vehicle frame around transversal axis, 

 z - rotation of the rear part of the frame  around longitudinal axis, 

 p - rotation of the front part of the frame around longitudinal axis, 

 p - the angle move of the elevation support due to the bending  of direction 

console, 
   - rotation of the launcher around the rotational axis of the device elevation, 

 c - angle displacement of the muzzle launcher tube and tube due to the bending and  
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    - movement of missile in launcher tube  during firing. 

 

2.1. The kinetic energy of self-propelled missile launcher 
 
It is accepted that the model of the self-propelled multiple missile launcher has the 
following characteristics: it is non-conservative i.e. its work is accompanied by dissipation 
of energy, all the constraints are holonomic i.e. finite and with no derivate, stationary, does 
not depend on the time except in the case of this analysis in movement disorders of missile 
through the tube and the ideal-that is delayed i.e. the sum of all the works of reactive power 
on a virtual displacement is zero. 
The elasticity of missile, internal friction in the bearings and construction, the gaps in 
gearboxes and other power transmission, torsional oscillations of a launching device 
horizontal and undercarriage are neglected, as it is considered that those are the sizes of the 
second order. 
Kinetic energy of the system is represented as the sum of the kinetic energy of vehicles and 
the kinetic energy of a launching device with missiles. 

2.1.1. The kinetic energy of vehicle 
 

The kinetic energy of the vehicle, on which the launch facility is built, is equal to the sum 
of kinetic energy components and it is represented  

1 1 2 2

2 2 2 2 2 2
1 1 1 1 2 2 2 2 4 4

1

2
              

kV x z y x p yE m v J J m v J J m v2 .                                    (1) 

where: 

1 m  mass of the rear of the vehicle with the leveling mechanism, the lower part of the 

direction and elevation, 

2 m  mass of the front part of the vehicle, 

4 m  mass of consoles of the moving part of the direction i.e. of the cradle,  

1 1, x yJ J  principal central moment of inertia of the rear of the vehicle and associated 

components, 

2 2, x yJ J  principal central moment of inertia of the front part of the vehicle, 

 

2.1.2. The kinetic energy of a launching device 
 

With the kinetic energy of pipes we assume that only the tube nosing out the front panel 
participates in the moving while the parts of the tube between the boards and back behind 
the rear panel do not participate in the movement so the kinetic energy of the tube is 
reduced to the top tube. This assumption can be taken with sufficient reliability since the 
barrels are much more rigid between the front and back panel of the launching device. 

7 7 1 3 1

1 1 3

2 2 2 2 2 2

2 * 2 * 2 2 2
5 5 5 5 5 6 6

1

2

  

  

     
 

     

 
 

R R Rx Ry Ry Ry Rx z

kLU

x z y y

m v J p J q J J J
E

m v J J J m v


                                   (2) 

where: 
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5 m  current mass of  launching device (empty launching device and missile that do not 

move) 

6 m  mass of front part tube (console part ), 

Rm  missile mass, 
* *
5 5 5, , x y yJ J J  principal central moment of inertia of a launching device, 

, Rx RyJ J  principal central moment of inertia of the missile, 

1 2 4 5 6, , , , v v v v v  absolute speed of the corresponding points (concentrated masses), 

Rv axial speed of the missile, 

 z  angular speed of the rear of the vehicle and components around its longitudinal axis 

of inertia, , 1 1O y

 p

2 2O y

 angular velocity of the front of the vehicle around its longitudinal axis of inertia, 

, 

   angular velocity of the vehicle around its transverse axis of inertia, , 1 1O x

   angular velocity launching device around the rotational axis of elevation, , 3 3O x

p  spin of missile (angular velocity around the longitudinal axis ), 7 7O x

q  pitch rate (angular velocity around the horizontal axis ) 7 7O y
 

2.2. Potential energy of the missile launcher  
The potential energy of a given mathematical mechanical model Multiple Barrel Missile 
Launcher is the sum of potential energy of the vehicle and a launching device. 
According to the given mathematical model, all mass in the position of static equilibrium 
are balanced with elastic forces in the spring, so the differential equations of motion will be 
placed on the equilibrium position. 

2.2.1 Potential energy of vehicle  
Potential energy of the vehicles can be seen as the sum of potential energy of legs and 
frame of the vehicle. 
 

 Potential energy of the legs and support surfaces 
The proposed mathematical mechanical model consists of four legs and the potential energy 
will be presented  

      2 2 2

11 11 11 12 12 12 21 21 21 22 22 22

1

2
            pSPE c p c p c p c p 2





                    (3) 

 

with: 

 , 1, 2ijc i j - reduced stiffness of legs and support surfaces, 

 , 1, 2 ij i j - static strain of legs and support surfaces, 

 , 1, 2ijp i j - reduced dynamic strain of legs and support surfaces, 

Reduced dynamic strain of legs and support surfaces according to the [7] can be 
represented  
 

11 1 1 3    zp z l l , 12 1 1 3    zp z l l , 
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21 1 2 4    pp z l l , 22 1 2 4    pp z l l .                                                                             (4) 

 
 The potential energy of the vehicle frame 

Frame of vehicle (reinforced chassis of vehicle) is discretized with two masses and is 
represented as a torsion beam with reduced torsion stiffness c  and moving mass ( ) 

for angular 
1 2,m m

, z p . So the potential energy of the frame can be represented  

 21

2    PR z pE c                                                                                                             (5) 

2.2.2. Potential energy of the launching device 
Potential energy of a launching device can be viewed as the sum of potential energy of the 
console of the upper frame direction, elevation, leveling mechanisms and tube deformation 
from which missiles are fired. 

 Potential energy of the movable frame of mechanisms direction  
Rotating frame direction so-called cradle direction participate in the potential energy with 
its console and its bending angle 4 . Bending stiffness of the cradle console is marked 

with . Potential energy is shown in next equation, 3c

2
3 4

1

2
PKE c .                                                                                                                      (6) 

 Potential energy mechanisms of elevation 
Potential energy of the mechanism of elevation i.e. the mechanism for operating a 
launching device according to the height determined from the deformation of a triangle 
whose two nods represent the connection of the pickup device with the cradle and the 
launcher and the third nod represent the rotational point of the elevation of the launching 
device. Tensile or compression of the stick elevation of stiffness can be written as 4c

4   l e d  where   and 4  represent the change of the angle of elevation and the 

bending angle of the console cradle. Potential energy is represented by  

 2

4

1

2
  PEE c e d 4                                                                                                          (7) 

 Potential energy of the tube deformation  
As it was assumed that the most important muzzle tube i.e. the tube overhang in front of the 
front panel, potential energy of the tube can be written  

2
5 6

1

2
pCE c                                                                                                     (8) 

where the  and 5c 6 are the stiffness i.e. the angular deformation of the muzzle tube 

2.3. Differential equations of the missile launcher oscillations  
For the deduction of the differential equations that describe the oscillation of missile 
launcher it was used the Lagrange equations of the second order whose general form is 
shown in equation  

p nk k
r

r r r

EE Ed
Q

dt q q q

  
       

 .                                                                                      (9) 
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n

where: - the kinetic energy of the systems, - the potential energy of the system, - 

generalized non-conservative force, - generalized coordinates and - generalized 

velocity,  generalized coordinates, i.e. number of degrees of freedom with 

which this system is represented here and it is 8 as defined in the previous point. 

kE pE n
rQ

rq rq
1,2,3...r 

So the mathematical model of the system of eight no homogeneous, nonlinear differential 
equations of the second-order.  In matrix form the system can be presented according to 
equation: 

      A B Cq q q D ,                                   (10) 

Where the corresponding matrices A ,B ,  and D  functions of the generalized 
coordinates and velocity. 

C

Matrix  is the matrix of inertia, matrix  is damping matrix, matrix  is stiffness 

matrix and matrix  is the matrix of the perturbation. 

A B C
D

Numerical analysis of this problem is performed for the concrete construction of missiles 
and missile launcher. 
This system of differential equations is solved by the usage of the Runge –Kutta - Fehlberg 
with the software package LANS [5].  

3. A mathematical model of missile flight 
 
Equations of the missile motion in space with 6 degrees of freedom are discussed in various 
references and here is the model used by the reference [6]. In the deduction of the equations 
of motion of missile it is assumed that the missile is absolutely rigid and that the elastic 
oscillations of the body and wings are neglected. This assumption greatly simplifies the 
equations of motion as it allows the missile to be present in the form of ordinary differential 
equations. The assumption of infinite stiffness is permissible as the frequency of elastic 
oscillations is ten times larger than the frequency of the oscillations of missile as a rigid 
body. Missile with cruciform configuration, that is dealt with in this the paper has a central 
and axial symmetry and the symmetry of the same forms of penance and the mass 
distribution of certain elements of missile construction. In this case, the ellipsoid of inertia 
of missile becomes spheroid as the right axis of any coordinate system starting at the center 
of inertia of the missile, which as one of its axis has the axis of symmetry, are the main and 
central axis of symmetry. 
To determine the position of missiles in space it is enough to know the change of 
coordinates of the center of inertia as a function of time and reverse of the missile in 
relation to the center of inertia. Next equations in matrix form define the movement of 
missile in space. 

3.1 Translation of  the center of inertia 
 

Translational movement of the center of inertia can be displayed by 

x gx

y gy

z gz

F F u r
F F m v m r p v

w q pF F

S
S
S

é ù+ é ù é ù é ù-ê ú ê ú ê ú ê ú+ = + -ê ú ê ú ê ú ê úê ú ê ú ê ú ê ú-+ê ú ë û ë û ë ûë û

0
0
0





q u

w
                                                                       (11) 

with: 
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p

ú
ú

xFS , , - the sums of projections of external forces influencing the missile, such 

as aerodynamic and thrust along the axis x, y and z in a fixed coordinate system [N] 
yFS zFS

gxF , , - the projection of the gravitational force along the axis x, y and z in a 

coordinate system related to [N] 
gyF gzF

u , , - acceleration along the axis x, y and z in a coordinate system related to [ ], v w 2m / s

u , , - velocity along the axis x, y and z in a coordinate system related to [ ], v w m / s
p

rad

, , - angular velocity along the axis x, y and z in a coordinate system related to 

[ ]. 

q

/ s

r

3.2 Rotation around the center of inertia 
Rotation around the center of inertia can be shown  

[ ] [ ]
x

y

z

M p r q
M J q r p J q

r q p rM

S
S
S

é ù é ù é ù é ù-ê ú ê ú ê ú ê ú= + -ê ú ê ú ê ú ê úê ú ê ú ê ú ê ú-ê ú ë û ë û ë ûë û

0
0
0





                                                                                (12) 

with: 

[ ]
xx xy xz

yx yy yz

zx zy zz

J J J
J J J J

J J J

é ù- -ê
= - -ê
ê ú- -ê úë û

- matrix moment of inertia of missiles, 

xMS , , - the sum of all external moments (of the thrust and aerodynamic 

forces) projected on the axis x, y and z in a coordinate system related to [
yMS zMS

Nm ] 
p , , - angular acceleration along the axis x, y and z in a coordinate system [ ], q r 2rad / s

xxJ

kgm

, , - the main moments of inertia along the axes x, y and z in a coordinate system 

[ ], 

yyJ
2

zzJ

xzJ , , - centrifugal moments of inertia in [ ]. xyJ yzJ
2kgm

3.3 The initial conditions for the missile flight 
 

All disturbances to announce missile launch facility at the time of separation from the 
missile launch tubes are the initial conditions for further flight missiles. These initial 
conditions are derived from previously described mathematical model. 
Initial conditions, the half bound coordinate system, the missile will perform at a time when 
missiles loses contact with the launch facility and they are: 

0t - the time when missile leaves from launching tube, 

0, 0, 0x y h - coordinates of center of gravity missile when missile leaves from launching tube, 

0V - missile velocity when missile leaves the launching tube, 

0 - angle of inclination of the axis missiles towards the horizon when missile leaves the 

launching tube, 

0 - the angle of direction when missile leaves the launching tube, 

0 - angle of attack when missile leaves the launching tube, 

0 - slip angle when missile leaves the launching tube, 

0 - roll angle when missile leaves the launching tube, 
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0, 0, 0p q r - angular velocity around the axis , ,x y z  when missile leaves the launching tube. 

Depending on the type of the start i.e. of the way of guiding the missile through the launch 
tube this moment in time without the contact is different. With classic multi tubes of launch 
device we have tip-off from tube and it is considered that it is the position when the missile 
leaves the muzzle tube. This term tip-off refers to the angular momentum acquired by a 
missile due to the action of gravity when the forward missile supports leave the launcher 
before the aft supports. 

4. Numerical example MLRS BM-21 "Grad" 
 
For the analysis the self-propelled multiple missile launcher MLRS BM-21 "GRAD" [8] 
was selected. Launching device is filled with 40 missiles. The trajectory of which are 
elements of fire is analyzed: 

 angle of elevation a =0 30   

 angle of direction q = 90  and 
 without brake ring 

from which the range  is derived. D = 17740m

4.1. Inertial and geometric characteristics MLRS BM-21 "Grad" 
Mass and geometric interpretation is given in Fig. 2 
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a  = 2500 [mm]. 
l1  

= 1200 [mm]. 

l2 = 2600 [mm]. 
l  = 3800 [mm]. 
d  = 200    [mm]. 
b = 800   [mm]. 
e = 1400  [mm]. 
f = 600   [mm]. 
c = 800   [mm]. 
l3 = 500   [mm]. 

l4 = 1000 [mm]. 
 

m = 13800 [кg] - total 
weight BM-21 122mm  
filled with 40 missiles, 
m1= 5800 [кg]  - mass of the 
rear of the launcher,  
m2 = 8000 [кg]   - mass of the 
front of the launcher,  
m4 = 300  [кg]   - mass of 
console of cradle, 
m5 = 4500 [кg]  - mass of 
filled launching device, 

m ¢5 = 1500 [кg] - mass of 
empty launching device.  
 














 

Fig. 2 - Geometric interpretation of a launching system BM-21 122mm 
 

5. Analysis of launcher oscillations and impact point missiles at the target 
 

5.1. Analysis of burst firing 
 

By solving the system equation  (10) for numerical example the displacement and velocity 
oscillation missile launcher are obtained. The diagram Fig.3 shows the second period of 
free oscillation of vertical missile launcher after firing the first missile (curve line ). This 
period lastes from 0.9 [s] to 1.4 [s]. On the same curve line, squares mark the  time of the 
firing of the second missile, and they are: = 0.94, 1.05; 1.1; 1.14; 1.17, 1.2, 1.23, 1.3, 
1.33, 1.4 [s]. 

Lh

Lt

Time moments of the second missile firing were chosen for the following cases: 
 
- when the launch tube displacement equals zero , Lh = 0
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- extreme values of displacements (the minimum and maximum) of the muzzle launching 
tube and 
- the mean displacement of the launch tube between the zero displacement and the extreme 
positions. 
The range missiles have been calculated by the usage of program (PUTNPV3) based on a 
model missile flight with 6 degrees of freedom [4]. 
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Fig.3 The second period of oscillation of launchers after firing the first missile 
 

The second curve on the same diagram  (marked with triangles) represents the 
difference range of the second missile comparing to the first missile range.  

xD

The range of the second missile was obtained after ingestion of a new initial disturbances 
that missile launcher announces to another missile in the selected point in time. 
For initial disturbances of missile were taken disturbances that missile launcher announces 
at the muzzle in this model those are: 
- the initial angle of attack 0  

- initial angular velocity missile (pitch rate) , and 0q

- change the initial angle of launch 0 . 

The diagram Figure 4 shows the path end at the target of the first missile, and every second 
missile that was fired at different instants from . The diagram shows that 

the second missile reaches 17,655 to 17,913 m. It also shows that for , 

the second missile has a minimum distribution comparing to the first missile. Firing of the 
second and each subsequent missile should be chosen for one of these three times. 

. .t = -0 94 1 33s

. ; . ; .Lt s= 1 0 1 3 1 33
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 2  ra k e ta  1 .3  s
 2  ra k e ta  0 .9 4 s
 2  ra k e ta  1 .0 5 s
 2  ra k e ta  1 .1 4 s
 2  ra k e ta  1 .1 7 s
 2  ra k e ta  1 .2 3 s
 2  ra k e ta  1 .3 3 s

 
Fig.4 The ends of the path 2. missile 

 
The diagram Fig.5 shows three groups of graphics: 
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Fig.5 The movements and distribution of the launcher to the firing 2. missile 

 

1 - The line oscillation of launchers after firing the first missile , is given and time-tested 
the second missile firing moments are marked on it. Moments of time firing the second 
missiles have been selected when moving of the launchers are zero, maximum, minimum 
and mean between zero and extremes. 

Lh
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2 - The differences in range of the second missiles  compared to the first range missiles 
as a function of time are shown. The same diagram shows that the range of variation is 

zero at points = 1.106 and 1.279 s. From the point of zero deviation range missile in the 
target it might be the time to launch the second missile. 

xD
Lt

Lt

3 - The third group are the curves representing the vertical displacement launch tube after 
the firing of the second missile. 
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Fig.6 Velocity of muzzle tube and of the missile impact point distribution on target  to the firing 2. missile 

 
The diagram Fig.6 shows the speed of the muzzle tube moving normal to the axis of tube. 
For the analysis of the second period of oscillation launcher after firing the first missile is 
selected because the displacement and velocity of the muzzle tube (Fig.5 and Fig.6) are 
lower than in the first periods of oscillation. 
Firing of the second missile is shown after . We can see that the maximum 

deviation range is up to 175m at the range of 17740m. Maximum speed of oscillation of the 
muzzle tube equals 0.3 . 

.Lt = 0 9 s

/m s
 

5.2. Partial CEP of missile dispersion on the target  
 
Circular error probable (CEP) is the most widely used measure of dispersion for 
determining missile accuracy for two-dimensional distribution. The CEP is defined as the 
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radius of a circle within which one-half of the values are expected to fall. The center of the 
circle is the mean of the values. 
The diagram shows in Fig.6 CEP hits on the target, as a result of the interaction missile-
launcher, and is 59.5 [m]. Probable deviation distance is Vd = 56 [m] and the direction Vp 
= 12 [m]. These values for the partial CEP are less than the total CEP when considered 
various deviations the missile. The deviation of the missile in the direction of dispersion is 
caused by the rotation of the missile around the longitudinal axis. The diagram shows the 
mean hit and the ellipse of distribution hits at the target. The same diagram shows the 
deviation distance for each missile ∆x given in a percentage of the range. The missile 
number 4, 9 and 10 have the least the distribution, which corresponds to the time of the 
launch of the second missile . . ; . ; .Lt s= 1 0 1 3 1 33

 
Fig.6 CEP at burst fire 

 

6. The conclusion and the selection of optimal launch cadences 
 
From the numerical results and diagrams of oscillation Fig.3 to Fig.5 we can derive the 
following conclusions: 

1. Time of complete damping i.e. cessation of oscillation of full and empty launcher 
is approximately 3.5 s. 

2. Maximum amplitude, displacement the muzzle tube in a vertical plane 
perpendicular to the axis of tube for the launcher loaded with 40 (39) missiles is 
15[mm] and for launcher loaded with one missile (blank) is 17[mm]. 

The criteria for choice of optimal firing time of the second missile and all the other missiles 
at the following burst fire are subject to two requirements: 

 displacement of the muzzle tube at the second firing missile must be less or 
equal to displacement of the muzzle tube at the first firing of missile and 

 the minimum difference in range of the second missile compared to the first 
missile. 

Optimal cadence should be sought to meet these two often conflicting demands. 
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If, as a basic criterion for choice of launching time of the second i.e. of all other missiles in 
a burst we take distribution size at the target, then from the diagram Fig.7, can be separated 
intervals ,  and 1 1.1t s 2 1.279t s 3 1.33t s . 
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Fig.7 Optimal cadence launching 2.missile 

 

Due to the requirement that the size of the launcher disorder that causes the second i.e. any 
subsequent missile in burst to be the smallest, the best time for launching the next missile is 

. 2 1.279t s
Analyzing the nature of the oscillation muzzle tube, Fig.7, it can be concluded that it is the 
period of time when the tube has a tendency to move towards "down" after reaching the 
maximum amplitude. 
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Abstract. In this paper, the effects of traffic induced ground vibrations on the three frame buildings of different 
height are analyzed. The structures are subjected to horizontal and vertical ground vibrations which were measured 
in Belgrade, along the route of future metro line. Dynamic analysis including soil-structure interaction is carried 
out in frequency domain, using substructure approach. The dynamic response of frames is obtained using the 
Spectral Element Method (SEM) for frame elements Error! Reference source not found.and relevant impedance 
functions for foundation. Displacement fields of spectral element are exact solutions of the beam’s partial 
differential equations of motion for axial deformation and bending. It results in the exact form of the interpolation 
functions, which can be presented as trigonometric or hyperbolic functions. Impedance functions of the soil are 
calculated using Integral Transform Method (ITM). Based on theoretical considerations, the numerical analysis 
has been performed in order to determine dynamic responses and maximum vibration levels of investigated 
frames. Numerical results are compared with allowable vibration levels according to British Standard: 6472. 
 

1. Introduction  
 
Rapid urbanization has led to building construction near the roads, highways and railways. 
Moreover, new technology of production of stronger materials have resulted in higher, 
lighter and more flexible buildings, which made them more sensitive to traffic-induced 
vibration. Numerous investigations have shown that traffic-induced vibrations rarely cause 
damage of the surrounding structures and buildings, but they produce annoyance of 
building residents, as well as normal functioning of sensitive equipment, [1-4].  
The main source of traffic vibrations in the cities are passage of buses, trucks, and trams, as 
well as subway. Vibrations are mostly generated due to road/track irregularities and vehicle 
imperfections. They induce waves in the soil that propagate in all directions and affect the 
surrounding buildings causing their vibrations. Dynamic response of building depends on 
the dynamic properties of the building – foundation - subsoil system. Therefore, both the 
structure and the soil region have to be properly modeled.  
Contemporary soil-structure-interaction (SSI) analyses are based on substructure approach:  
FEM is usually used for structural modeling, while soil region can be modeled using FEM, 
Boundary Element Method (BEM), [5], Thin Layer Method (TLM), [6] or Integral 
Transform Method (ITM), [7], [8].   
As an alternative to the Finite Element Method for structural modeling in dynamic analysis, 
so called Spectral Element Method (SEM) can be used, which significantly decrease the 
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number of elements compared with FEM. Displacement field of spectral element is 
obtained solving the partial differential equation of motion. It results in the exact form of 
the interpolation functions, which contain trigonometric or hyperbolic functions. Therefore, 
only one element can exactly represent dynamic behavior of a beam. Interpolation functions 
and dynamic stiffness matrix of spectral element are frequency dependent. 
In this paper, the effects of traffic-induced ground vibrations on dynamic response of 
concrete frame buildings of different heights are analyzed, including soil-structure 
interaction. Numerical analysis is carried out in frequency domain using substructure 
approach.  For this analysis a special computer code in Matlab has been developed. Frame 
structure is modeled using Spectral element Method. It is assumed that frame structure is 
founded on rigid rectangular foundations on homogeneous elastic half-space. Dynamic 
stiffness matrix of the rigid foundation has been calculated using ITM, [8]. The structures 
are subjected to horizontal and vertical ground vibrations measured in Belgrade in 2006, 
along the route of future metro line, [9]. These ground vibrations were generated by tram 
and heavy truck crossing a rubber obstacle on the road. Influence of soil stiffness on 
dynamic response of frame structures subjected to traffic-induced ground vibrations has 
been obtained and discussed. Numerical results are compared with allowable vibration 
levels according to British standard BS: 6472, [12]. The allowable vibration levels are 
defined in terms of the peak particle velocity (PPV). 
 

2. Structural modeling using Spectral Element Method 
 
Conventional finite element analysis has been widely used for solving different kind of 
structural static and dynamic problems. Displacement fields of each finite element are given 
as polynomial functions. The structure is meshed in order to represent the geometry, 
boundary conditions, mass and applied loads. Generally, in dynamic analysis more finite 
elements are required than in the static analysis. The number of finite elements is also 
influenced by the highest frequency in the analysis. As an alternative to the Finite Element 
Method in dynamic analysis, so-called Spectral Element Method (SEM) can be used. Doyle 
proposed this method to analyze wave propagation in frame structures, [10]. Displacement 
field of spectral element is obtained solving the partial differential equation of motion. It 
results in the exact form of the interpolation functions, which contain trigonometric or 
hyperbolic functions. Therefore, only one element can exactly represent dynamic behavior 
of a beam. Interpolation functions and dynamic stiffness matrix of spectral element are 
frequency dependent. Consequently, dynamic response analysis needs to be carried out in 
frequency domain, using discrete Fourier transform, [11]. The usage of spectral elements 
reduces the number of unknowns and increases the accuracy of the numerical results. 

2.1 Interpolation functions 

Bar element. Bar element assumes only longitudinal wave motion. Equation of motion 
for bar element can be obtained from the balance of forces including inertial force: 

   
2

2

2

2

t

u
A

x

u
EA








 (1) 

where E, A, ρ, u = u(x, t) are, respectively, Young’s modulus, cross-sectional area, mass 
density and displacement in x direction of bar. A bar element with nodal displacements and 
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corresponding forces is given in Figure 1. Introducing spectral representation of 
displacement u(x, t) as 

 , (2) tiexutxu   ),(ˆ),(

 

 
Figure 1. Bar spectral element 

 where ω is angular frequency, Fourier transform of Equation (1) can be expressed as 

  0ˆ
ˆ 2
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x

u
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where 
EA

A
k


 22  is wave number. General solution of differential equation (3) can be 

given as 

 . (4) ikxikx eCeCxu 21),(ˆ  

Integration constants C1 and C2 are obtained from boundary conditions, setting: 

 .ˆ)(ˆ,ˆ)0(ˆ
21 uLuuu   (5) 

From Equations (4) and (5) the displacement in longitudinal direction at an arbitrary point 
in the bar axis can be written as: 

     2211
ˆˆˆˆ),(ˆ uxNuxNxu  , (6) 

or in matrix form: 

 Nq),(ˆ xu , (13) 

 

where  and  are frequency dependant interpolation functions, N is matrix of 

interpolation functions and q vector of nodal displacements of beam spectral element. 

 xN1
ˆ  xN 2

ˆ

 
Beam element. Dynamic stiffness matrix of beam element for flexural motion, given in 

Figure 2, can be derived in similar way as for bar element. Differential equation of motion 
for Euler-Bernoulli beam is 
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 (7) 

where I, w = w(x, t) are, respectively, second moment inertia of cross-section and 
transverse displacement of beam.  
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Figure 2. Beam spectral element 

Introducing spectral representation of displacement w(x, t) as 

 tiexwtxw   ),(ˆ),( , (8) 

where ω is angular frequency, Fourier transform of Equation (7) can be expressed as 
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where 
EI

A
k


 24  is wave number. General solution of differential equation (9) is  

 . (10) kxkxikxikx eCeCeCeCxw 4321),(ˆ  

Integration constants C1, C2, C3 and C4 are obtained from boundary conditions, setting: 

 .ˆ)(ˆ,ˆ)(ˆ,ˆ)0(ˆ,ˆ)0(ˆ
2211  LwLwww  (11) 

From Equations (10) and (11) the displacement in transverse direction at an arbitrary point 
in the beam axis can be written as: 

         24231211
ˆˆˆˆˆˆˆˆ),(ˆ  xNwxNxNwxNxw , (12) 

or in matrix form: 

 Nq),(ˆ xw , (13) 

where , , and  xN1
ˆ  xN 2

ˆ  xN3
ˆ  xN4

ˆ  are frequency dependent interpolation functions, N 

is matrix of interpolation functions and q vector of nodal displacements of beam spectral 
element.  

2.2 Dynamic stiffness matrix 

Dynamic stiffness matrix of spectral element with defined degrees of freedom can be 
developed using principle of virtual work, [16]: 

  0int  WWW ext , (14) 

where is the virtual work done by external forces and extW intW is virtual work done by 

internal forces of a solid body. In case of elastic deformable body, the term is the 

work due to the elastic body deformation, i.e.  
intW
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 , (15) dVUW
V

T εσint

where U is potential energy.  In order to take into account the time dependence of all 
variables, D’Alembert’s principle will be used. Then, the virtual work of external forces 
can be written as: 

 , (16) dVuudVufdSufW
VV

b

S

S

ext   

where the first term is work done by external surface forces, the second term is work done 
by body forces and the third term accounts for inertial forces of a solid body. Using 
kinematic and constitutive relations: 
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, (17) 

where L is an operator matrix and E is matrix of elastic constants, from Equations (14)-(16) 
follows: 
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where 
e
is dynamic stiffness matrix of spectral element. For bar element dynamic 

stiffness matrix derived from Equation (18) is: 
DK
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while for beam element dynamic stiffness matrix is: 
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3. Equation of motion for soil-structure system 
 
Soil-structure model consists of two sub-structures, described in Figure 3.  It is assumed 
that the system is subjected to horizontal and vertical traffic-induced ground motion. Nodes 
at the soil-structure interface are defined as interaction nodes (index i), while remaining 
nodes of the structure are defined as structural nodes (index s). 
Equation of motion of soil-structure system in frequency domain can be written as: 
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where Kii
F is dynamic stiffness matrix of the soil-structure interface, Kss

S , Ksi
S , Kis

S are 
dynamic stiffness sub-matrices of the structure obtained using SEM,   and  are 

displacements at structural and interaction nodes, respectively, while  is vector of traffic-

induced ground motion. 

sû iû
'ˆ
iu
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Figure 3. Soil-structure system 

Dynamic stiffness matrix (impedance matrix) of the soil is defined as dynamic stiffness 
matrix of the interaction nodes at the soil-structure interface. It is calculated by the 
following procedure: 
The region of the foundation is discretized by a set of interaction points i. At each point a 
unit point load in horizontal and vertical direction is applied and corresponding 
displacements of the soil are calculated using ITM, [8].  Calculated displacements form 
dynamic flexibility (compliance) matrix F. Size of the flexibility matrix is 2Nx2N, where N 
is number of interaction nodes. Dynamic stiffness matrix of the soil Kii

F is obtained 
inverting the flexibility matrix: 

 . (22) 1 FK F

ii

4. Dynamic stiffness matrix for rigid foundations 
 
We consider a rectangular massless rigid foundation resting on the soil surface, excited by 
harmonic force, Figure 4. Motion of the rigid basement can be described by the 
displacement vector  at the center of the base interface (point O). For 2D problems, 

displacement vector  consists of two translations (horizontal-u and vertical-v) and one 

rotation-φ. The corresponding force vector acting at the point O is Po. Since dynamic 
properties of the foundation depend on the frequency of excitation, force-displacement 
relation is given in frequency domain through dynamic stiffness matrix of the foundation: 

oû

oû
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For surface foundations, coupling terms khr can be neglected. 
If  is displacement vector of interaction nodes, the relation between  and  is given 

through kinematic matrix a: 
iû iû oû
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Figure 4. Surface rigid foundation, degrees of freedom 
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where (xi , yi) are coordinates of the interaction nodes. Equating the deformation energy for 
flexible and rigid foundation, dynamic stiffness matrix of rigid foundation is given as: 

  . (26) aKaKO

F

ii

T

 

5. Traffic-induced ground vibrations 
 

Measurement of traffic-induced vibrations was carried out on 52 buildings along the 
future metro line in Belgrade in 2006. The buildings were representative of several 
combinations of building types, importance (historical, institutional, office, and residential 
buildings) and site conditions. The scope of investigation was to evaluate the vibration level 
caused by existing road and tram traffic, with reference to the potential building damage 
and the human annoyance, using existing standards. The investigation work was done for 
the Belgrade Land Development Public Agency, by the Geological Institute of Serbia, 
Geophysical Institute -NIS and the Faculty of Civil Engineering University of Belgrade, 
[9]. Measurements were carried out by the Geophysical Institute - NIS using I/O System 
One that consists of 5 three-component geophones. The velocities were measured 
simultaneously in three orthogonal directions: vertical direction - V, horizontal direction 
parallel to the road - H1 and horizontal direction perpendicular to the road - H2, at five 
different points: 1 - on the sidewalk about 1 m from the road/track, 2 – on the ground at the 
external foundation wall, 3 – in the basement of building close to the external wall, at the 
top floor at the corner – 4 and midpoint of the floor – 5. 

Vibrations were generated by the following sources: 
 ambient sources, 
 truck weighted approximately 14 tons at speed 50 km/h, 
 truck :14 tons, speed 50 km/h, crossing 3 cm thick rubber obstacle,  
 articulated bus or tram. 

During the measurements, a large amount of data had been collected and processed. It 
was found out that the highest vibration levels were generated by tram and heavy truck 
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crossing 3cm thick rubber obstacle.  Therefore, the ground vibrations induced by these two 
vibration sources, at the site with high vibration level, will be used as input ground motion 
for dynamic response analysis of frame structures.  

Time histories and power spectra for horizontal and vertical ground vibrations measured 
in King’s Alexander Boulevard in Belgrade are presented in Figures 5-8. Measurement 
point was approximately at 11 m from the road/track on the ground surface. In the case of 
tram traffic, predominant frequency range is between 15 and 27 Hz for horizontal 
vibrations and between 13 and 27 Hz for vertical vibrations, whereas for road traffic 
induced by heavy truck crossing a rubber obstacle predominant frequency range is between 
2 and 6 Hz for both horizontal and vertical vibrations. Higher vibration levels are obtained 
for vertical vibrations. The ground displacements obtained from integrating ground 
velocities, are presented in Figures 9-12.  
 

 

Fig. 5 Time history and Power spectrum of horizontal ground velocity (tram, v=20 km/h, 
distance to track 11 m) 
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Fig. 6 Time history and Power spectrum of vertical ground velocity (tram, v=20 km/h, 
distance to track 11 m) 

 

Fig. 7 Time history and Power spectrum of horizontal ground velocity (truck crossing 
rubber obstacle, v=50 km/h, distance to road 11 m) 
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Fig. 8 Time history and Power spectrum of vertical ground velocity (truck crossing rubber 
obstacle, v=50 km/h, distance to road 11m) 

 

Fig. 9 Time history and Power spectrum of horizontal ground displacement (tram, v=20 
km/h, distance to track 11 m) 
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Fig. 10 Time history and Power spectrum of vertical ground displacement (tram, v=20 
km/h, distance to track 11 m) 

 
Fig. 11 Time history and Power spectrum of horizontal ground displacement (truck crossing 

rubber obstacle, v=50 km/h, distance to road 11 m) 
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Fig. 12 Time history and Power spectrum of vertical ground displacement (truck crossing 
rubber obstacle, v=50 km/h, distance to road 11 m) 

6. Numerical results 
 
Three concrete two bay frames of different heights (two-storey, six-storey and twelve-
storey) are subjected to traffic-induced horizontal and vertical ground motion. Bay width is 
4 m. Story height is 3 m, except for the first floor – 3.5 m. Mass of each floor is 9 t, which 
is continuously distributed as additional mass along each beam. Geometrical properties of 
frame members are given in Table 1. Structural damping coefficient is 5%.  
The frames are founded on rigid and massless rectangular footings with a length 2 m and a 
width 2 m. The footings rest on elastic homogeneous half space. Material properties of the 
half space are: 

 mass density: 2000 kg/m3, 
 shear waves velocity : 100 m/s, 
 Poisson’s ratio: 0.33. 

In order to calculate dynamic response of investigated frames, a computer program using 
Matlab was developed for dynamic analysis of 2D frame structures in frequency domain, 
including soil-structure interaction. The structure is modeled using SEM, while ITM is used 
for calculation of dynamic stiffness matrix of the subsoil, [8]. Natural frequencies for 
horizontal and vertical mode shapes are given in Tables 2 and 3, respectively. 

In order to emphasize the effect of soil-structure interaction on dynamic response, 
analysis has also been carried out for the corresponding fixed-base frames. Displacement 
and velocity envelopes of the investigated frames subjected to traffic-induced ground 
vibrations are presented in Figures 13-18, whereas displacement response spectra are given 
in Figures 19-22. Natural frequencies of investigated frames decrease when soils stiffness is 
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accoutered for, which is especially pronounced for vertical vibration modes, as vertical 
frame stiffness-vertical soil stiffness ratio is much larger than corresponding horizontal 
stiffness ratio. Consequently, vertical dynamic responses of fixed base frames are quite 
different than the dynamic responses when SSI is taken into account, especially for tram –
induced traffic vibrations.   

Table 1 Geometrical properties of investigated frames   

Columns Frame 
external Internal 

Beams 

Two storey 20x30 cm 25x30 cm 

Six storey 20x30 cm 
25x50 cm (1-2 floor) 
25x40 cm (3-5  floor) 
25x30 cm (6th  floor) 

Twelve storey 
25x40 cm (1-5 floor) 
20x35 cm (6-8 floor) 
20x30 cm (9-12 floor) 

25x80 cm (1-2 floor) 
25x70 cm (3-4 floor) 
25x60 cm (5-7 floor) 
25x50 cm (8-10 floor) 
25x40 cm (11-12 floor) 

23x40 cm 

 

 
Fig. 13 Horizontal displacement and velocity envelopes of two-storey frame 

 

    
Figure 14. Vertical displacement and velocity envelopes of two-storey frame (middle point 

on the beam) 
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Table 2 Natural frequencies for horizontal mode shapes 

Natural frequencies (fixed-base frame), Hz Natural frequencies with SSI, Hz 
Frame 
storey Mode 

1 
Mode 

2 
Mode 

3 
Mode 

4 
Mode 

5 
Mode 

1 
Mode 

2 
Mode 

3 
Mode 

4 
Mode 

5 

2 2.37 7.49    2.29 7.40    

6 1.08 3.22 5.48 7.95 10.71 1.01 3.11 5.36 7.81 10.55 

12 0.62 1.81 3.21 4.7 6.34 0.56 1.74 3.11 4.55 6.14 

Table 3 Natural frequencies for vertical mode shapes 

Natural frequencies (fixed-base frame), Hz Natural frequencies with SSI, Hz 
Frame 
storey Mode 

1 
Mode 

2 
Mode 

3 
Mode 

4 
Mode 

5 
Mode 

1 
Mode 

2 
Mode 

3 
Mode 

4 
Mode 

5 

2 15.79 18.06 19.31 22.21 39.53 15.44 21.68 50.8 57.5 63.0 

6 12.22 13.41 16.68 18.34 19.25 10.55 12.8 16.24 18.09 18.94 

12 8.11 13.83 16.74 18.13 18.83 7.9 11.58 13.57 15.93 16.61 

     

Figure 15. Horizontal displacement and velocity envelopes of six-storey frame 

     
Figure 16. Vertical displacement and velocity envelopes of six-storey frame (middle point 

on the beam) 
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Figure 17. Horizontal displacement and velocity envelopes of twelve-storey frame 

     
Figure 18. Vertical displacement and velocity envelopes of twelve-storey frame (middle 

point on the beam) 

Horizontal vibrations: Truck crossing a rubber obstacle induces larger horizontal vibrations 
than tram traffic for all frames, since the dominant horizontal vibration modes fall into the 
dominant frequency range for truck traffic (2-5 Hz). Two-storey frame experiences the 
largest horizontal displacements and twelve-storey frame the lowest horizontal 
displacements due to truck induced ground motion. Main reason for that lays in fact that 
fundamental vibration mode of two-storey frame (2.37 Hz) falls in the dominant frequency 
range for truck induced horizontal ground vibrations. Consequently, horizontal 
displacement of the top floor of two-storey frame is highly amplified. 
Vertical vibrations: The largest vertical displacements occur at the midpoint of the beam on 
the top floor of the investigated frames. Vertical dynamic responses of all frames are 
influenced by lower vertical vibration modes. Two-storey frame undergoes the largest 
vertical displacements and velocities for tram traffic as natural frequencies fall into the 
range of predominant frequencies for tram vertical vibrations (13-20 Hz). Predominant 
frequency range for truck traffic (2-6 Hz) is much lower than fundamental frequency of 
vertical vibration mode for all investigated frames. Consequently, truck traffic induces 
lower vertical vibration levels and lower amplification factors. Taking into account soil –
structure interaction in the analysis can significantly alter dynamic response of frames. 
Vertical displacements and velocity envelopes have much lower values than corresponding 
values for fixed base frames due to radiation damping, which are more pronounced for tram 
traffic. 
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a)                     b) 

Figure 19.  Response spectra for horizontal displacement of top floor: a) tram traffic, b) 
truck traffic, without SSI 

     
a)                          b) 

Figure 20.  Response spectra for horizontal displacement of top floor: a) tram traffic, b) 
truck traffic, including SSI 

     
a)                          b) 

Figure 21. Response spectra for vertical displacement of top floor (middle point of beam): 
a) tram traffic, b) truck traffic, without SSI 
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a)                         b) 

Figure 22. Response spectra for vertical displacement of top floor (middle point of beam): 
a) tram traffic, b) truck traffic, including SSI 

     
a)                         b) 

Figure 23. Peak particle velocities for horizontal traffic induced vibrations: a) tram traffic, 
b) truck traffic 

     
a)                         b) 

Figure 24. Peak particle velocities for vertical traffic induced vibrations: a) tram traffic, b) 
truck traffic 

Maximum horizontal and vertical velocities of all frames are presented in Figures 23 and 
24. Horizontal vibrations do not exceed the acceptable limits in terms of peak particle 
velocity (PPV), according to BS: 6472, [8]. Unlike horizontal vibrations, vertical vibrations 
for fixed base frames are 2-5 times larger than acceptable vertical vibration limits. Vertical 
peak particle velocities for investigated frames are significantly decreased when SSI is 
taken into account, and put below the acceptable level according to BS.  
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7. Conclusions 

Traffic induced ground vibrations were measured along the future metro line in Belgrade. 
Vibrations induced by the existing tram traffic and heavy truck crossing 3 cm thick rubber 
obstacle were analyzed. These vibrations were used as input ground motion in order to 
obtain dynamic response of three frame structures of different heights, including soil-
structure interaction. Numerical analysis was carried out in the frequency domain using 
Spectral Element Method. Based on the theoretical considerations a computer program 
using Matlab was developed for dynamic response analysis of 2D frame structures in the 
frequency domain.  

Soil-structure interaction can significantly alter the dynamic response of frame structures. 
Higher structural stiffness-soil stiffness ratio more pronounces the effect of SSI.  
For all frames, tram induces larger vertical vibrations than truck, while truck induces larger 
horizontal vibrations. Vertical dynamic responses for all frames including SSI are lower 
than the corresponding responses in case of fixed base frames. Calculated horizontal 
vibrations are less than the allowable vibration limits according to BS. Although the 
measured vertical traffic induced vibrations are not strong enough to cause any damage to 
the investigated fixed base frame structures, they are annoying to building occupants, since 
they are higher than the threshold values.  
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VIBRATION AND STABILITY OF CROSS-PLY LAMINATED PLATES 
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Abstract. In the present paper, by including two shear correction factors, vibration and 
stability of symmetric and antisymmetric cross-ply laminated plates are investigated. Natural 
frequency parameters and buckling coefficients are obtained for simply supported 
rectangular laminated plates. Numerical results are given as function of span-to-depth ratio, 
aspect ratio, cross-ply ratio, number of layers and ratio of the principal lamina stiffnesses. 
Shear deformation shown a considerable effect on natural frequencies and critical buckling 
load for cross-ply plates, whereas the rotary inertia effect was found to be negligible. 

 
Keywords: Vibration, Stability, Laminated plates, Shear factors, Rotary inertia 

 
 
 1. Introduction 
 
 The potential of fiber-reinforced composite materials for use as structural 
members has inspired considerable research activity in the study of the response 
anisotropic laminated plates. Composite materials are very suitable for structural 
applications where high strength -to - weight and stiffness - to - weight ratios are required. 
Laminated composite materials are used as structural components in various applications 
(aerospace, automotive, marine, etc.). 

The determination of natural frequencies and stability regions is of fundamental 
importance in the design of many structural components. It is necessary that the natural 
frequencies of vibration and buckling loading be determined accurately in order to obtain a 
design that results in virtually resonant-free structural components. In the classical laminate 
theory [1], which is an extension of the classical plate theory to laminated plates, one 
ignores the transverse stress components and models a laminate as an equivalent single 
layer. That theory is adequate for many engineering problems, but laminated plates made of 
advanced filamentary composite materials, like graphite-epoxy, are susceptible to thickness 
effects because their effective transverse shear moduli are significantly smaller than the 
effective elastic modulus along the fiber direction.  

This high ratio of elastic modulus to shear modulus renders the classical laminate 
theory inadequate for the analysis of composite plates. Also, deformation due to transverse 
shear strains plays a significant role in the behavior of beams, plates and shells when a 
linear dimension or response mode wave length is of the same order as the thickness. For 
typical fibrous composite materials the transverse shear elastic modulus is less than 1/50 of 
the major in-surface normal modulus. 
 As is known from theory of elasticity, exact linear solutions of some laminated 
plates can be obtained by solving three-dimensional elasticity equations, but the procedure 
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becomes very cumbersome when the number of layers increases, and the analysis is 
computationally expensive and infeasible for practical use.  
 The problem of correction of shear on static and dynamic behavior of the 
laminated plates goes back to the papers of  Young at al. [2] and Whitney and Pagano [3]. 
Pai [4] investigated the characteristics of shear warping functions, shear coupling effect 
and presented a general derivation and interpretation of shear correction factors of 
anisotropic laminates.  The influence of rotatory inertia and transverse shear on dynamic 
instability domains was studied by Pavlović at al. [5], [6]. The thermally inducted 
parametric vibrations of laminated plates with shear effects due to time-dependent 
temperature with Gaussian and harmonic distributions were analyzed by Tylikowski [7]. 
By introducing velocity feedback and particular polarization profiles of piezoelectic 
sensors and actuators, a stabilization problem of beam with shear deformations and rotatory 
inertia effects was studied also by Tylikowski [8].  
 The purpose of the present paper is, by including two shear correction factors, the 
investigation vibration and stability of symmetric and antisymmetric cross-ply laminated 
plates. 
  
 2. Problem formulation 
 
 Let us consider the elastic, symmetrically or antisymmetrically laminated cross-
ply rectangular plates. The plates are made up of many unidirectional  layers stacked up in 
0o or 90o with respect to a reference axis, as is shown in Fig. 1.  



 
Fig. 1 Geometry and co-ordinate system of a three-layered cross-ply symmetric plate 

 
 The dynamic equilibrium equations, based on the first order shear deformation 
theory, after Whitney and Pagano [3], and Pai [4], are: 
 

TFY

X 

 TFX   TFX  

Y  TFY

1h
h b

h 2

13 hh   
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where A11, A12, A22, A44, A55, A66, B11, D11, D12, D22   and D66 are laminate stiffness 

coefficients, Uo, Vo are inplane displacements, W is the transverse displacement, x  and 

y are bending slopes, k1, k2 are the shear correction factors associated with the shear 

stiffnesses A55  and A44, respectively,  is the mass density, T is the time, FX(T) and FY(T) 
are time-dependent compressing forces.  
 Boundary conditions corresponding to simply supported edges have the form: 
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where bending moments and stress resultsnts are 
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 The following parameters can be used to non-dimensionalize equations (1)-(3): 
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 and boundary conditions: 
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 By applying differential operators: 
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to the differential equations (7), (8), (11) and (12) we can eliminate in plane displacements 
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and modified boundary conditiond have the form: 
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3. Flexural Vibrations and Stability 
 

 The following set of displacements will satisfy differential equations (15)-(17) and 
the boundary conditions (18): 
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 By putting relations (19) into (15)-(17) we obtain homogenous set of algebraic 
equations which poseses nontrival solution if: 
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 4. Numerical results and discussion 
 
 The expression (20) gives the possibility to obtain natural freqencies and regions 
stability as the function of the geometric and mechanical characteristics of the plate.
 Antisymmetric cross-ply laminated plates have N  unidirectionally reinforced 

layers with principal material directions alternatively oriented at  and  to the 
laminate coordinate axes. The fiber direction of odd-numbered layers is the x-direction, and 
even-numbered y-direction of the laminate. We will consider the case of odd-numbered 
layers with equal thickness and even-numbered ones with equal thickness, but not 
necessarily the same as that of the odd-numbered layers. Dimensionless laminate 
stiffnesses are: 
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where N is the total  number of layers, 12 / EEF   is the ratio of principal lamina 

stiffnesses,  and  are major and minor Young's modulus,  and  are 

shear moduli, 

1E 2E 2312 , GG 13G

12 , F1221    are Poisson's coefficients, and M is the cross-ply ratio, 

defined as the ratio of the total thickness of odd-numbered layers to total thickness of even-
numbered layers: 
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Fig. 2 Fundamental vibration frequency for a 4 layer square cross-ply plate 

  
In Fig. 2 are shown fundamental vibration frequency for a graphite/epoxy regular 

cross-ply square laminated plate with material properties: 
 

,25.0,5.0/,6.0//,40/1/ 1221322321212  EGEGEGEEF  

with various shear correction factors. Neglecting of transverse shear   21 , kk  

can be justified for length-to-thickness ratio , and such neglecting for  

can be serious error. 

50/ ha
30/ ha
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Fig. 3 Fundamental vibration frequency for a square cross-ply plate  

with various number of layers,  8676,7031.0 21  kk  

 
Fig. 4 Fundamental vibration frequency for a 4 layer cross-ply plate  
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with various plate aspect ratio 
In Fig. 3 are shown fundamental vibration frequency for the same graphite/epoxy 

regular cross-ply laminated plate with various number of layers. Fundamental frequencies 
are the smallest for two-layered plate, and when number of layers increases, frequencies are 
closer and diference between line is smaller. Reason for this is because coupling stiffness 

 decreases when number of layers increases. 11b
 In Fig. 4 are shown fundamental vibration frequency for the same graphite/epoxy 
regular cross-ply laminated plate with various plate aspect ratio. Fundamental frequencies 
increase when plate aspect ratio increase.  

 
Fig. 5 Fundamental vibration frequency for a 4 layer cross-ply plate  

with various ratio of the principal lamina stiffnesses 
 
 In Fig. 5 are shown fundamental vibration frequency for the different 
graphite/epoxy regular cross-ply laminated plate with previous and new material 
properties: 
 

,25.0,2.0/,5.0//,25/1/ 1222321321212  EGEGEGEEF  

.3.0,35.0/,5.0//,15/1/ 1222321321212  EGEGEGEEF  

 
It is evident that fundamental frequencies are smaller for materials with smaller ratio of the 
principal lamina stiffnesses. 
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5. Conclusion 
 
 This paper discusses vibrations of the cross-ply antisymmetrically laminated plates 
when transverse shear is taken into account. 
 The influence of transverse shear is very expressive when the ratio of principal 
lamina stiffnesses is high, e.g. for graphite/epoxy composite plates, but even for a 
laminated composite material as glass/epoxy, whose ratio of principal lamina stiffnesses is 
much smaller, neglecting the transverse shear causes an error.  
 The increase of the number of layers and plate aspect ratio leads to the increase of 
fundamental frequencies. 
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Abstract. Iron base superalloy N – 155 samples were cut from the turbine blade after 
longtime service at elevated temperature and pressure. After work hardening of material,  
the laser surface treatment was applied with the aim to achieve better mechanical properties 
of material and recover material after longtime service. The samples were observed by 
scanning electron microscopy (SEM) and analyzed by energo-dispersive spectrometry 
(EDS). Vickers microhardness tests were performed. In this paper, microstructures arising 
after various pulse frequencies were analyzed and compared and causes of the treatment 
type were explained. 

 
 

1. Introduction  
 
A large number of superalloys have been developed for application in gas turbine aero 
engines; among these, N-155 is an important precipitation hardening iron base superalloy, 
with good ductility, strength, excellent oxidation and corrosion resistance, and can be 
readily fabricated and machined. These components are fabricated from plate/sheet of this 
alloy. The formability and weldability of the alloy hence become important factors for the 
fabrication of these components. Formability of metals and alloys is known to be strongly 
related to their work hardening behaviour [1]. 
Laser shock peening (LSP) is a relatively new technology to classical treatments for 
improving fatigue, corrosion and wearing resistance of metals. The effect on target material 
is mainly achieved through mechanical effect produced by shock waves [2]. It is well suited 
for precisely controlled treatment of localized fatigue critical areas, such as holes, notches, 
fillets and welds [3]. 
The principle of LSP is to use a high intensity laser and suitable overlays to generate high 
pressure shock waves on the surface of the workpiece [4]. 
For LSP the surface of the specimen is pre-coated with a thin layer of material highly 
absorptive at operating wavelength of the laser beam, such as black paint [5] and 
transparent material, such as water or glass.  
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2. Experiment 
 
The experiment was carried out on iron base superalloy samples cut from turbine blades 
after 10000h of exploitation. Dimensions of samples were 20x10x1.2 mm. Chemical 
composition of samples is listed in Table 1.  

Table 1. Chemical composition of superalloy N – 155. 
Ni Cr Mo Mn Si Fe C Al Co W Nb 
20.0 21.0 3.0 1.5 0.5 30.0 0.15 0.15 20.0 1.2 2.0 

 
The samples were cold deformed by rolling and laser surface treated.  
The samples were exposed to various numbers of laser pulses with different repetition 
frequencies (Tab. 2). 
 
Table 2. The number of pulses and different pulse frequencies used in the experiment. 

Repetition frequency (Hz) 1 2 4 
Number of pulses 12 12 16 

 
The experiment setup is presented in Fig. 1. The sample was coated with an absorptive and 
protective layer (black paint), placed in the container filled with distilled water (a 
transparent layer) and exposed to pulsed laser beam (Nd3+:YAG, wavelength 532 nm , 
pulse energy 37 mJ, and duration 10 ns). Protective overlay is used for two reasons: (1) to 
absorb the incident thermal energy, expand and transfer the shock wave to the metal target 
and (2) to protect the metal target from the heat influence of the incident [5]. The 
implementation of the transparent layer increases the plasma pressure by a trapping-like 
effect on the plasma expansion. 

 

Fig. 1.  The experimental setup. 

The material was treated with nearly square laser spot, as there is no focus point of release 
waves. The residual stress drop will not be as remarkable as that treated by a round laser 
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spot. Using square laser spots should attenuate the simultaneous focalization of release 
waves and decrease the residual stress drop at the center of the laser shocked zone [6]. 
The microstructure was observed by scanning electron microscope – model JEOL JSM-
5800, and analyzed by EDS. Microhardness measurement was performed by Vickers using 
the apparatus – model ZWIK – Edman Weltzar and under load of 0.5 N.   
 

3. Result and discussion 
 
Figures 1 and 2 show the initial microstructure of  N-155 superalloy cut from turbine blades 
after longtime service. The structure is not smooth and homogeneous, and chromium 
carbides are concentrated at the surface due to long exposure to adverse working 
conditions. 
The gaps between the grains are obvious that are suitable for the creation of microcracks 
which during the time and working conditions give rise to cracks. Several areas of the 
inhomogeneity are visible in the microstructure, the areas with micro-pores of up to 9μm in 
size. 
Figure 2 shows the microstructure presented in Fig. 1 magnified 3 times. The 
inhomogeneity of  the structure and different orientation of grains is clearly obvious. At  
some parts, there are the flower colonies that merge and grow into one grain.  
 

 
Figure 1. Initial structure of longtime exploited N-155 (x1000). SEM. 

 

 
Figure 2. Initial structure of longtime exploited N-155 (x1000). SEM. 
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Figures 3 and 4 show the microstructure  of superalloy N-155 after longtime service and  
plastic deformation by rolling. Strain ratio was low and therefore the grains do not have the 
same orientation.  
During plastic deformation of metals, dislocations, which move along a particular slip plane 
can not move directly from one grain to another in a straight line. The slide line change the 
direction at the grain boundaries. Therefore, every grain has its own group of dislocations 
on their own priority slip planes. With greater deformation applied the grains change their 
shape and size due process of sliding. Initially, the grains had a spherical shape, and after 
deformation the grains are elongated in the direction of force, forming the directed 
structure, caused by moving of sliding planes [7]. 
When deformation occurs, the certain microconstinutents elongate. Ductile and tough 
crystals follow the effect of acting forces, and the brittle microconstituents crush, and their 
parts are arranged in the direction of material flow. During plastic deformation, tough 
grains change the shape only, but not the volume [8]. 
Tensile strength, yield strenght and hardness of material increase with the degree of 
deformation while the elongation and transverse contraction decrease. With increasing 
grade of deformation the impact strength, Young modulus and density decreace, while 
electrical resistance, coercive force and hysteresis loss incease [9]. 
 

 
Figure 3. Work-hardened N-155 alloy after longtime service (x1000).SEM. 

 
 

 
Figure 4. Work-hardened N-155 alloy after longtime service (x3000).SEM. 
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Table 3 lists the results of EDS analysis of the whole area in Figure 4. The Table 3 indicates 
increased content of Cr and Fe, as well as presence of S.  
It is assumed that these types of carbides are (Cr, Fe)xCy probably cementite-type. The 
appearance of sulfur is not related to Mn which is in smaller quantities, but it is assumed 
that the complex particles MxCy + MS are formed. 
 
Table 3. The EDS results of the whole area in Figure 4 

element Si S Cr Mn Fe Co Ni 
the area in 
Fig.4 

0.84 0.64 32.58 0.94 41.22 12.66 11.12 

 
Figure 5 shows the microstructure further strengthened by the laser mechanical treatment in 
order to improve the fatigue strength and resistance to intergranular corrosion, which can 
not be achieved by rolling. The principle of LSP is to use a high intensity laser and suitable 
overlays to generate high pressure shock waves on the surface of the workpiece. 
The maximum compressive residual stress is often formed at the surface of the workpiece 
and decreases in magnitude with the increase of the depth below the surface. The transient 
shock waves can also induce microstructure changes near the surface and cause high 
density of dislocations to be formed. The combined effect of the microstructure changes 
and dislocation entanglement contribute to an increase in the mechanical properties near the 
surface. The compressive residual stresses improve the resistance to corrosion fatigue. An 
advantage of LSP is that the magnitude of affected depth is very deep as compared with 
conventional shot peening [2]. 
However, laser treatment has helped change the shape of grains, almost returning them in 
the form they had prior plastic deformation by rolling. Still, the grains has elongated shape 
and the material keep the advantages gained by work hardening.  
It is supposed that combining of work hardening and laser shock peening mechanical 
properties would be improved, better that is posssible by applying only one of them at the 
time.  
Figure 6 shows the microstructure of the Figure 5 mignified three times. Table 4  lists the 
results of EDS analysis in the areas 12 and 13. Point 12 is  (Cr, Fe)xCy carbide, while the 
point 13 is  CrxCy  carbide. It can be concluded that the laser mechanical processing 
decompose carbides (Cr, Fe), and prevail CrxCy carbides. 
 

 
Figure 5. Laser mechanically treated surface of work-hardened N-155 alloy after longtime service (x1000).SEM. 
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Figure 6. Laser mechanically treated surface of work-hardened N-155 alloy after longtime service (x3000).SEM. 

 
Table 4. The EDS results of the whole area in Figure 6   
 Si S Cr Mn Fe Co Ni 
Eds 1 0.70 0.67 39.88 0.95 35.19 12.33 10.28 
Eds 2 0.50 0.64 47.02 1.13 32.30 11.31 7.09 

 

 
Fig 7. The EDS pattern of point 1 in Fig. 6 

 
Figure 7 shows the EDS pattern of point 1 in Figure 6 nad listed in Table 4. 
Figure 8 shows the laser thermomechanical treatment. After the laser beam melted 
protective layer, the action of the laser continued and there was a thermal effect. The laser 
pulse frequency was 4Hz. The part of material where the highest  laser beam density was 
applied is melted. In this area there has been a segragation of Co and Ni as shown in Table 
5, while the content of Co is quite small.  
In the part that is not melted the grain boundaries are still visible, although the grains are 
much larger and irregularly shaped. Lighter grains (point 15) are the types of carbides (Cr, 
Fe)xCy. Form of elongated grains is due to rolling deformation. Laser beam has different 
affect to the grain look with pulse frequency of 4Hz and thermomechanical treatment then 
with pulse frequency of 1Hz and mechanical treatment.  
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Figure 8. Laser mechanically treated N-155 alloy  by 4Hz after longtime service and work hardening 

(x3000).SEM. 

 
Table 5. The EDS results of the whole area in Figure 8 
 Si S Cr Mn Fe Co Ni 
Eds 1 1.97 0.86 9.40 0.51 34.51 23.38 29.36 
Eds 2 0.36 0.56 51.02 1.13 29.56 11.67 5.68 
 
 

 
Figure 9. The EDS pattern of point 1 in Fig. 8 

 
Figure 9 shows the EDS pattern of point 1 in Figure 8 nad listed in Table 5. 
In this paper vickers microhardness testing of initial material N-155 (after longtime 
service), after work hardenning and after laser surface treatment wea performed. The 
microhardness of initial material was 240 HV0.5. the process of work hardening by rolling 
increased the value to 285 HV0.5, while the laser shock peening had slightly effect on 
microhardness increasment – 290 HV0.5, after it was increased by plastic deformation. 
  
 
4. Conclusion 
 
The samples of  N-155 superalloy were cut from turbine blades after longtime service. The 
structure is not homogeneous,there are the gaps and micropores between the grains.  
The work hardening by rolling was applied causing directed structure and elongated grains. 
It is assumed that these types of carbides are (Cr, Fe)xCy probably cementite-type that the 
complex particles MxCy + MS are formed. 
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Laser surface treatment has helped change the shape of grains, almost returning them in the 
form they had prior plastic deformation by rolling. Still, the grains has elongated shape and 
the material keep the advantages gained by work hardening. It is supposed that combining 
of work hardening and laser shock peening mechanical properties would be improved, 
better that is posssible by applying only one of them at the time. Also, the laser mechanical 
processing decompose carbides (Cr, Fe), and prevail CrxCy carbides. 
The process of work hardening by rolling increased the value of microhardness. The laser 
shock peening had slightly effect on microhardness increasment after it was increased by 
plastic deformation. 
 
Acknowledgement. This work was supported by the Ministry of Science of the Republic 
of Serbia under contract number TR-35040. 

References  
 
[1] Bhadeshia H.K.D.H. (1997) Recrystallisation of practical mechanically alloyed iron-
base and nickel-base superalloys, Materials Science and Engineering A, 223, 64-77. 
[2] K. Ding, L. Ye (2006) Laser shock peening, Performance and process simulation, 
Woodhead publishing limited, Cambridge England.  
[3] Hu Y, Gong C, Yao Z, Hu J. (2009) Investigation on the non-homogeneity of residual 
stress field induced by laser shock peening. Surface & Coatings Technology 203, 3503-
3509.  
[4] Warren AW, Guo YB, Chen SC (2008) Massive parallel laser shock peening: 
Simulation, analysis, and validation. International Journal of Fatigue, 30, 188-197. 
[5] Kovacevic A, Petronic S, Sedmak A, Milosavljevic A, Popovic M (2010) Modifikacija 
mehaničkih osobina austenitnih materijala – superlegure nikla, železa i nerđajući čelik – 
nanosekundnim laserskim impulsima, Fotonika 2010, Beograd, book of abstract, 11. 
[6] Petronic S (2010) Uticaj termičke i laserske obrade na promene u mikrostrukturi 
superlegura nikla -PhD thesis, Faculty of Mechanical Engineering, University of Belgrade.  
[7] Drobnjak Dj (1980) Fizička metalurgija, Faculty of Technology and Metalurgy, 
University of Belgrade. 
[8] Cahn R and Haasan P (1996) Physical Metallurgy, Elsevier Science B.V.  
[9] Rösler J, Harders H, Bäker M (2007) Mechanical Behaviour of Engineering Materials, 
Springer-Verlag Berlin Heidelberg.  

993



Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics
Vlasina lake, Serbia, 5-8 July 2011                                                                                                                          D-09

APPLICATION OF INTEGRAL TRANSFORM METHOD TO
CALCULAT E IMPEDANCE FUNCTIONS
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Abstract. To solve vibration problems of structure founded on the soil, the dynamic
behavior of the soil needs to be understood and an accurate dynamic stiffness model of the
soil has to be developed. Frequency dependent dynamic stiffness matrix of the massless,
f exible soil-structure interface can be calculated analytically or numerically, depending on
the complexity of the problem, using Boundary Element Method [1] or Thin Layer Method
[3]. In this paper the impedance functions of a stiff rectangular foundation laying on a
half-space are determined with the help of the Integral Transform Method (ITM) [4]. The
Integral Transform Method is an eff cient method to calculate wave propagation in an elastic
homogeneous, or layered half-space. By the use of the decomposition of Helmholtz, the
Lamé’s equations of elastodynamics are converted to a system of decoupled partial differential
wave equations in space-time domain. With the help of a threefold Fourier Transform in the
wave number-frequency domain wave equations can be transformed into a system of three
decoupled ordinary differential equations which can be solved in the transformed domain. The
results in the original domain can be f nally obtained by an Inverse Fourier Transform. Using
ITM method the dynamic stiffness of f exible foundation are determinate f rst. After that
the impedance functions of the stiff foundation are obtained using kinematic transformation
matrix. The obtained results are compared with impedance functions from literature.

1. Introduction

1.1. Impedance

Impedance can be any kind of resistance to wave oscillation. For example, electrical
impedance can be calculated as a ratio between voltage and current, acoustic impedance
as a ratio between sound pressure and particle velocity, etc. For the purpose of this paper,
mechanical impedance is calculated as a ratio between force and response quantity, where the
response quantity is displacement

ZM =
f orce

response quantity
(1)

994



1.2. History of Impedance Functions

Impedance functions are frequency dependent foundation dynamic stiffnesses functions used
in the dynamic soil-structure interaction problems. Those functions were f rst introduced by
Lamb, 1904. He studied the vibrations of a linear elastic half-space due to a harmonic load
acting on a point. In 1936,Reissneranalyzed the response to a vertical harmonic excitation of
a plate placed at the surface of a homogeneous elastic half-space. He was the f rst to notice the
existence of energy dissipated by radiation. Between 1953 and 1956, Sung, Quilan, Arnold
and Bycroftwere working on generalization of the work of Reissnerby introducing the six
degrees of freedom of the footing. Ten years later, Hsieh and Lysmerintroduced for the
f rst time the idea that soil - footing vibrations in vertical direction can be represented with a
single-degree-of-freedom system which stiffness and damping are independent of frequency
- Lysmer’s analogy. This approach was extended to all degrees of freedom by Richart and
Whitman. In order to solve soil-structure interaction problems, many numerical approaches
are being developed form the beginning of 60’s [6]. The most successful ones are Finite
Element Method - FEMand Boundary Element Method - BEM. The impedance functions for
different type of foundations could be obtained using one of the before mention methods [5],
[7].

1.3. Integral Transform Method

It is clear that FEM is widely applicable and eff cient, but there are some f elds where is not
very suitable to use FEM. For example, while analyzing the behavior of a layered half-space
due to a dynamic loading, as the soil is semi-inf nite and some kind of boundary conditions are
needed to account Sommerfeld’s radiation conditions, it is more convenient to use Integral
Transform Method(ITM). ITM is based on solving the Lamé’s elastodynamics equations
of half-space using the Helmholtz potentials and Fourier transformations. It is very eff cient
solution techniquewhich leads to a better understanding of the physical nature of the problem,
which can be integrated into FEM or BEM approaches [2]. On the other hands ITM has a
very restricted domain for application.

2. Propagation of Waves in Continuum

In general, the system of equations of motion of an elastic continuum is nonlinear, but, many
wave propagation effects in elastic solids can be adequately described by a linearized theory.
The system of equations governing the motion of linearly elastic a homogeneous isotropic
solid are obtained from the stress-equation of motion, Hooke’s law and strain-displacement
relations, in the form

µui, j j +(λ + µ)u j , ji = ρ üi (2)

where λ and µ are two material parameters known as Lamé’s constants

µ =
E

2(1+ν)
; λ = ν

E
(1+ν)(1− 2ν)

(3)

while E is Young’s modulus and ν is Poisson’s ratio.
In vector notation the equation (2) can be written as:

(λ + µ)∇∇ ·uuu+ µ∇2uuu= ρ üuu (4)
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The equilibrium equations, the kinematic and constitutive relations and hence, the Navier’s
equation, must be satisf ed at every interior point of the undeformed body, i.e. in the domain
Ω. On the surface Sof the undeformed body, boundary conditions must be satisf ed, also.
The system of equations (4) couples the three displacement components. It can be uncoupled
using Helmholtzdecomposition, which states that any vector uuu can be written as a sum of
gradient of a scalar potential φ(x, t) and the curl of a vector potential ΨΨΨ(x, t) as:

uuu= ∇φ +∇×ΨΨΨ (5)

The scalar potential φ(x, t) and the components of vector potential Ψi(x, t), i = x,y,z are
coupled through the boundary conditions.
Substitution of (5) into the f eld equation (4) yields

µ∇2[∇φ +∇×ΨΨΨ]+ (λ + µ)∇∇ · [∇φ +∇×ΨΨΨ] = ρ [∇φ̈ +∇× Ψ̈ΨΨ] (6)

Since that ∇ ·∇×ΨΨΨ = 0, one obtains upon rearranging terms
∇[(λ + 2µ)∇2φ ]+∇× µ∇2ΨΨΨ = ρ∇φ̈ +ρ∇× Ψ̈ΨΨ (7)

The displacement representation (5) satisf es the equation of motion if

∇2φ −
1
c2p

φ̈ = 0 (8)

and

∇2ΨΨΨ−
1
c2s

Ψ̈ΨΨ = 0 (9)

In these equations of motion cp is the velocity of dilatational (longitudinal) waveor P-wave:

cp =

√

λ + 2µ
ρ

(10)

cs is the velocity of distorsional (shear) waveor S-wave:

cs =

√

µ
ρ

(11)

and ∇2 is the Laplacian:

∇2 =
∂ 2

∂x2
+

∂ 2

∂y2
+

∂ 2

∂z2
(12)

The equation (5) can be written in the matrix form




ux

uy

uz



=







∂
∂x
∂
∂y
∂
∂z






φ +







0 − ∂
∂z

∂
∂y

∂
∂z 0 − ∂

∂x
− ∂

∂y
∂
∂x 0











Ψx

Ψy

Ψz



 (13)

The four potential f elds φ , Ψx, Ψy and Ψz are not uniquely determined by the three
displacements ux, uy and uz. Usually, but not always, the relation ∇ · ΨΨΨ = 0, is taken as
the additional constraint condition. Here, as a special case, Ψz is set to zero. Then, the
equation (13) can be written as

ux = φ,x−Ψy,z

uy = φ,y+Ψx,y

uz = φ,z−Ψx,y+Ψy,x

(14)
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3. Solution of Wave Equations using Integral Transform Method

To solve the equations of motions (8) and (9) the Integral Transform Method(ITM) together
with the Fourier Transformwill be used. The procedure is schematically described in f gure
1.

Figure 1. ITM procedure scheme

The Fourier Transformf̂ (ω) of a function f (t) and Inverse Fourier Transformare def ned by
the integrals:

f̂ (ω) =
∫ +∞
−∞ f (t)e−iωtdt ◦−• f (t) = 1

2π
∫+∞
−∞ f̂ (ω)eiωtdω (15)

where ◦−• sign represents the Fourier Transformation.
In case of a function with several independent variables, multiple integrals are used,
concerning the transformation of each variable

f̂ (kx,ky) =
∫ +∞
−∞

∫ +∞
−∞ f (x)e−i(kxx+kyy)dxdy

◦
|
•

f (x,y) = 1
2π
∫+∞
−∞

∫ +∞
−∞ f̂ (kx,ky)ei(kxx+kyy)dkxdky

(16)

By a threefoldFourier Transformwith regard to x◦−•kx, y◦−•ky and t ◦−•ω , equations (8)
and (9) can be transformed into the ordinary differential equations regarding the z-direction
in wave number domain

(

ω2

c2p
− k2x − k2y

)

φ̂ +
∂ 2φ̂
∂z2

= 0 (17)

(

ω2

c2s
− k2x − k2y

)

Ψ̂i +
∂ 2Ψ̂i
∂z2

= 0 , i = x,y (18)

The solution of the equations (17) and (18) is

φ̂ = A1eλ1z+A2e−λ1z (19)

Ψ̂i = B1ieλ2z+B2ie−λ2z , i = x,y (20)

where A1, A2, B1i and B2i are the constants of integration, which can be obtained from
boundary conditions, while λ1 and λ2 are equal to

λ 2
1 = k2x + k2y − k2p, λ 2

2 = k2x + k2y − k2s (21)
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In equations (21) kp and ks are wave numbers for P- and S-waves

kp =
ω
cp

, ks =
ω
cs

(22)

This solution allows to derivative macro-element relations for each layer between the stress
and displacement at the top and bottom boundary of the layer in transformed domain. In
transformed domain the equation (14) can be written as

ûx = ikxφ̂ − Ψ̂y,z

ûy = ikyφ̂ − Ψ̂x,z

ûy = φ̂,z− ikyΨ̂x+ ikxΨ̂y

(23)

Substituting equations (20) and (19) into equation (23) the displacement vector in transformed
domain is obtained in the form





ûx

ûy

ûz



=





ikx iky 0 0 −λ2 λ2
iky ikx λ2 −λ2 0 0
λ1 −λ1 −iky −iky ikx ikx



 · {C} (24)

where

{C}T =
[

A1ezλ1 A2e−zλ1 B1xezλ2 B2xe−zλ2 B1yezλ2 B2ye−zλ2
]

(25)

The stress vector in transformed domain can be obtained from the strain-displacement
relations and Hooke’s law [9] as

















σ̂x

σ̂y

σ̂z

τ̂xy

τ̂yz

τ̂zx

















= µ



















−2kx2− λ1
µ k2p −2kx2− λ1

µ k2p 0 0 −2ikxλ2 2ikxλ2
−2ky2− λ1

µ k2p −2ky2− λ1
µ k2p 2ikyλ2 −2ikxλ2 0 0

2kr − k2s 2kr − k2s −2ikyλ2 2ikyλ2 2ikxλ2 −2ikxλ2
−2kxky −2kxky ikxλ2 −ikxλ2 −ikyλ2 ikyλ2
2ikyλ1 −2ikyλ1 λ 2

2 + k2y λ 2
2 + k2y −kxky −kxky

2ikxλ1 −2ikxλ1 kxky kxky −(λ 2
2 + k2x) −(λ 2

2 + k2x)



















(26)

In the case of a layered half-space, it is better to use a new constants Ā1, B̄1i instead of A1,
B1i according to

A1eλ1z = A1eλ1he−λ1heλ1z = Ā1eλ1(z−h)

B1ieλ2z = B1ieλ2he−λ2heλ2z = B̄1ieλ2(z−h) (27)

where h is depth of the layer and h > z. The displacement vector, for each layer, in the
transformed domain can be now written as





ûx

ûy

ûz



=





ikx iky 0 0 −λ2 λ2
iky ikx λ2 −λ2 0 0
λ1 −λ1 −iky −iky ikx ikx



 · {C̄} (28)

were {C̄}T is

{C̄}T =
[

A1e(z−h)λ1 A2e−zλ1 B1xe(z−h)λ2 B2xe−zλ2 B1ye(z−h)λ2 B2ye−zλ2
]

(29)

The unknown integration constants can be obtained from the boundary conditions at the
interface between the layers. At the upper surface of the top element the boundary conditions
of the half space must be fulf lled, as well as the Sommerfeld’s radiation condition if the
bottom element goes to inf nity.
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4. Half-Space Displacements Due to Harmonic Unit Force

In order to get the impedance functions of the rectangular foundations lying on the half-space,
the displacements of the half-space due to unit harmonic forces acting in vertical direction z,
and both horizontal directions, x and y (Figure 2) have to be calculated.

Figure 2. Harmonic force acting on the surface of the half-space

On the f gures below, the displacements at the surface of the half-space due to the vertical
and horizontal force of unit amplitude, at frequency ω = 50 Hz are displayed.
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Figure 3. Vertical displacements uz (m) , Pz = 1 (kN), ω = 160 rad/s, ν = 0.4
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Figure 4. Horizontal displacements ux (m), Pz = 1 (kN), ω = 160 rad/s, ν = 0.4

5. Impedance Functions

5.1. Dynamic stiffness matrix of flexible rectangular foundation

The dynamic stiffness matrix of the f exible rectangular foundation, K f , is obtained by
inverting the dynamic f exibility matrix, K f = F−1

f . Elements of dynamic f exibility matrix
F f represent the nodal displacements at the surface of the half-space due to corresponding
harmonic forces of a unit amplitude. They are obtained using ITM. If n×n is a number of
nodes of a rectangular surface on half-space, the dimension of the f exibility matrix is 3n×3n.
Nodal displacements vector uf (3n,1) and corresponding force vector Pf (3n,1) are related by
dynamic stiffness matrix of f exible foundation K f (3n,3n)

Pf = K f u f (30)

5.2. Dynamic stiffness matrix of rigid rectangular foundation

Dynamic stiffness matrix of the corresponding rigid, massless, rectangular foundation
is obtained from dynamic stiffness matrix of f exible foundation using kinematic
transformation. Rigid foundation has 6 degrees of freedom: three translator vibrations, in
x, y and z directions, and three rotational vibrations, around x, y and z axes. The vector of
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Figure 5. Interaction surface between rigid foundation and soil

displacements ur in the centroid O of the interaction surface and corresponding force vector
Pr are, respectively

ur =

















ux

uy

uz

ϕx

ϕy

ϕz

















Pr =

















Px

Py

Pz

Mx

My

Mz

















(31)

Vectors ur and Pr are related by

Pr = K rur (32)

where K r(6,6) is dynamic stiffness matrix of rigid foundation.
Vector of nodal displacements u f and vector ur are relate with kinematic constraint equation

u f = aur (33)

where a(3(n×n),6) is kinematic matrix

a=





















a1
a2
...
ai
...

an×n





















(34)

This matrix consists of n×n sub-matrices ai , i = 1,2, · · ·n×n. Each sub-matrix ai is obtained
from kinematic consideration, regarding node A= i and centroid of foundationO (Figure 5),
as

ai =





1 0 0 0 0 −yi

0 1 0 0 0 xi

0 0 1 yi −xi 0



 (35)
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Quantities xi and yi are horizontal distances in x and y direction, respectively, between the
centroid of the surface foundationO and node A= i, Figure 5.
Equaling the energy of the deformation, expressed in term of both pairs of variables,

E = PT
f u f = PT

r ur (36)

and taking into account Eqs. (30), (32) and (33), obtained is the relation between the dynamic
stiffness matrix of rigid and f exible foundation in the form

K r = aTK f a (37)

At least, the dynamic stiffness matrix of rigid rectangular foundation is obtained as

K r =

















Kxx 0 0 0 Kx,my 0
0 Kyy 0 Ky,mx 0 0
0 0 Kzz 0 0 0
0 Kmx,y 0 Kmx 0 0

Kmy,x 0 0 0 Kmy 0
0 0 0 0 0 Kmz

















(38)

The dynamic stiffness matrix K r is frequency dependent, complex matrix, which can be
written as a sum of real and imaginary part

K r(a0) = Re(K r(a0))+ i · Im(K r(a0)) (39)

The impedance functions are functions representing the dimensionless real and imaginary
part of dynamic stiffness matrix K r . Real part represents the dynamic stiffness, while
imaginary part represents damping of foundation in one direction. These functions are usually
written as functions of dimensionless frequency a0 = ωB/cs, where B is the foundation
half-width. To obtain impedances the dynamic stiffnesses are reduced by the appropriate
coeff cients of reduction. For vertical and horizontal stiffness the reduction coeff cient is
equal to GB, while for rocking and torsional stiffness it is equal to GB3, where G is shear
modulus of the soil.

6. Numerical Example

In the following example the impedance functions of the rigid massless square foundation
lying on the half-space is calculated using ITM. The dimensions of square foundation are
5m× 5m. The foundation is divided into the mesh, with unit 0.25 meters in both directions.
The half-space characteristics are

− Elastic modulus: E = 5 ·107(1+ 2iD) kN/m2

− Damping ratio: D = 0.02
− Poisson coeff cient: ν = 0.4
− Density: ρ = 2000 kg/m3

The process of obtaining impedance functions is divided into several parts.
First, the displacements at the surface of the half-space (in x, y and zdirections) for single unit
force in x, y and zdirection were calculated for every chosen angular frequencyω , using ITM.
The discretization mesh should be wide and dense enough to avoid troubles with singularities
and aliasing [8]. The obtained displacement f elds are shown at Figures 3 and 4.
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The next step is calculation of f exibility matrix of the f exible foundation, Ff . The
displacement f elds is calculated for one node of the mesh and than shifted accordingly to
the global coordinate system, in order to f ll the f exibility matrix Ff . Figure 6 shows the
example of shifting data for f lling the columns and rows of the f exibility matrix Ff that
correspond to the vertical displacements due to vertical harmonic unit force. Assume that
displacement f eld is calculated for the acting force node which has index (i, j), Figure 6.a.
The displacement f eld due to the force acting in node (m,n), Figure 6.b, can be obtained for
every pair of index increments k and l from the relation

uz(i + k, j + l) = uz(m+ k,n+ l) (40)

The stiffness matrix of the f exible foundation K f is obtained by inverting the f exibility
matrix, K f = F−1

f .

(a) (b)

Figure 6. Calculation of the f exibility matrix. Shifting the displacements f eld data.

Finally, the stiffness matrix of the rigid foundation Kr is obtained from the stiffness matrix
of the f exible foundation K f using kinematic transformation def ned in Eq. (37). Once Kr is
calculated for every chosen ω the impedance functions can be obtained, as described at the
end of the section 5.

Figures 7, 8, 9, 10 represent impedance functions. Since the foundation is square, Kyy = Kxx

and Kmy= Kmx. Dashed line refers to the results obtained in the numerical example described
in this section; solid line refers to the results obtained by Schmid[5] using BEM. Impedance
functions obtained using ITM have the same shape but higher values than functions obtained
using BEM.
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Figure 7. Horizontal dynamic stiffness Kxx, ν = 0.4
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Figure 8. Vertical dynamic stiffness Kzz, ν = 0.4
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Figure 9. Rotational dynamic stiffness Kmx, ν = 0.4
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Figure 10.Torzional dynamic stiffness Kmz, ν = 0.4
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7. Conclusion

The ITM is used to calculate impedance functions for rectangular rigid foundation on a half-
space. The obtained results show good agreement with results from literature. Integral
Transform Methodis based on the analytic solution of the wave propagation theory and
transformed technique. The original problem is transfered to a new domain usingFast Fourier
Transform (FFT), where it can be solved much easily. The obtained results are returned into
the original domain by Inverse Fast Fourier Transform (IFFT). These transformations may
demand a considerable computational effort.
ITM is restricted to the half-space and to a horizontally layered half-space, with a
homogeneous and isotropic layers. In order to overcome this limitation for the case of
local irregularities ITM-approach can be combined with FEM. Instead of FFT, Laplace
transformation or Wavelet transformcan be used.
The advantage of ITM is that damping is taken into account automatically, as material, or
hysteretic damping as well radiation damping. The material damping is involved through
complex modulus, while radiation damping is def ned by Sommerfeld’s radiation condition.
This approach can be used for solving different problems of wave propagation in the soil,
specially problems of rail or road traff c induced vibrations.
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tlu usled harmonijskog opterećenja, diplomski–master rad, Gradjevinski fakultet Univerziteta u Beogradu,
2010.

[9] Rastandi J I (2003) Modelization of Dynamic Soil-Structure Interaction Using Integral Transform-Finite
Element Coupling, Lehrstuhl für Baumechanik der Technischen Universität München

Acknowledgment

We are grateful that this research is f nancially supported through the project TR 36046 by
the Ministry of Science and Technology, Republic of Serbia.

1006



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina Lake, Serbia, 5-8 July 2011 D-10 

 
 

CONSTITUTIVE RELATIONS FOR HARDENING AND 
SOFTENING OF BRITTLE 2D LATTICES 

 
A. Rinaldi1*, S. Mastilovic2,** 

 
1 Department of Chemical Science and Technology, University of Rome “Tor Vergata” 
Via della Ricerca Scientifica, 00133 Roma, Italy 
e-mail: Antonio.Rinaldi@uniroma2.it 
2 Faculty of Construction Management, Union University 
Cara Dusana 62-64, 11000 Belgrade, Serbia 
*   Corresponding author. e-mail: antonio.rinaldi@enea.it 
** Corresponding author. e-mail: smastilovic@fgm.edu.rs 

 
 

Abstract. The objective of this study is to highlight the universal behavior of the damage 
parameters and infer constitutive relations of the disordered brittle systems. The statistical 
damage model used, although admittedly simple, captures what we believe to be the key 
features of the problem at hand and facilitates formulation of an analytical constitutive 
relation for the hardening and softening phases of two-dimensional (2D) lattices. A 
definition of damage parameter for the softening is proposed. The results confirm that the 
analytical model can be used to investigate the softening phase and failure. As an alternative 
approach, a semi-empirical model based on Extreme Value Theory is offered. A base for 
Damage Tolerance Principles technology standards of commercial airplane industry is 
discussed. 
 

 
 

 
1. Introduction 
 
The objective of the present study is a brittle material with mesotexture characterized by 
initially random statistically homogeneous distribution of microcracks, which, in the course 
of loading, becomes heterogeneous due to propagation and clustering of microcracks prior 
to failure. This homogeneous-to-heterogeneous phase transition was analyzed by 
Krajcinovic and Rinaldi [1] using the statistical mechanics and fractal geometry, while the 
gist of the constitutive modeling presented herein is based on Rinaldi et al. [3].  The 
structure size and the material’s mesoscale structural transformations influence the failure 
threshold. The limit states design is driven primarily by crack growth but also by the 
microstructural re-arrangements in the heterogeneous phase. The foundation of the 
structural design and maintenance principles in Boeing Commercial Airplane Group, 
U.S.A., is the “Damage Tolerance Principles” [2], which is focused on two structural 
design objectives:  

(1) Damage Tolerance:  Ability of structure to sustain anticipated loads in the 
presence of fatigue, corrosion or accidental damage until such damage is 
detected through inspections or malfunctions and repaired; 

(2) Durability:  Ability of the structure to sustain degradation from such sources as 
fatigue, accidental damage and environmental deterioration to the extent that 
they can be controlled by economically acceptable maintenance and inspection 
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programs. 

   
Damage tolerance is comprised of three elements of importance for achieving the desired 
level of safety: 

 The determination of the residual strength or the maximum allowable damage that 
the structure can sustain under regulatory fail-safe load conditions.  

 The crack growth defined as the interval of damage progression from lengths with 
negligible probability of failure to an allowable size determined by the residual 
strength.  

 The inspection program based on damage detection strategy such that the methods, 
sequence, and intervals of inspections ensure timely damage detection. 

 
The typical experimental data from both full-scale crack growth testing (600 tests on two 
different wing panels of width 200 mm and 2300 mm) is presented in Fig. 1 (adopted from 
[2]). The crack length is normalized to the LEFM (Linear Elastic Fracture Mechanics) limit 
LY representing boundary between LEFM and transition behavior, and the corresponding 
strength is normalized to the maximum strength of the pristine undamaged panel. 
 

 
 

Figure 1. Experimental data of wing panels crack growth adopted from Goranson [2].  
 
The minimum normalized strength, which corresponds to the maximum allowable damage, 
and the corresponding maximum crack length are assigned on Fig. 1 in compliance with the 
“fail-safe’ strategy. Nevertheless, the determination of the tolerable damage level is based 
largely upon experience and POD (Probability of Detection) from visual inspection [3]. It is 
obvious that it is practically impossible to conduct expensive full-scale fatigue tests for 
every structural component to obtain the data such presented in Fig. 1. Unfortunately, 
LEFM is not always applied to the multiple-site cracking and diffuse damage [3], which is 
currently still managed in a purely empirical fashion. Consequently, there is an urging need 
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for a “reliable multiple scale analytical models that account for the structural size effect and 
which can be used for data extrapolation” [3]. 
 
2. Simulation model 
 
The present study was focused on the universal trends rather than particularities of the 
physical problem at hand. Consequently, the simulation model and the analytical approach 
used, although admittedly simple, captured what we believe to be the underlying features of 
the phenomena. The computational approach taken was following footsteps of the classic 
papers on the central-force lattices modeling the brittle fracture of disordered materials 
[e.g., 13, 15, 17] and was built upon the more recent extensive work of the present authors 
and coworkers [e.g., 1, 3, 4, 6, 16, 18, 20]. The comprehensive summary of lattice models 
in micromechanics is available in [19].  
 
We were studying a simple disordered discrete system that, from our experience, captured 
reasonably well the universal behavior of the damage parameters and constitutive relations 
of the quasi-brittle materials. Although the procedures for constructing a mechanically 
equivalent lattice capable of matching the physical properties of polycrystalline ceramics 
were available [18], no attempt was made to calibrate the major statistics of the given 
microstructure in the presently used model since it did not aim at describing a specific 
material but rather a class of brittle materials whose primary microstructural response was 
failure of an inferior-strength interface. Examples of the materials of this kind are many and 
well documented [e.g., 3, 4, 6, 16, 21]. Their microscale texture in two-dimensional space 
is similar to a random Voronoi froth with the dual Delaunay lattice [1, 3, 11]. A Voronoi 
polygon represented a defining constituent at the dominant spatial scale (a grain of ceramic, 
a concrete aggregate or a granule of clastic rock) whereas a bond in the Delaunay lattices 
was representative of interface cohesion. Damage evolution, reflecting accumulation of 
degradation micro-events and cooperative phenomena, is a stochastic process dependent on 
the various aspects of microstructural disorder. Consequently, the lattice was geometrically 
disordered since the initial link lengths (in the pristine condition) were normally distributed 
within the range   LL  2  (αL = 1 would imply that all grains were perfect 

hexagons). The lattice topological disorder was defined in terms of the number of the 
nearest neighbors. The load-induced damage is introduced in the network by rupturing of 
the links, which represents intergranular microcrack nucleation. The links are nonlinear in 
compression and linear in tension (resulting from a combination of Born-Meyer’s and 
Hooke’s potentials, [6]), with random tensile strength and identical link stiffness k [3]. If 
the critical tensile strain εcr was reached, permanent rupture occurred and the link was 
reduced into a common contact element.1 The values εcr were randomly sampled from a 
uniform distribution starting at zero (the limit case that captured preexisting microcracks, 
for example, from fabrication). It is obvious that such lattice model is inherently limited to 
intergranular microcracks, which is reasonable approximation for many ceramics [5, 7]. 
Since the resolution length of the model is equal to the grain facet, the rupture, i.e. the 
growth of a microcrack from the initial length to the length of the grain boundary facet, is 
necessarily instantaneous.  

                                                 
1 The tensile stiffness becomes zero and the link cannot longer carry tensile forces. The 
broken link remains active in compression if load reversal occurs in the course of 
deformation to account for the crack closure. 
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The quasi-static uniaxial tensile tests were simulated under the displacement-controlled 
conditions on different lattice sizes. The molecular dynamics solver based upon the Verlet's 
algorithm [6, 21] was adopted. Each simulation was carried on incrementally, up to the 
threshold of failure, by applying small displacement steps and by computing the 
equilibrium configuration at each step [3, 21]. The damage evolution was tracked during 
the “virtual tensile experiment” [21] by recording the number of broken bonds, n. The 
macroscopic data scatter of the F vs. u  and n vs. u curves (within-size variability) 
indicates that  D ,L  is a random variable at any given   in the softening phase (Fig. 2).2 

The average F vs. u  and n vs. u  curves from the 10 replicates per size 
N = {24, 48, 96, 192} were considered for the scaling in [1], with N being the number of 
grains per lattice side. The original dataset is expanded in [3] to enhance the accuracy, 
robustness and precision of the regression analysis. Intermediate lattice sizes N = {72, 120} 
were added and more than 10 runs were collected for smaller lattices. The maximum lattice 
size was also enlarged. Five extra simulations for N = 288 were analyzed but, for the sake 
of computational economy, limited to the hardening phase.  
 
 

 
 

Figure 2. Evolution of state parameters in the course of the quasi-static uniaxial loading for ten N=192 replicas. 
 
 
An example of the macrocrack emanating from damage localization is displayed in Fig.3. 
(The strain localization as a dynamic transition in the correlation length range was analyzed 
by a similar lattice model by Krajcinovic and Vujosevic [20].) Only the evolution of such 
macrocrack can provide the “Crack Growth” defined as “the interval of damage progression 
from length below which there is negligible POD to an allowable size determined by 
residual strength requirements” [2]. 
 

                                                 
2 The bar above the symbol indicates a macroscopic quantity. 
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Figure 3. Damage localization. Short lines represent the broken links.  
 
 
3. Damage mechanics modeling 
 
The limits of traditional continuum models of damage are discussed in literature [e.g., 4, 
12]. Models based upon Eshelby’s solution [8], representative volume element [9, 10] and 
fabric tensor [12], are suitable only as long as the microstructure is statistically 
homogenous.  Materials are homogeneous when microcracks nucleate in absence of 
cooperative phenomena (and the expectation value of damage parameter D  is equal to the 
volume average D  of individual micro-cracks), and heterogeneous when clusters of 

microcracks form. The threshold of fracture is reached when the dominant cluster reaches a 
correlation length equal to the lattice (specimen) size.  
  
The lattice simulation data indicated that the scaling techniques apply to damage mechanics 
[1]. This statistical model of the disordered microstructure provided analytical expressions 
of damage parameter.  
 
The stress-strain relation for the damage-degraded material had the familiar form 
     
    , 1 ,oL E D L        (1) 

 
During the hardening phase ( 0  ), a simple analytical formula for the damage 

parameter  
 

  
2

,D L a b
L
    (2) 

 
was obtained from the scaled data by Krajcinovic and Rinaldi [1]. (The values 
   , , 0.035,275, 14862a b     were deduced by the data fitting.) On the other hand, the 

analytical model for the damage parameter during the softening phase ( 0  ) had a 

more complex form 
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 1
1 1 1 expz s

p s z

c
D L D a L b L L

L
   

 
 

  
    


  (3)  

 
where   /peaks L    , 0.5pD   and    1 1 1, , , 15.80,2.2,100, 0.52a b c z    [1]. 

 
3.1 Constitutive relations and damage parameter 
  
The purpose of the present inquiry, published originally in [3], was the deduction of the 
analytical constitutive relation [1] from the correct application of the scaling relations (2) 
and (3). The damage parameter in the hardening phase was defined in [1] as 
 
   2/D n L   (4) 

 
where  n  was the number of broken bonds and μ was a fitting parameter deduced from 

simulations.  
 
3.2 Hardening 
 
The proposed damage parameter (4) was inspired by three observations. First, the strict 
similarity between the "parallel bar system" (PBS) and the lattice during damage nucleation 
[4,12] suggested  
 

 
2 p

n
D

N
  (5) 

 
where Np was the number of broken links corresponding to the peak of the stress-strain 
curve (1).  
 
Second, the log-log plot of the average Np vs. L in Fig.3b from simulations demonstrated 
that Np for the lattice was a fractal following the power law  
     
    1.3 1.94( , )p pN L n L e L    (6) 

 

The fractal exponent was 1.94 with 95% confidence interval  1.92, 1.96 . From Eqs.(4-6) 

the value μ = 2 e-1.3  was assumed, where -1.3 was obtained from Fig.4b as the intercept of 
the regression line.  This value of the fitting parameter differs from μ = 2 e-1.6 reported in 
[1], which could be associated with different datasets used for the statistical analysis. 
Similarly, the first estimate of the fractal exponent was 1.96 [1]. Since the "expanded" 
dataset was used later [3] for the regression, the corresponding estimates should be more 
reliable and, consequently, the mean square error and the confidence intervals on the 
regression coefficients (slope and intercept) were tighter. Nevertheless, most of our 
treatment referred to the first dataset only and, hence, we retained the old value μ = 2 e-1.6  
in order to legitimately use Eqs.(2) and (3).  
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Finally, L1.94 was replaced by L2 in Eq. (4) because n was a fat fractal with exponent 2 
throughout the hardening phase, before the critical point  ( 0  ) was reached, as 

demonstrated by the n vs. L plot in Fig.4a. Furthermore, the n vs.   curves of different 
lattice sizes collapsed into a single curve D vs.   during damage nucleation only for the 
exponent 2 (Fig.4b in [1]), as previously noted by Hansen et al. [13]. The 95% confidence 
intervals (the dashed lines in Fig. 4) were very tight. 

 
 
Figure 4. Fractal behavior of ( , )n L  in the middle of hardening phase (exp. = 2) and at the peak (exp. = 1.94). 

(a) Ln ln05.285.2ln 

0%,100%,100 2  SR

; ; (b) ; 

. . 

020.0%,100%,100 22  SRRadj

014

LN p ln94.129.1ln 

.2Radj

 
The coefficients of determination and reported by MINITAB 14© were rounded in 

[3] to 100% (Fig. 4), which proved the high significance and quality of the regression 
analysis (R2 = 1 indicates perfect linear correlation [14,15]). The regression on the seven 
sizes N = {24, 48, 72, 96, 120, 192, 288} provided a 2 decimal digits precision for the 
fractal exponents, which was satisfactory. The size range covered over one order of 
magnitude.  

2R 2
adjR

 
3.3 Softening  
 
With D  defined as in (4), the D   curves were scaled in [1] to obtain Eqs. (2) and (3). 
While Eq.(2) was a suitable definition of damage parameter for the hardening phase, Eq.(3) 
was not a valid damage parameter for the softening phase. The lattice is a network of elastic 
springs and the corresponding secant stiffness   ( ) 1 ,oE L E D L  is positive-definitive 

[12]. Hence, the "proper damage parameter" [3] must always be 0 D 1   and should 
monotonically3 approach 1D  at failure ( 0failureE  ). These two constraints were not 

accounted for in the softening data scaling in [1]. Therefore, while expression (2) was 
perfectly legitimate, definition (3) needs improvement.  

                                                 
3 continuously or discontinuously, depending on whether the failure is first order or second 
order phase transition [3] 
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In the lattice model, the number of broken links  n   was a measure of the total damage. 

The parameter D  supplied just the normalization, like in Eq.(5), and possibly rendered this 
information scale-invariant. A fundamental premise in our framework [1, 3] was that 
hardening and softening phases were independent non-simultaneous processes. The 
microcracks nucleation was driven by a fat fractal with fractal exponent 2 for the most part 
and by a proper fractal with exponent 1.94 at the peak of stress-strain response. Such 
driving set changes at the transition, i.e. an appropriate denominator (normalization 
number) should replace 2L  in (4). The following form of damage parameter was assumed 

in the softening phase 
 

 
2

( , ) ( , )
( , , )

( )
peakn L n L

D L n
L X L
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   (7) 

 
where ( , ) ( , )peakn n L n L     was the number of broken bonds in the softening phase and 

peak  corresponds to the critical point ( 0  ). The analytical expression for Δn 

follows from (1) and (4) as  
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which was essentially the information conveyed by Eq. (3). Eq.(8) was equivalent to 
magnifying the scaled data in the softening phase by a factor μL2. Hence, the constitutive 
relations for the hardening and softening phases could be rewritten as   
      

2
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  


 
  

 ,    ( 0  ) (9.b) 

 
Then, X (L) in the denominator of (7) and (9.b) needed definition. The 3D plot of 
microcracks location vs. simulation time in Fig.3 highlighted the contrast between the 
uniformly distributed damage nucleation and the highly correlated damage propagation 
localized along a narrow strip. From this viewpoint, a fractal exponent close to one was 
intuitively plausible for the invariant set driving the propagation, as much as the fat fractal 
suited the phenomenology of the nucleation. 
 
A deductive reasoning based upon statistical methods was used to reach a data driven 
choice for X (L). By assuming that (9.b) was the proper form of the model, one could write   
 
  2ˆ ( , , ) 1 /o

i i i p i in E N L n           
 (10) 
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where β(L) = 1/X(L), Q was the number of numerical observations used for the regression 
and ˆ

i  was the estimate of stress value at 
i  and 

in  from the model for i = 1, 2,…, Q. 

Since the model was linear in the unknown parameter β, the "ordinary least squares" 
method can be used to compute a minimum unbiased estimator ̂  of β [14]. The mean 

square error function for this model (the sum of the squared deviations between the 
simulation data and the predicted value over Q) was minimized with respect to ̂  in [3], 

which yield the estimate 
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 (11) 

 
The results of Eq.(11) are marked in Fig.5 by circles for the sizes 
N = {24, 48, 72, 96, 120, 192}. The linear fit through the six  X̂ L  values matched the 

results very well, as indicated by a coefficient of determination close to unity  
 997.0;9971.0 22  adjRR .  

 

 
 
Figure 5. Comparison of X (L) estimates from (11) for the 6 average Δn (circles) and for 6 random replicates per 
each size N = {24, 48, 72, 96, 120, 196} (asterisks). 

 
The equation of the regression line was  
 
 

2 3( ) 65.07 1038X L L L      (12) 

 
with 95% confidence intervals (60.38, 69.76) and (-1589, -585.6) for the slope and the 
intercept respectively. This linear model supplied X(L) in Eqs. (7) and (9.b).  
 
Such a result seemed to confirm the above supposition from phenomenology about the 
linear dependence of X on L. Nevertheless, more data points were required to increase the 
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precision and tighten the relatively wide confidence intervals. For very large lattices, when 
the intercept becomes negligible (1038 << 65.07 L), the relations (8) and (10.b) were nicely 
approximated for 

peak  by 
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2 2

2

( , ) ( , ) ( , )
( , , )

65
peak pn L Nn L n L

D L n
L L L L

 
  

 
   
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The damage parameter (13.b) implied a C1 discontinuity due to the abrupt change of the 
denominator from L2 to L at the critical point (

peak ). While ( )n   was a C1 continuous 

function at 
peak , the damage  is C0 and the damage rate ( ) /n     discontinuous, in 

agreement with Figs. 2 and 3.  
 

 
 
Figure 6. Overall model fitting for N = 48 and N =96 with X from OLS (Eq.(13)). ( , )n L and ( , )n L  were 

estimated via scaling relations. C) Improved fit for N=96 when numerical data were used directly for ( , )n L and 

( , )n L  instead of scaling relations in the constitutive relations (9). 

 
The choice of the Q data points to be used in the evaluation of (11) was crucial for the 
accuracy of  X̂ L and depends on what part of the response is of interest. This analysis 

aimed at capturing the steepest descent of the softening regime after the transition and only 
the corresponding points (about 25% of softening dataset) were selected to minimize the 
model error in that part. The performance of the analytical expressions (9) were compared 
in Fig. 6 against the original average simulation data for N = 48 and N = 96, respectively.  
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3.4 Interpretation and Limits of Relations for Softening       
 
The model estimated the numerical data for most of the design space. Concerns might arise 
about the accuracy of relations (7) and (9.b) for the softening phase. Essentially two aspects 
determined the performances of the model:  

1. the selected model form (7) for the damage parameter D  and 
2. the accuracy of the estimates ( , )n L  and ( , )n L  from scaling.  

 
At first, by assuming that the model form (7) was correct, we focused on the second issue. 
The scaling relations for n(ε, L) and Δn(ε, L) from Eqs. (1) and (8) referred to the average 
data, obtained by first averaging the original n   curves of individual replicates for each 
size and then, after scaling, by fitting a regression model to the scaled data. This twofold 
“filtering” process smeared out the irregularities characteristic of each replicate (compare 
Fig.2d with Fig.7 in [1]).  Thus, while on one side we obtained smooth analytical relations 
capable of estimating the average microcracks number for any lattice size, on the other the 
characteristic "details" of each individual replicate were lost. Fig.6c shows the model 
obtained from Eqs. (8) for N = 96 when average n and Δn from simulations were used in 
place of the scaling relations. The new estimates "shadow" the simulation data of the 
softening phase better than before. Evidently a better knowledge of n and Δn yielded a 
more accurate constitutive model. For these simulations, the difference between the 
estimates of n and Δn from scaling relations and from simulations never exceeded 10% for 
any lattice size. However, the predictive power did not change significantly.  
 
To assess the other issue about the appropriateness of the selected model form, Eqs. (7) and 
(9) were tested against individual lattice simulations. Six individual replicates for  
N = {24, 48, 72, 96, 120, 192} were randomly picked. This time the values of n, Δn and Np  
were obtained directly from the simulation. As the model was satisfactory for the hardening 
phase, the previous estimate of μ was kept for all cases. Instead, the parameter X (L) in (7) 
was re-estimated for each replicate via Eq. (13). These new values of  X̂ L  are marked in 

Fig.5 by asterisks and fall reasonably close to the line (14) for the average values.  
 
The remarkable agreement between the models and numerical data was demonstrated in 
detail by Rinaldi et al. [3]. Complex patterns and discontinuities were well captured for 
most of the softening phase. The models were in general able to reproduce the response 
also after the change of curvature following the initial steep descendent from the peak. 
Notably, these results were achieved by merely re-estimating a sole parameter X (L). 
 
 
4 A Microstructural Approach to Understand the Softening Transition      
 
As a final remark, a microstructural approach can better highlight the underlying physics of 
the softening transition. The rationale is to correlate the spring rupturing with the 
orientation of each spring [22,23]. With regard to Figure 7A, consider a 2D lattice model 
similar to the previous one but with perfect geometry (αL = 1), where the springs represent 
grain-boundary links between hexagonal grains and can only have two orientations to the 
loading axis, either horizontal or diagonal at ±60°. In this scheme there is just mechanical 
disorder in the form of random critical strains distribution. The corresponding mechanical 
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response from a simulated tensile test in displacement controlled mode is shown Figure 7B 
and represents the locus of all stable configurations { ,  } reached at any imparted  . 
The dotted lines mark the snap-back patterns incompatible with ε, which are signature 
features of micro-cracks avalanches. Through a bottom-up analysis of tensile test 
simulations, it can be demonstrated that the damage process on the microscale is a discrete 
function - amongst other things [22, 23] - of the ratio between the applied strain and the 
micro-strains in the springs. In particular, the damage increase when the micro-strain in one 

spring overcomes its critical strain *( )  , such that ( ) ( * / )D f   . Then, from the 

examination of * . vs   in Figure 7C, one can clearly appreciate that the softening 
transition is a divide between two regimes, one where the relation is initially linear and one 
where it becomes eventually much scattered for *    . This implies that an explosion in 
the micro-strain fluctuations in the lattice causes the transition. Furthermore, the plots 
demonstrates that while the horizontal springs (i.e., the grain boundaries (GBs), normal to 
the tensile axis) play a major role in the first part of the damage process (note the higher 
rupturing rate of horizontal springs), the transition represents a cross-over to a regime 
dominated by a rupture process highly contributed by GBs at an angle. In other words, 
while the damage process is highly dependent on the orientation of the springs, in a sense it 
becomes independent of spring-orientation after the transition, which is an aspect of 
consequence for microstructure engineering and damage tolerance design.  
 

 
Figure 7. (A) Lattice model under tensile test. (B) Tensile response from a damage controlled simulation (dotted 

lines) with a large avalanche marking damage localization at the peak response (  = 2.7 10-3). (C) Greater 
contribution to damage before localization is from grain boundaries (GB) normal to the load. But GB orientation 
becomes irrelevant afterwards.  
 

 
5. Summary and Conclusions 
 
The statistical damage mechanics theory, developed within the present framework, was 
proposed originally by Krajcinovic and Rinaldi [1]. The sequel paper [3], constituting the 
gist of this review paper, was committed to constitutive modeling, failure, damage tolerance 
and durability of structures – issues largely neglected in engineering practice and research 
[2]. The results offered in [3] displayed the effectiveness of the proposed statistical damage 
model in the study of the softening regime and failure. The results outlined the potential of 
this statistical damage mechanics model, which went well beyond the limits of the 
traditional continuum damage mechanics.  
 
Specifically, the primary conclusions of the analyses reviewed in the present paper were the 
following:  
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 the choice of the model form in Eq. (7) was appropriate; 
 a simple model could reproduce a variety of softening responses; 
 microstructural approach can reveal the finer nature of the softening transition; 
 the greatest accuracy was achieved by calibrating the constitutive relations on an 

individual simulation; the same constitutive relations of the mean response can be 
used by simply re-estimating X (L)  from the simulation data; 

 the greater accuracy for the individual replicate was determined by the usage of 
un-filtered simulation data for n and n  in place of the average estimates. 

 
The findings corroborated and clarified the proposed constitutive model. The last 
conclusion pointed out that the continuous approximation of ( , )n L  and ( , )n L   from 

scaling relations overlooked large discontinuities in the n   data registered in 
correspondence of large avalanches (both the peak and post-peak). Although the scaling 
relations (1) and (2) represented an average behavior and offered the general "trend" for all 
lattice sizes, an accurate model—capable of matching the data from an individual test—was 
achieved upon introduction of the specific details of ( , )n L   on case-by-case bases. 

Thus, the additional numerical data improved the precision of the statistical analysis. 
 
The scale invariant damage curves proposed in [1] were re-examined and finalized in [3] to 
obtain the analytical constitutive relations (9) for the entire damage process. The damage 
parameter was properly defined in the softening phase to attain this result. In the hardening 
phase the process was driven by a fractal set of exponent two, while in the softening phase 
the fractal dimension tended towards one. This work outlined the importance of the 
statistical methods, such as ordinary least squares, maximum likelihood and hypothesis 
testing, for the selection of the model parameters. These techniques were the basis for data-
driven reasoning and decision making in damage tolerance. 
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Abstract: In this paper we provide an overview of designs and potential applications of the 
gravity chute system. The general differential equation of the package motion on the gravity 
chute that has arbitrary shape described by Bernoulli equation is presented. The general 
equation can be applied to the different special cases of gravity chutes. According to this 
equation, the output velocity of the package at the exit of chute is a function of inclination 
angle, friction coefficient and the initial velocity of the package. In practice, the main objective 
is to minimize the output velocity of the package. An appropriate model for regulating this 
velocity by changing the inclination angle in case of gravity chute is presented in this paper. 
Artificial intelligence methods, including fuzzy logic, are very useful tools for managing and 
controlling devices in electrical and mechanical engineering. The developed model is based on 
the principles of fuzzy logic and has been used to optimize performance of gravity chute. A 
fuzzy logic model manages the gravity chute inclination angle. The input parameters of the 
proposed fuzzy logic model are: friction coefficient, mass of the packages and number of 
packages. The presented models, kinematical and fuzzy, are verified by numerical examples. 

 
1. Introduction 
 
The paper deals with different types of the gravity chute and its potential applications. The 
general differential equation of the package motion on the gravity chute that has arbitrary 
shape described by Bernoulli equation is presented. This general equation can be applied to 
special cases of gravity chutes. According to this equation, the output velocity of the 
package at the exit of chute is a function of inclination angle, friction coefficient and the 
initial velocity of the package. In the practice, the main objective is minimizing the output 
velocity of the package. Bearing this in mind, an appropriate model for regulating this 
output velocity by changing the inclination angle in the case of gravity chute is shown in 
the paper. The model is based on the fuzzy logic principles. 
Having in mind the fact that fuzzy sets can represent linguistic knowledge, i.e. that they can 
describe qualitative information in a rigorous way, fuzzy logic has become a very popular 
technique for controlling numerous automatic processes [11]. Results obtained by fuzzy 
control indicate that it can be used as a convenient tool to solve a certain type of problem.  
In this paper, we formed a fuzzy logic model that manages the output velocity of the 
package, as it affects the inclination angle of the gravity chute. In practice, this is 
achievable by installing the appropriate mechanical or hydro-mechanical mechanism in the 
gravity chute. The input parameters of the proposed fuzzy logic model are: friction 
coefficient, mass of packages and number of packages.  
The main goals of this paper are to offer detailed analysis of different gravity chute types 
and to research the possibility of developing a fuzzy controller to control the process of 
package movement across gravity chute. In addition, this paper develops a simple fuzzy 
controller by referring to the operators' knowledge and experience.  
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The rest of this paper is organized as follows. After Introduction, Section 2 is related to a 
short review of basic and essential, relevant papers on fuzzy logic and fuzzy control. 
Section 3 of this paper gives an overview of different gravity chute types and its potential 
applications. Section 4 contains detailed analysis of fuzzy control, while a description of 
the problem considered and the fuzzy reasoning algorithm are given in Section 5. 
Concluding remarks are in Section 6. 
 
2. Short literature review  
 
The similar analysis as the one presented in this paper is done in details for the rectilinear, 
circular and cycloid gravity chutes, as well as helical chutes in the papers [13, 14]. The 
same problem is considered, to a lesser extent, in the monograph literature [1, 5]. This 
paper proposes improved differential equations and a dynamic model based on fuzzy logic, 
which provides the major optimization of gravity chute parameters, primarily the optimal 
inclination angle. 
Fuzzy logic was first proposed by Lotfi A. Zadeh of the University of California at 
Berkeley in 1965 paper [17]. The papers of Mamdani [7] and Mamdani and Assilian [8] 
presented the first application of fuzzy set theory in the control of a dynamic process. In 
their paper, Mamdani and Assilian discussed the control of a laboratory steam engine. Tong 
[12] presented and analyzed a large number of experimental applications of a fuzzy control. 
Recently, a lot of papers that deal with fuzzy logic controllers appear in the relevant 
literature. The authors of paper [4] introduced a neuro-fuzzy controller for the speed 
control, a permanent magnet synchronous motor drive. The authors used a four layer neural 
network to adjust input and output parameters of membership functions in a fuzzy logic 
controller. 
In their paper, [3 authors tried to minimize power consumption used to operate the 
ventilation system. To achieve the objectives, fuzzy control methods have been usually 
utilized due to the complex and nonlinear behavior of the system.  
The design of fuzzy controllers for the implementation of behaviors in mobile robotics is a 
complex and highly time-consuming task and it was presented in [9]. In this paper, the 
automated design of a fuzzy controller using genetic algorithms for the implementation of 
the wall-following behavior in a mobile robot is described. 
A fuzzy logic was also used in the paper [2. This paper presents a data-driven design 
methodology able to generate a Takagi–Sugeno–Kang (TSK) fuzzy model for maximum 
energy extraction from the variable speed wind turbines. In order to obtain the TSK model, 
fuzzy clustering methods for partitioning the input–output space, combined with genetic 
algorithms (GA), and recursive least-squares (LS) optimization methods for model 
parameter adaptation are being used.  
According to author’s knowledge, there are no papers dealing with implementation of fuzzy 
logic concept into the gravity chute parameters optimization.  
 
3. A survey of the constructions and potential applications of gravity chute 
 
The gravity chute is fixed device which is used for transport of piece or loose load under 
the influence of the gravitational force. The package (load) is lowered by slipping or rolling 
down the supporting (working, sliding) surface. The gravity chute permits a continuous 
gravitational transport at different speeds, in a rectilinear or curvilinear manner, depending 
upon the type of package and the function of the gravity chute. According to its function 
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and package shape, the supporting surface is the basic part of the gravity chute whereas the 
lateral slides are not so heavily loaded, and their function is more of a directional nature.  
According to the supporting surface, which also determines the path of the packages, the 
gravity chute can be: 

 Inclined, where the longitudinal axis of the supporting surface is in the vertical 
plane (Fig. 1a and 1b), and 

 Spiral (helicoidally), where the supporting surface is spiral (Fig. 1c). 
The cross-section of the gravity chute is a groove, which is open in the inclined gravity 
chute, with either closed or open spirals, having a rectangular, trapezioform, semicircular, 
trough-like or circular form.  

 
a)                   b)                    c) 

  
Figure 1. Gravity chutes: а) inclined, b) inclined gravity chute in the Post, c) spiral 

 

There is a wide variety of applications of the gravity chute: 
 For transporting postal deliveries (parcels, bags and boxes with postal 

correspondence) or for filling bags and containers with the sorted mail; 
 For connecting certain technological stages of the transportation process; 
 As parts of the working units or certain transportation devices.  

The significant applications of the gravity chutes results in the development of construction 
with various technical parameters (length, width, height, friction coefficient), which has 
ensured the required working regimes as well as an economic construction in a limited area. 
In order to realize the required movement regime, which implies the corresponding speed 
of the package, and at the same time to avoid failures (the discontinuing of the package 
upon the gravity chute), it is necessary to determine exactly the basic gravity chute 
parameters: its form, cross-section, material, length, width, angle of trapper, etc. The 
determination of these parameters is possible by applying a detailed kinematics analysis of 
the movement of the package, which has been done in this paper for inclined rectangular, 
circular and cycloid gravity chute.   
 
3.1. The inclined curvilinear gravity chute 
 
The inclined gravity chutes with the curvilinear supporting surface (Fig. 2) ensure a slow 
movement of the package without shock, since owing to the centrifugal force, the frictional 
resistance increases.  
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By using the gravity chutes of this type, package movement can be accomplished according 
to the desired rule. Production of such gravity chutes are more complex compared to 
rectilinear gravity chute. 
 

 
Figure 2. The inclined curvilinear gravity chute 

 
Let us first consider the general case of a movement along a curvilinear gravity chute of an 
arbitrary case of movement, whose equation is y=y(x). The differential equation of the 
package movement, which is considered to be a material point, is:  
 

 ,    (1) 

where: 
 m, v – mass and speed of the package respectively, 
 the coefficient of friction, 

the current radius of the curve. 
 
After the substitution of the expression for the radius of the curve s – arc of the gravity 
chute, equation (1) is transformed into following differential equation: 
 

 .     (2) 

 
After the substituting of the expression for the differential arc  , radius 

of the curve  and trigonometrically transformation, equation (2) 

becomes: 

.     (3) 

 
The solution obtained by the Bernoulli differential equation (3) is: 
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.   (4) 

 
In order to determine the integral constant C, the condition for the speed of the descent of 
the package from the gravity chute (at point K) will be utilized: 

 
. 

 
Finally, the solution is presented by equation (5):  
 

.  (5) 

 
Equation (5) ensures the solution of the two practical and very significant problems: 
a) For the given gravity chute form y = y(x), determine the velocity change v = v(x); 
b) Determine the trajectory y = y(x) for the most favorable velocity change law v= v(x).  
 
3.2. The inclined rectilinear gravity chute (the inclined plane) 
 
 In the case of the inclined rectilinear gravity chute (the inclined plane) (Fig. 3) equation of 
supporting surface is:  

     (6) 

y

mg

F

x

h

K

O

b
 

 
Figure 3. The inclined rectilinear gravity chute 

 
Substituting equation (6) in the general expression for the speed of package (4), we can get 
the velocity of a package that slides on the inclined rectilinear gravity chute: 
 

 ,   (7) 

 
where:  is initial package velocity in the point О(b,h).  
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Velocity of package movement at the end of gravity chute, at the point K (0.0) is: 
 

     (8) 

 
The same expression can be arrived at basing upon the live force law or by applying 
differential equations of package movement directly for this gravity chute.  
From equation (8) required coefficient of friction, a very important structural parameter, 
can be determined in order to achieve optimal package velocity at the end of gravity chute, 

 . 

 

   .    (9) 

 
3.3. The inclined circular gravity chute 
 
In the case of inclined circular gravity chute (Fig. 4), which geometrically represents the arc 
with central angle  , differential equation of package movement (1) taking following 

shape: 
,    (10) 

where: 
R - radius of the circle, 

   - central angles of a circle, which determine the current position of the package. 

 
The fact that between the variable angles   and  exists relation i.e. 

  leads to the differential equation (10) new form: 

 
.   (11) 
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Figure 4. The inclined circular gravity chute 

 
The solution of the differential equation (11) is: 
 

 ,   (12) 

 
where the integration constant is determined from the condition  

 

. 

 
Velocity of package movement at the end of the gravity chute (for   is: 

 

.  (13) 

 
3.4. The inclined cycloid gravity chute 
 
The parametric equations of the cycloid are: 
 

 ,   (14) 

where: 
 r – radius of the circle whose rolling at the line p, point on the circle M describes a cycloid. 
 – central angle of the circle that determines the current position of the package (Fig. 5). 
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Figure 5. The inclined cycloid gravity chute 

 
The parametric equations of cycloid in function of central angle      are: 

 
   


The geometric parameters of cycloid are: 
 




   


    

where: 
 s - corresponding cycloidal arc; - angle of the tangent cycloid at the point M,  - the 
radius of curvature of cycloid. 
Taking into account (16), (17) and (18) the differential equation of the package movement 
(1) gets following form:  

    (19) 

 
The solution of the differential equation obtained (17), under the initial conditions   

is:  
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  


The velocity of the package at the end of the gravity chute at point К is, for  : 

 
    (21) 

 
The package arrives to the cycloid end point for a short time, much faster comparing to the 
movement trough any other given curve line. 
 
 
 
3.5. Numerical example 
 
For given parameters for all three gravity chute: =0,36  , h=6 m , b=14,14m,  l=15,36m ,  
= 23o vo=0,5 m/s, r = 3 m, R = 18,1 m, =46o=0,80 rad, the dependence of package 
movement velocity upon the coefficient of friction (Fig.6) and the dependence of current 
speed of package parameters, which indirectly determines the path taken, are determined 
and shown in the graphs (Fig. 7,8 and 9).  
The best final package velocity, according to the safety of packages, is achieved by the 
inclined circular gravity chute (Fig. 6). In that case final package velocity is minimal and 
equals to    . However, this conclusion is valid for the friction coefficient 

=0,36.  
When the coefficient of friction is less than a certain value, in this case less than 0.325, the 
final package velocity of circular gravity chute is greater than in the case of other two 
gravity chutes. 
 

 
Figure 6. The dependence of the final package movement velocity vk upon the coefficient of friction, : 
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 a) The rectilinear gravity chute, b) The circular gravity chute, c) The cycloid gravity chute 

 
Figure 7. The dependence of current package velocity v upon coordinates x, in case of the rectilinear gravity chute 

 

The incline circular and cycloid gravity chutes, unlike the rectilinear gravity chute, provide 
a lower final velocity of package movement as well as movement of packages without 
shock. They also make possible that acceleration of packages that move though gravity 
chute (point T, Fig. 8.9), which becomes slower, primarily due to supplementary force of 
friction due to the influence of centrifugal force. While such gravity chute is more complex 
to create comparing to the rectilinear gravity chute, the positive effect of these gravity 
chutes is achieved by making combine rectilinear gravity chute or rectilinear gravity chute 
with two or more segments [11]. 
 

 
Figure 8. The dependence of current package velocity v upon the angle � in case of the circular gravity chute 
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Figure 9. The dependence of current package velocity v upon the angle  in case of the cycloid gravity chute 

 
4. Fuzzy control in detail 
 
As an alternative, fuzzy control provides a formal methodology for representing, and 
implementing a human's heuristic knowledge about how to control a system. Fuzzy 
controller is unique in its ability to utilize both qualitative and quantitative information. 
Qualitative information is gathered not only from the expert operator strategy, but also from 
the common knowledge. 
Fuzzy controllers are very simple conceptually. They consist of an input stage, a processing 
stage, and an output stage. The input stage maps sensor or other inputs, such as switches, 
thumbwheels, etc., to the appropriate membership functions and truth values. The 
processing stage invokes each appropriate rule while generating a result for each, then 
combines results of the rules. Finally, the output stage converts the combined result back 
into a specific control output value. 
 
 
 
 

 
 
 
 

Figure 10. Fuzzy logic process 

 
The most common shape of membership functions is triangular, although trapezoidal and 
bell curves are also used, but the shape is generally less important than the number of 
curves and their placement. The processing stage is based on a collection of logic rules in 
the form of IF-THEN statements, where the IF part is called the "antecedent" and the 
THEN part is called the "consequent". Typical fuzzy control systems have dozens of rules. 
There are several different ways to define the result of a rule, but the one used in this paper 
is the most common Mamdani "max-min" inference method, in which the output 
membership function is given the truth value generated by the premise. 

Inpu Output 
FUZZIFICATIO

DEFUZZIFICATIO

FUZZY 

FUZZY 
RULE SET 
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The results of all the rules that have fired are "defuzzified" to a crisp value by one of 
several methods, but we used very popular "centroid" method, in which the "center of 
mass" of the result provides the crisp value.  
The diagram below demonstrates max-min inferencing and centroid defuzzification for a 
system with input variables "x1", "x2", and "x3" and an output variable "y".  
 

MIN                  MAX

G

center of gravity

G1

G2

(x )1 (x )2 (x )3

(x )1 (x )2 (x )3

(y)

(y)

MF MF MF MF

MF MF MFMF

 
 

Figure 11. Max-min inferencing and centroid defuzzification 
 

5. Description of the problem considered and fuzzy control process 
 
When making decisions in a fuzzy environment, for the purpose of fuzzy logic modeling, it 
is necessary to transform all input data into fuzzy variables which can be expressed in 
quantitative form through fuzzy sets [15]. 
The basic geometric and functional gravity chute parameters, in addition to the coefficient 
of friction may vary depending on the materials of packages, gravity chute height and 
angle. In packages transport stochastic effect is very pronounced. Besides that, failures 
(delays) during a package transport can occur. Having in mind the fuzzy theory and 
possibilities of its applications, authors formed a model for managing performances of 
gravity chute. The main goals are to optimize gravity chute output velocity by changing the 
inclination angle and thus to minimize number of failures and unpredicted situations. 
Normal operating performances of gravity chute depend on coefficient of friction, mass and 
number of packages. A coefficient of friction is strongly related to inclination angle, 
because it has to be satisfied condition of slippery:α>ρ, where ρ=arctgµ is angle of friction. 
The recommendation is that inclination angle of gravity chute should be larger for 2-3 
grades comparing to the angle of friction.  
Usually, operators that work on gravity chute are not able to accurately determine the 
coefficient of friction of the package. But, they can determine this by using linguistic 
variables for mass of the package, the package volume and number of packages as the 
relevant parameters. 
Our model based on a fuzzy logic consists of three input variables, as shown on Fig.12. and 
one output variable, the inclination angle of the gravity chute. 
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Figure 12.  Fuzzy logic model for determining the inclination angle of the gravity chute 
 

For each of the input variables of fuzzy model, we defined the appropriate intervals. The 
first input variable, number of packages, was separated into three classes: small, medium 
and large. The second input variable, the mass of the package, was divided into three 
intervals: small, medium and big. Finally, the last input variable, coefficient of friction, was 
divided into five intervals: very small, small, medium, heavy and very heavy. 
For each of the input variables membership functions were formed. To form the 
membership functions we used triangular and trapezoidal shapes (for forming and testing 
phase of the logical model we used program Matlab r2008a). The following tables and 
figure show membership functions for each of input variables. 

 
Table 1: Values used for input variable number of packages membership function definition 

(measured in package per minute unit)  
 

Small Medium High 
from 0 to 6 from 2 to 18 from 14 to 20 

 

0      2     4     6     8     10    12    14    16    18    20

1

0.5

small                     medium                                 high

 
 

Figure 13. Membership functions of input variable number of packages 

 
Table 2: Values used for input variable coefficient of friction membership function definition 

 
Very low Low Medium Heavy Very Heavy 
from 0.21 to 
0.44 

from 0.32 to 
0.55 

from 0.44 to 
0.66 

from 0.55 to 
0.78 

from 0.66 to 
0.78 

 
Table 3: Values used for input variable package mass membership function definition (measured in 

kilograms) 
 

Package 
mass

Number of 
packages 

Fuzzy 
rules

Inclination angle of 
the gravity chute 

Coefficient 
of friction 
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Small Medium High 
from 0 to 10 from 2 to 29 from 20 to 31.51 

 
Output variable is defined as the inclination angle of the gravity chute and it is divided into 
five intervals: very small, small, average, big and very big. To define the output variable 
membership functions we used triangular fuzzy numbers. 

 
Table 4: Values used for output variable the inclination angle membership function definition 

(measured in radians) 
 
Very small Small Average Big Very big 
From 20 to 25 from 20 to 30 from 25 to 35 from 30 to 40 from 35 to 40 
 
The most important step in the formation stage of the logical system is to properly define 
fuzzy rule set. Fuzzy rule set was formed on the basis of "if-then" rules. One possible rule 
would look: 

 IF the number of packages is x1 and IF the coefficient of friction is x2 and IF the mass of 
the package is x3  

THEN the inclination angle of the gravity chute equals to y. 
 

After fuzzy rules are formed we can determine necessary inclination angle of the gravity 
chute. In such way we formed 45 fuzzy rules (Fig. 14). In order to obtain the best possible 
results, output and input membership functions were tailored. Also, it is important to notice 
that it was necessary to revise some rules in order to achieve satisfactory results. 
 
On Figure 14 one numerical example is presented. If number of packages is 5 per time unit, 
coefficient of friction is 0.36 and package mass is 1 kilos, and according to fuzzy logic 
model necessary inclination angle of the gravity chute is 25 rad. 

                                                 

1 Maximal allowed package mass according to the rules in the Post is 31.3 kilos. 
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Figure 14: Numerical example 
 
6. Conclusion 
 
In this paper we gave an overview of different types of gravity chutes. The potential 
applications are also presented in the first part of the paper along with the kinematics 
equation.  
The basic geometric and functional gravity chute parameters, in addition to the coefficient 
of friction may vary depending on the materials of packages, gravity chute height and 
angle. In packages transport stochastic effect is very pronounced. Besides that, failures 
(delays) during package transport can occur. Having in mind the fuzzy theory and 
possibilities of its applications, authors formed a model for managing performances of 
gravity chute. The main goals are to optimize gravity chute output velocity by changing the 
inclination angle and thus to minimize number of failures and unpredicted situations. 
Proposed model, based on the fuzzy logic concepts, includes coefficient of friction, 
packages mass and number of packages in order to obtain optimal inclination angle of the 
gravity chute. 
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Abstract. This paper presents two analyzing methods for the responses of the launching 
device at vehicle subjected to the random stimulations caused by the wind: mean square 
response method and Monte Carlo simulation method. The basis hypothesis of the stohastic 
functions and the relevant theoremes nedeed for the analysis of the random processes are 
presented. 
Keywords: Stochastic processes, Chebyshev inequality, Central limit theorem, Ergodic 
stochastic processes, Correlation function, Spectral density, Mean square response , Monte 
Carlo simulation.  

 

 
1. Introduction 
 

One of the most important aspects of studying the launching systems response to 
external disturbances are the value and the nature of changes of the firing line. The first step 
in the analysis of system behavior is the identification of the external stochastic 
disturbances, and their introduction into the appropriate mechanical model. The paper 
describes two basic approaches to analyzing of the system response to stochastic 
disturbances (which is represented by the influence of horizontal wind to the structure): 
a) Monte Carlo simulation 
b) Mean square response. 
 
2. Random disturbances 
 

The atmosphere flowing - wind, constantly changes its state, both in space and in time 
(direction, orientation and speed). Because we can not predict the wind speed certainly, we 
can consider it as a random process,  ,X r t , where r  is vector which  indicates the position 

of the observing point with the respect to the selected origin of coordinates. Measuring the 
wind speed at a certain place during a certain period of time obtain realization of a random 
process  1,X r t . Complex of all possible realization makes a random process. At certain 

place  and time  random process becomes a continuous random variable 1r 1t  1 1,X r t , for 
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which can be defined probability distribution function  1 1; ,XF x r t and probability density 

function  1 1; ,Xf x r t . 

Any of these two functions completely describes the stochastic nature of random 
variable. However, it is often impossible to obtain any of them from the available data. 
Instead, some average values of certain functions could be available: mathematical 
expectation  1 1,X r t , variance (dispersion) 2D   and correlation function  1 1 2 2, ; ,XXR r t r t . 

Correlation function defines the relationship between the value of the random variables 
 1 1,X r t and  2 2, X r t

 1 2 2, ; ,

in two different times and at two different places: 

     1 1 1 2 2 1 2 1 1 2, , ;XX XX 1 1 2 2 2, : ; ,R r t r t X r t x x f x r dx
 

 

                               (1)     r t E X t x r t dx

As the space locations and the moments of time are closer, the correlation between  1 1,X r t  

and  2 2,  strengthens. Then function becomes      2 2
1 1XX XR r t r t X r t 1 1 1 1, ,Xt r , . 

If the random process is stationary (invariant to translation of time) and if the mean values 
and autocorrelation function does not change from one sample to another, then the random 
process is ergodic. In mathematical terms, this means that there is no dependence of the 
elementary events, so it’s all the same which realization of random process we choose. 
If the ergodicity is not confirmed, the process is: 

 nonergodic – a special analysis are needed,  
 possible ergodic, but the intervals of time series are short 

Thus, for some random process that is made up of infinite set of realizations: 
   1 ,X r t ,    2 ,X r t ...    ,NX r t  , the average value of the whole set are:: 
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  
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
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                                                                       (2) 

   If the only one realization of random process is known 1 ,X r t , during time Т and 

space shift S , apply the following equations using the substitution 1i   и N ST . For 
ergodic process applies:   20XX X XR 2    and   2

XXXR   . 

Ergodic process can be analyzed in frequent range, by Fourier transformation of the 
autocorrelation function – power spectral density: 

   1

2
j

x xxS R e d 







                                                                                                      (3) 

 
3. Wind Modeling 
 

In engineering application, the wind is represented by its mean velocity and fluctuating 
(turbulent) component. Figure 1.b shows the change of horizontal wind according to the 
altitude, where can be seen that the turbulence is more expressive closer to ground as a 
direct consequence of the inhomogeneity of the soil (level of  the soil heating, relief, etc.). 
In general, whenever inhomogeneities occur in the soil, there are circulation and local-scale 
inhomogeneities in the atmosphere. 
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                                        Figure 1.а.                                                     Figure 1.b. 
 

Let's consider the spectrum intensity of wind near the ground according to Van der 
Hoven (Figure 1.a). On the abscissa the number of cycles per hour (top row of numbers) 
and the periods in hours (bottom row of numbers) are indicated, and the ordinate is the 
product of amplitude with frequency. Field maximum, the spectral density diagram shows 
that the main part of the kinetic energy of wind is in the fluctuation components of wind 
speed. The three maximums are clearly expressed here: 

1) the first is the period of about four days, which corresponds to the synoptic 
weather systems 

2) the second is for a period of 12 hours, which is a consequence of the diurnal 
changes of the wind speed 

3) the third is for a period of about a minute, which is a reflection of the turbulent 
fluctuations of wind speed 

The generally accepted standard for measuring wind speed in a certain area is a ten-
minute average (the most portion of the kinetic energy of wind is in the part of average flow 
and is the least dependent on the current fluctuations of velocity) measured at the altitude of 

 above the ground. 10 m
Turbulent wind speed generation is carried out by passing the white noise through the 

forming filter. In addition, the filter transfer function is determined by the known spectrum 
of turbulent wind according to von Karman, Harris or Dryden spectrum, obtained 
empirically , lit. [9], [12]. The Figure 2 shows a characteristic change of horizontal wind 
speed. 
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Figure 2 

 
4. Mechanical Model MLRS 
 

This paper will consider the SVRL mechanical model composed of rigid bodies with 
concentrated masses and deformable elements with elastic and damping connections shown 
in [1]. 
According to the accepted model, the movement (oscillation) of MLRS is defined by the 
following generalized coordinates: 

 1z  - vertical movement the vehicle frame in the direction of z axis, 

   - rotating of the vehicle frame around around the transverse axis y, 
    - rotating the  launching device around the elevation rotating point  3O

In this case, the Lagrangian equations of second order are very suitable for analyzing 
the oscillatory motion, which present the mathematical model represented by three 
inhomogeneous linear differential equations, in the following form: 

p nk k
r

r r r

EE Ed
Q

dt q q q

  
       

,                                                                                                     (4) 

Kinetic energy of the system: 

  2 2 2 2 2 2 2 2
1 1 1 2 2 2 4 4 5 5 5

1

2k O y O y O O yE m V J m V J m V m V J                   ,                        (5) 

where:  - the rear of the chassis mass concentrated at point ,  - the front of the 

chassis mass concentrated at point , 
1m 1O 2m

2O 4 km m  - the mass of the cradle's console,  5 Lm m  - 

mass of loaded/unloaded launching device and charger, 
1yJ  - the main central moment of 

inertia of the rear MLRS, 
2 yJ - the main central moment of inertia of the front of MLRS, 

5 yJ  - the main central moment of inertia of a launching device and charger. 

The potential energy of the system: 
In order to simplify the mechanical model the weight of the system is considered to be 

balanced by elastic forces of the springs in the position of static equilibrium, i.e. differential 
equations of motion are set with respect to the position of the equilibrium, which means 
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that the weight of the vehicle will not be taken into account when setting the differential 
equations of motion:  

        2 2 2 2

1 1 1 2 1 2 3

1
sin sin 2 sin sin

2pE C z l C z l C e p e p                         
    (6) 

 

 
Figure 3 

Reley's dissipative function: 
All dumpings in the system can be replaced by an equivalent viscous damping, where 

the damping force is proportional to the first order of the speed function of dissipation 
(dissipative function), and the coefficient of proportionality is the coefficient of 
dumping  . During the MLRS oscillations, the dominant damping oscillation energy 

occurs in the supports (the ground), and as a representative of the damping of the MLRS 
structure itself is quite enough to take the dumping in reduced mechanisms of the elevation. 
Dissipative energy of the system is: 

        22 2 2

1 1 1 2 1 2 3

1
sin sin 2 sin sin

2
z l z l e p e p                              

                (7) 

Generalized disturbance forces: 
Random disturbance is introduced through the aerodynamic forces acting on the structure: 

 
 

2
1

2
2

0,5

0,5
D ref D

L ref L

F W A CX
F

F W A CZ

 
 

      
               

 
                                                                         (8) 

where:  - the air density,  - the wind speed, W 1refA  , 
1refA  - the characteristic surfaces, 

DC   and  LC   - coefficients of drag and lift pressure. 
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Based on the general form of disturbing force, and with respect to the geometrical 
characteristics shown in Figure 4, generalized disturbance force is: 

  
13

1
1

1 1

sin cos

sin cos

z L
k

rk D L
j k

D L

Q F
r

Q F Q F c p F b p
q

Q F p F p




1 
 

   
                 


                                                     (9) 

 

 
Figure 4 

 
By differentiating the expression for the kinetic, potential and dissipation energy, and 

the shift in the general form of Lagrange equations we obtain a system of three nonlinear 
differential equations in the following form: 

kq q q Q     A B C                                                                                                            (10) 

which define the oscillatory movement of the system, with appropriate matrices A, B and C 
functions of generalized coordinates and velocities. Analysis of the system response will be 
done by Monte – Carlo method and mean square response method. 

Method of Monte – Carlo is based on the repetition of simulation (experiment) and data 
processing to determine the statistical characteristics of the system with random inputs. To 
increase the accuracy of the statistical parameters it is necessary to perform a large number 
of simulations.  

Method of spectral analyze – which is based on the known autocorrelation function of 

excitation  
1z

T k
xx Q Q QR D D D e

 

       , respectively power  spectral density of 

excitation forces  
1 2 2

2
z

T

x Q Q Q

k
S D D D

k 



    

 , and mechanical characteristics А, B 

and C define: 

 Frequency response function of system:     12H A j B C  


I                               (11) 

 Output spectral density:      2

y xS H S                                                                  (12) 
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 Mean square response:      2
E d H S d2

y xy S     


                                   (13) 


 

    
ility of exceeding the response 

Chebyshev inequality:
For the analysis of probab will be used: 

  The probability that the outcome of an experiment with the random 
variable X , unknown probability density,  will fall more than some arbitrary constants   
beyond the mean of  X   is less than 

  2
x

X

D
p X  


                                                                                                              (14) 

Central limit theorem: Sum of independent random variables gravitates to the random 
variable with normal di
individually. 

  
 

5. Numerical

stribution, regardless of the distribution of each random variable 

 example 
 

ple the MLRS will be considered, loaded with 12 rockets, during 
e 

For a numerical exam
th launching from the hard clay surface with elevation of . To solve the system of the 
differential equations, as in general form (5), the numerical method Runge-Kutta will be 
used. The responses of the system to a random excitation are shown in the Figure 5. 
For 20 simulated wind blows, by statistical analysis of structure response the following are 
obtained: 

045

 
q  

q  qD  q  

1z  53,6305 10  107,9990 01   52,8282 01   

  55, 4620 10  91,8027 10  54, 2458 10  

  41,7752 10  81,9029 10  41,3795 10  

      42,3214 10  83, 2544 10  41,8040 10  
 

On the basis of Cheb hev inequality, probability that the angle of deviation from the 
ring line  

ys
fi   exceeds the value of half a thousandth in the artillery scale 64-00, by the 
calculated values D   is less than:  0.5'' 0,11899p    . 

Assuming a normal distribution o  angle deviation from the firing line, the probability 
that the angle of iation   exce  a 

f
dev eds the value of half thousandth, respectively one 

thousandth in the artillery scale 64-00, is equal:  0.5'' 0,054162p     ,  

 1'' 0,000015p    . 

taFigure 6 shows the s ndardized autocorrelation function of the force excitation and its 

spectrum excitation is approximated by k
xx e   , where is the exponent 0,096k  . 

Figure 7 shows the frequency response function of system (the forms with diagonal 
matrix)  H  , and spectral responses ystem. The fundamental f ncies of of the s reque  

oscillation : 1 15, 2 are   ; 2 31,8   and 3 65, 2  Hz. The mean square response is 

obtained by numerical integration of the expression (13), and the solutions are variances
qD , 

upon which according to the Chebysev inequality (14) the estimate of probability can be 
carried out.  
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6. Conclusion 
 

On the basis of the calculated displacements and their probabilities can be concluded 
that even extremely strong horizontal wind has not a major impact on the deviation of the 
firing line from the set value. 

Chebyshev inequality gives the approximate solution of probability, but its good feature 
is that it does not take into account the distribution of random variables. The actual value of 
probability was calculated assuming a normal distribution (it’s usually supposed that 
distribution of responses is of the same type as the excitations, so besides normal 
distribution in [9], [10] and [11], the Weibull or Reley distribution is suggested). 

The peaks in graphs of the response of the complex frequency on the fundamental 
frequencies of oscillation are the consequence of the coupled elements in the system (10). 
By approximating the excitation spectrum with an analytical curve, the influence on the 
response of the system at higher frequencies is lost. 

The spectrum of the excitation could be seen as "white noise", if the exponent in the 
autocorrelation function will be of higher value  (that means that the autocorrelation 
function  is approximately of  the exponential character).   

The matrix A changes its value according to the change of generalized coordinates, but 
due to relatively small movements, those changes are imperceptible and it is practically 
constant 

. 
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