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Abstract. Damage of one aero engine disk, dominantly exposed to centrifugal forces of 
blades and own centrifugal forces, was discussed in this paper. It was assumed that steel 
23H11N2V2MF in delivered and heat treatment state will be used for disk workmanship. 
One blade and critical disk area were observed as separated ideal elastic bodies. Their stress 
response for maximum rotation frequency was determined using the finite element method. 
Equivalent stress at critical point of disk was brought in relation with equivalent stress at 
corresponding point of disk when the same observed as blisk reduced on axisymmetrical 
problem. So-called equivalent stress concentration factor, was obtained in that way. This 
factor was used for defining of Sonsino-Birger’s curve, which in combination with cyclic 
stress-strain and Masing’s curves, used for determining of specters of real (elasto-plastic) 
strain amplitudes at disk critical point for three different start-stop cycles. These start-stop 
cycles, defined as blocks of rotation frequency, were decomposed at simple cycles. 
Elemental damages provoked by all simple cycles and damages per blocks were determined 
applying Palmgren-Miner’s rule. Specters of real strain amplitudes, used for that purpose, 
were brought in relation with Morrow’s curves of low cycle fatigue life. Both states, of 
above mentioned steel, known cyclic properties, were taken into account. 
 
Keywords: aero engine disk, engine start-stop cycle, equivalent stress concentration factor, 
cyclic material properties, damages 

 
 
 

1. Introduction 
 
The damage of aero engine disks presents material degradation during their exploitation. 
Degree and rate of degradation depend on the material properties and realized engine start-
stop cycles. Engine start-stop cycles can be described on different ways. For disks, 
dominantly exposed to centrifugal forces of blades and own centrifugal forces (fan and 
compressor disks), engine start-stop cycles are described by blocks of rotation frequency /n/ 
in time /t/. These disks work in conditions of low cycle fatigue (LCF) and their cyclic 
material properties are key properties.  
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Damage estimation of certain disk, dominantly exposed to centrifugal forces of blades and 
own centrifugal forces, understands knowing: engine start-stop cycles defined by blocks of 
rotation frequency, cyclic events in those blocks, cyclic properties of material used or 
nominated for workmanship and stress-strain response at critical point or point of expected 
crack initiation. Here observed certain disk is the first stage low pressure compressor rotor 
disk, of R25-300 aero engine.    
 

2. The first stage low pressure compressor rotor disk of R25-300 aero engine 
 

2.1. Engine start-stop cycles defined by blocks of rotation frequency 
 
Three blocks of rotation frequency (blocks A, B and C) of the first stage low pressure 
compressor rotor, of R25-300 aero engine, in Fig. 1, here taken into account [1]. Block A 
presents one engine ground control and blocks B and C present two training flights. 
 

 

Figure 1. Blocks of rotation frequency of the first stage low pressure compressor rotor, of 
R25-300 aero engine 

 

2.2. Cyclic events in blocks of rotation frequency 
 
The blocks that shown in Fig. 1, were satisfying modified and decomposed on simple X-Y-
X cycles of rotation frequency. Decomposition of mentioned blocks was carried out using 
method of “reservoir” [1,2]. All simple cycles present cyclic events within blocks A, B and 
C. Modified blocks with identified X-Y-X cycles of rotation frequency are shown in Fig. 2.   
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Figure 2. Modified blocks of rotation frequency with identified X-Y-X cycles of rotation 
frequency 
 
Cyclic events (as simple X-Y-X cycles of rotation frequency) in the engine start-stop cycles 
(blocks of rotation frequency), sorted according to level /i/ and number /Ni/ of appearance 
within corresponding blocks, are included in Table 1. 
 

Table 1. X-Y-X cycles of rotation frequency within blocks A, B and C, 
sorted according to level /i/ and number of apearance /Ni/ within blocks 

Block A Block B Block C 

i Xi - Yi - Xi Ni i Xi - Yi - Xi Ni i Xi - Yi - Xi Ni 

1 0-100-0 1 1 0-100-0 1 1 0-100-0 1 
2 35-100-35 3 2 70-100-70 3 2 70-100-70 3 
3 50-100-50 1 3 75-100-75 2 3 75-100-75 1 
4 80-100-80 2 4 80-100-80 1 4 80-100-80 2 
5 85-100-85 1 5 85-100-85 3 5 90-100-90 1 
6 35-85-35 1 6 70-95-70 1    
   7 75-90-75 1    
   8 70-85-70 1    

 

2.3. Cyclic material properties 
 
Material that used for workmanship of the first stage low pressure compressor rotor disk, of 
R25-300 aero engine, is steel 13H11N2V2MF. Cyclic properties of this steel in delivered 
and heat treatment state, obtained experimentally [1], are contained in Table 2. 
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Table 2. Cyclic properties of steel 13H11N2V2MF in delivered state (DS) and 
heat treatment state (HTS) 

VALUE 
No PROPERTY 

DS HTS 

1. Modulus of elasticity, E [MPa] 206682.0 229184.6 
2. Cyclic strength coefficient, K’ [MPa] 1103.0 1140.0 
3. Cyclic strain hardening coefficient, n’ 0.118 0.0579 
4. Fatigue strength coefficient, ’f [MPa] 1818.8 1557.3 
5. Fatigue strength exponent, b -0.144 -0.0851 
6. Fatigue ductility coefficient, ’f 0.5351 0.3175 
7. Fatigue ductility exponent, c -0.6619 -0.7214 

 

2.3. Stress-strain response at critical disk point 
 
For determining of stress-strain response at critical disk point, it was enough observe one 
blade and critical disk area (at the first as ideal elastic bodies). Linear stress response of 
blade and nodal reactions at the blade root contact surfaces, in conditions of maximal 
rotation frequency n = 100 % (186 s-1), were obtained using the finite element method [1,3] 
(FEM). Using FEM and the same rotation frequency, mentioned reactions in transformed 
form used as nodal forces for obtaining of linear stress response of critical disk area. 
Axisymmetrical linear stress response of disk, when it observed as blisk (bladed disk), was 
obtained also (see Fig. 3). Modulus of elasticity E=229184.6 MPa, Poison’s coefficient 
=0.29, shear modulus G=88831.24 and mass  density =7820 kg/m2, of steel 
13H11N2V2MF in heat treatment state, assigned to all FEM models. 
 

 

Figure 3. Linear stress response of critical disk area (left) and linear axisymmetrical stress 
response of the same disk when it observed as blisk (right)  

 
According to Fig. 3, maximal equivalent stress eq,max at point of expected crack initiation 
(critical point P) and belonging strain are unreal (mentioned stress is much higher than 
tensile strength Rm=1000 MPa, of steel 13H11N2V2MF in heat treatment state).  It can see 
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that critical point P corresponds to real crack initiation. Equivalent stress at point P’ of 
blisk, which corresponds to critical disk point P, taken as nominal stress n, was used for 
calculation of so-called equivalent stress concentration factor Keq = 7.45. This factor, 
defined as ratio of σeq,max and σn was served for transformation of linear stress-strain 
response at critical disk point, into nonlinear. Respecting memory of metals, nonlinear 
stress-strain response at critical disk point, using Sonsino-Birger’s approach, here described 
by stabilized hysteresis loops assigned to all cycles of rotation frequency contained in Table 
1. Sonsino-Birger’s approach [4,5,6] presents one of Neuber’s rule modifications. This 
approach is based on application of the next systems of equations. 
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The first equations in systems (1) and (2) are two forms of Sinsinio-Birger’s curve. The 
second equation in (1) is equation of cyclic stress-strain curve and the second equation in 
(2) is equation of Masing’s curve [7]. The values of nominal stresses ni and their ranges 
ni, that used in (1) and (2), were calculated using the next expressions 
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The values of cyclic properties, used in (1) and (2), with known equivalent stress 
concentration factor Keq, were taken from Table 2. The example of nonlinear stress-strain 
response at critical disk point, provoked by block of rotation frequency A, is shown in Fig. 
4. 
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Figure 4. Nonlinear stress-strain response at critical disk point, provoked by block of 
rotation frequency A, in the case of steel 13H11N2V2MF in delivered state (left) and heat 
treatment state (right)    

 
The first point of nonlinear stress-strain response at critical disk point (n=100 %) obtained 
using system of equation (1). Dimensions (×) of stabilized hysteresis loops were 
obtained using system of equation (2). Modeling of these hysteresis loops was carried out 
using corresponding Masing’s curves. Numerical results of nonlinear stress-strain response 
at critical disk point are included in Table 3, Table 4 and Table 5. Mean stresses in those 
tables marked with mi. 
 
Table 3. Block of rotation frequency A: Numerical results of nonlinear stress-strain 
response at critical disk point provoked by X-Y-X cycles in the case of steel 
13H11N2V2MF in delivered state (DS) and heat treatment state (HTS) 

DS HTS 

i 
Xi – Yi – Xi 

[%] σmi 
[MPa] 

Δσi 
[MPa] 

Δεi 
σmi 

[MPa] 
Δσi 

[MPa] 
Δεi 

1 0-100-0 106.149 1085.673 0.01016932 112.778 1484.231 0.00768147 
2 35-100-35 128.664 1040.643 0.00846854 157.173 1395.440 0.00650403 
3 50-100-50 158.157 981.656 0.00684357 235.722 1238.343 0.00545603 
4 80-100-80 351.909 594.152 0.00290441 555.780 598.227 0.00261026 
5 85-100-85 418.642 460.687 0.00223237 624.315 461.157 0.00201214 
6 35-85-35 50.092 883.498 0.00513218 -42.239 996.615 0.00434976 
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Table 4. Block of rotation frequency B: Numerical results of nonlinear stress-strain 
response at critical disk point provoked by X-Y-X cycles in the case of steel 
13H11N2V2MF in delivered state (DS) and heat treatment state (HTS) 

DS HTS 

i 
Xi – Yi – Xi 

[%] σmi 
[MPa] 

Δσi 
[MPa] 

Δεi 
σmi 

[MPa] 
Δσi 

[MPa] 
Δεi 

1 0-100-0 106.149 1085.673 0.01016932 112.778 1484.231 0.00768147 
2 70-100-70 249.921 798.129 0.00422408 431.368 847.050 0.00369601 
3 75-100-75 294.500 708.971 0.00356308 491.333 727.121 0.00317266 
4 80-100-80 351.909 594.152 0.00290441 555.780 598.227 0.00261026 
5 85-100-85 418.642 460.687 0.00223237 624.315 461.157 0.00201214 
6 70-95-70 187.661 673.610 0.00334528 350.542 685.396 0.00299058 
7 75-90-75 145.545 411.061 0.00199016 410.124 564.704 0.00246396 
8 70-85-70 43.759 385.805 0.00186740 200.794 385.902 0.00168384 

 
Table 5. Block of rotation frequency C: Numerical results of nonlinear stress-strain 
response at critical disk point provoked by X-Y-X cycles in the case of steel 
13H11N2V2MF in delivered state (DS) and heat treatment state (HTS) 

DS HTS 

i 
Xi – Yi – Xi 

[%] σmi 
[MPa] 

Δσi 
[MPa] 

Δεi 
σmi 

[MPa] 
Δσi 

[MPa] 
Δεi 

1 0-100-0 106.149 1085.673 0.01016932 112.778 1484.231 0.00768147 
2 70-100-70 249.921 798.129 0.00422408 431.368 847.050 0.00369601 
3 75-100-75 294.500 708.971 0.00356308 491.333 727.121 0.00317266 
4 80-100-80 351.909 594.152 0.00290441 555.780 598.227 0.00261026 
5 90-100-90 491.416 291.168 0.00140885 699.721 291.171 0.00127051 

 

2.4. Damages at critical disk point 
 
Damages DA, DB and DC provoked by blocks of rotation frequency A, B and C, of observed 
disk, here is determined using Palmgren-Miner’s rule of linear damage accumulation 
[8,9,10,11]. 
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In the above expressions, the damages provoked by Xi–Yi–Xi cycles of rotation frequency, 
are marked with Di. These damages present relation between number of appearance Ni of 
certain cycle, and number Nfi of the same cycle which material of disk can endure up to 
appearance of initial crack. Number Ni are contained in Table 1 and numbers Nfi were 
determined by solving of systems of equations 
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The first equation in (5) is equation of Morrow’s curve of LCF that mean stresses mi takes 
into account [7,12,13]. The values Δi in the second equation, were taken from Tables 3, 4 
and 5. Needed cyclic properties used in system (5) were taken from Table 2. Ni, Nfi, Di, DA, 
DB and DC data set, for blocks A, B and C, are included in Tables 6, 7 and 8. 
 

Table 6. Block of rotation frequency A: Ni, Nfi, Di and DA data set,  in the case 
of steel 13H11N2V2MF in delivered state (DS) and heat treatment state (HTS) 

DS HTS 
i Xi - Yi - Xi Ni 

Nfi Di Nfi Di 

1 0-100-0 1 3308 0.00030230 4361 0.00022931 
2 35-100-35 3 5226 0.00057405 9141 0.00032819 
3 50-100-50 1 9278 0.00010778 20263 0.00004935 
4 80-100-80 2 162040 0.00001234 1616158 0.00000124 
5 85-100-85 1 495345 0.00000202 8436377 0.00000012 
6 35-85-35 1 28078 0.00003562 968810 0.00000103 
   DA= 0.00103411 DA= 0.00060924 

 
Table 7. Block of rotation frequency B: Ni, Nfi, Di and DB data set,  in the case 
of steel 13H11N2V2MF in delivered state (DS) and heat treatment state (HTS) 
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DS HTS 

i Xi - Yi - Xi Ni 
Nfi Di Nfi Di 

1 0-100-0 1 3308 0.00030230 4361 0.00022931 
2 70-100-70 3 41444 0.00007239 144149 0.00002081 
3 75-100-75 2 75107 0.00002663 385402 0.00000519 
4 80-100-80 1 162040 0.00000617 1616158 0.00000062 
5 85-100-85 3 495345 0.00000606 8436377 0.00000036 
6 70-95-70 1 128512 0.00000778 2808943 0.00000036 
7 75-90-75 1 2603688 0.00000038 1269290413 0.00000000 
8 70-85-70 1 5644896 0.00000018 8942212789 0.00000000 
   DB = 0.00042188 DB = 0.00025664 

Table 8. Block of rotation frequency C: Ni, Nfi, Di and DC data set,  in the case 
of steel 13H11N2V2MF in delivered state (DS) and heat treatment state (HTS) 

DS HTS 
i Xi - Yi - Xi Ni 

Nfi Di Nfi Di 

1 0-100-0 1 3308 0.00030230 4361 0.00022931 
2 70-100-70 3 41444 0.00007239 144149 0.00002081 
3 75-100-75 1 75107 0.00002663 385402 0.00000259 
4 80-100-80 2 162040 0.00000617 1616158 0.00000124 
5 90-100-90 1 3342689 0.00000090 448824959 0.00000000 
   DC = 0.00040838 DC = 0.00025395 

 
Systematized data about damages of the first stage low pressure compressor rotor disk of 
R25-300 aero engine, in the case of application of steel 13H11N2V2MF in delivered and 
heat treatment state, for three start-stop cycles (blocks of rotation frequency), are given in 
Table 9. 
 
Table 9. Systematized data about damages of the first stage low pressure compressor rotor 
disk, of R25-300 aero engine, in the case of application of steel 13H11N2V2MF in 
delivered and heat treatment state 

Damages 

Block A Block B Block C 
Average B 

and C   No Material 

1 2 3 4 1/4 

1 
Steel 

13H11N2V2MF in 
delivered state 

0.00103411 0.00042188 0.00040838 0.00041513 2.49 

2 
Steel 

13H11N2V2MF in 
heat treatment state 

0.00060924 0.00025664 0.00025395 0.000255295 2.39 

1/2   1.70 1.64 1.61 1.63   
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According to Table 9 it can see that damages of our disk, in the case of steel 
13H11N2V2MF in delivered state are significantly higher than damages in the case of the 
same steel in heat treatment state. On the other hand, greater differences we have between 
damages caused by engine ground controls (block A) and damages caused by engine flights 
(blocks B and C). Differences in damages are presented and by hystogram in Fig. 5. 
 

 
Figure 5. Hystogram of damages  

 

3. Conclusion 
 
Methodology of damage estimation, applied for the first stage low pressure compressor 
rotor disk, of R25-300 aero engine, can be applied for all disks dominantly exposed to 
centrifugal forces of blades and own centrifugal forces. 
This methodology can be applied and for temperature loaded disks. In that case, estimated 
damage caused by centrifugal forces, is one of two or more components of caused damage. 
Monitoring of exploitation of aero engine disks, for the purpose of aero engine maintenance  
according  to the state, should be based on automatic recording accumulated damages 
during aero engine ground controls and during flights. 
In accordance with a rule of linear damage accumulation, aero engine disks would be pulld 
from exploitation with damage equal to one. 
Complete results of this paper can serve for  further investigations in relation with damages 
and fatigue life of aero engine disks in function of cyclic material properties and in function 
of engine start-stop cycles. 
The final goal of designers should be directed to reducing possible damages in critical disk 
areas using alloys with satisfying cyclic properties. 
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Abstract. This paper presents the formulation of the stress integration procedure for the 
Mohr-Coulomb material model with non-associative yielding condition by using the 
incremental plasticity theory. The idea of this method is to reach the solution by calculating 
the constitutive plastic matrix according to the method of incremental plasticity (used for 
elastic constitutive matrix corrections), and with use of the total strain increment. The 
computational procedure is implemented within the PAK program package. Results of this 
procedure were compared with the solutions obtained by the other program packages that 
contain this material model. 

 

1. Introduction  
 
Stress integration represents calculation of stress change during an incremental step, 
corresponding to strain increments in the step [1]. It is in essence the incremental 
integration of inelastic constitutive relations to trace the history of material deformation. 
The stress integration is an important ingredient in the overall finite element inelastic 
analysis of structures. It is important that the integration algorithm accurately reproduces 
the material behavior since the mechanical response of the entire structure is directly 
dependent on this accuracy. The algorithm should be also computationally efficient because 
the stress integration is performed at all integration points. For general applications, this 
computational procedure should be robust, providing reliable results under all possible 
loading conditions. In this paper we present a formulation of the computational algorithm 
for the Mohr-Coulomb material model using an incremental plasticity approach. The results 
using this approach were compared with the results obtained using the similar material 
models, like Drucker-Prager [2], as well as with results obtained by using other software 
packages.  
In the next section we present formulation the Mohr-Coulomb material model, followed by 
the derivation of the elastic-plastic constitutive matrix in general associated plasticity. 
Then, the general relations are implemented in Mohr-Coulomb material model. 
 

2. Formulation of the Mohr-Coulomb model 
 
This material model is defined by the yield surface called the Mohr-Coulomb yield surface. 
In the space of principal stresses, this surface represents by hexagonal pyramid, whose axis 
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matches the space diagonal of the coordinate system of principal stresses 1 2 3, ,    (Figure 

1).  

 
Figure 1. Mohr-Coulomb yield surface 

 
In deviatoric plane model can be represented together with Drucker-Prager material model 
(Figure 2). The figure shows that two yield surfaces can be defined in few ways relative to 
each other, depending on what type of analysis is performed.  

 

 
Figure 2. Mohr-Coulomb and Drucker-Prager material model in deviatoric plane 

 

The material constants of Mohr-Coulomb material model, in relation to Drucker-Prager 
model can be recalculated using the following expressions [3]: 

 
 
2sin

3 3 sin







,   
 
6 cos

3 3 sin

c
k







 (1) 

where  and c   are material constants (cohesion and internal friction angle) for Mohr-

Coulomb material model and  and k   are material constants for Drucker-Prager material 
model. 
The elastic domain is bounded by the Mohr-Coulomb yield surface and by the maximum 
tension line – with the tension cutoff limit stress T. If the stress point of a trial solution is 
out of the Mohr-Coulomb hexagonal pyramid, the stress at the end of step has to be reduced 
to satisfy the following yield condition (Mohr-Coulomb yield surface):  
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 1
2

1
sin cos sin sin cos

3 3
t

D

I
F J c   
   

 




ii

 (2) 

where: 

 1 3 m ij ijI        (3) 

is the first stress invariant, and 

 2

1

2D ij ijJ S S  (4) 

is the second invariant of the deviatoric stress. Deviatoric stress  is defined as: ijS

 ij ij m ijS      (5) 

If the stress exceeds the allowed tension stress value, the stress reduction is performed by 
using next equation [4]: 

 11 22 33 3

T      (6) 

while the shear stress components are set to zero: 

 0ij i j    (7) 

 

3. Elastic-plastic constitutive matrix 
 

For an elastic-plastic material, the stress increment  d  can be expressed by the total 

strain increment  de  as   

  (8)    EPd C d     e

where  is the elastic-plastic constitutive matrix defined below. In the case of small 

strain, the total strain increment can be divided into elastic and plastic part: 

EPC

      E Pde de de   (9) 

The stress and elastic strain increments are related by the elastic constitutive law: 

    E Ed C de      (10) 

where EC   is elastic constitutive matrix. Substituting (9) into (10), we obtain: 

      Ed C de de     P  (11) 

We next include into this derivation a yield function F, which in general has a form:  
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   ( )ijF F F  σ  (12) 

A differential of the yield function can be expressed as: 

 xx yy zz xy yz
xx yy zz xy yz zx

F F F F F F
dF d d d d d d zx    

     
     

     
     

 (13) 

or in matrix form: 

  
T

F
dF d


   
 

 (14) 

In the incremental theory of plasticity we have that the yield function during plastic 
deformation must be equal to zero (when 0F   we have elastic unloading), hence  
and consequently  is satisfied over the load step. Using this condition, the last 
equation can be written in the following form: 

0F 
0dF 

   0
T

F
dF d


   
 

  (15) 

where 
T

F


 

 
 

 is 

 
T

xx yy zz xy yz zx

F F F F F F F

      

            
          

 (16) 

whereas  d  is 

   xx yy zz xy yz zxd d d d d d d          (17) 

Further, we assume a non-associative plasticity, therefore the increment of plastic strain is  

  P G
de d


   
 

 (18) 

where:  is the plastic potential function,  and d G σ  is a plastic scaling factor. 

Substituting the plastic strain increment (18) into (11), we obtain the stress increment:   

    E E G
d C de d C 


            

 (19) 

Now, we substitute this stress increment into (15): 

   0
T

E EF
dF C de d C

 
                      

G
  (20) 

Using (20) plastic scaling factor d  is: 
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 

T
E

T
E

F
C de

d
F G

C



 

       
             

 (21) 

Finally, substituting d  from (21) into (19), obtain  the relationship betwee n d  and 

the total strain increment de  : 

    
 

T
E E

E
T

E

G F
C C

d C de
F G

C

 

 

                               

de
 (22) 

Comparing (22) and equation (8) it follows: 

 

T
E E

EP E
T

E

G F
C C

C C
F G

C

 

 

                      



            

 (23) 

This is a general expression for the elastic-plastic constitutive matrix. Also, by substituting 

(21) into (18) we can calculate the plastic strain increment Pde . 

In the case of associative plasticity the yield function F  is at the same time the plastic 
potential function G . In our implementation of the above general expressions to the Mohr-
Coulomb model we will adopt the non-associative plasticity assumption. This 
representation of the model is suitable for development of the computational procedure for 
each material model, whose yield function can be expressed in terms of stress invariants. 
 

4. Implementation of the general associative plasticity relations to the Mohr-Coulomb 
material model  
 
Mohr-Coulomb yield function is defined by the equation (2), while the plastic potential 
function is defined by: 

 1
2

1
sin cos sin sin cos

3 3
t

D

I
G J c     
    

 
 (24) 

where 1I  represents the first stress invariant, while 2DJ  is the second deviatoric stress 

invariant, as given by (3) and (4), while  is dilatation angle. 

In the equation of the yield surface (2) and the plastic potential function (24) entity   
represents Lode’s angle which is given by: 
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 3
3

2
2

1 3 3
arcsin

3 2
D

D

J

J


 
 

 




 (25) 

where 3DJ  is third deviatoric stress invariant. 

In the case when in equations (2) and (24)    we have the case of so-called associative 

flow rule, when the yield function is identical as the plastic potential.  
Derivative of Mohr-Coulomb yield function with respect stress can be calculated using the 
chain rule: 

 1 2

1 2

T TT T

D

D

I JF F F F

I J


   

                    
             

 (26) 

Derivative of Mohr-Coulomb yield function (2) with respect first stress invariant is: 

 
1

sin

3

F

I


 


 (27) 

and derivative yield function with respect second stress invariant: 

 
2 2

1 1
cos sin sin

2 3D D

F

J J
    

  
  

 (28) 

while the derivative of yield function with respect Lode’s angle is: 

 2

cos sin
sin

3
D

F
J

 

 

    


  (29) 

Derivative of the first stress invariant is: 

 1 1 1 1 0 0 0
T

I


   
 

  (30) 

and derivative of the second stress invariant: 

     2
1 2 3 1 2 3 1 2 3 4 5 6

1 1 1
2 2 2 2

3 3 3

T

DJ
2 2           


               




 (31) 

while derivative of the Lode’s angle is: 

 3 2

3 2

T TT

D D

D D

J J

J J

  
 

    


         
        

 (32) 

Derivative of the Lode’s angle with respect the second and third deviatoric stress invariant: 

 3

2
2 5 2 3

2 3
2

3

94
2

3

D

D D
D

D

J

J J
J

J







 (33) 
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2

3 3 2 3
2 3

2

1

94

3
D D

D
D

J J
J

J


 




 (34) 

Derivative of the third deviatoric stress invariant can be calculated as: 

 3 3 3 31 2

1 2 3

T TT T

D D D D 3J J J JI I

I I I

I

  
                    
            

 (35) 

where the derivative of the third deviatoric stress invariant with respect the first stress 
invariant is: 

 23
1

1

2 1

9 3
DJ

2I I
I


 


 (36) 

Derivative of the third deviatoric stress invariant with respect the second stress invariant: 

 3
1

2

1

3
DJ

I
I





 (37) 

while the derivative with respect third stress invariant: 

 3

3

1DJ

I





 (38) 

Derivative of the first stress invariant is given by (30), while the derivative of the second 
stress invariant with respect stress tensor is: 

  2
2 3 1 3 1 2 4 52 2 2

T
I

6        

         
 

 (39) 

Derivative of the third stress invariant with respect stress tensor is: 

2 2 23
2 3 4 1 3 5 1 2 6 5 6 1 4 4 6 2 5 4 5 6 62 2 2 2 2 2

T
I                     

             

(40) 

In a similar way we can calculate the plastic potential function derivative, where in 
equations (27) to (29) we replace yield function F  by the plastic potential function . In 
the case of the associative flow rule, these functions are identical. 

G

 
Table 1. Algorithm for incremental stress integration 

Known quantities:  t te ,  te ,  t ,  t pe  

A. Trial (elastic) solutions: 

           E t t
e ed C de C e e    t  

     t t t d      

1 1 2I 3      

2 2
2 1 2 2 3 3 1 4 5I 2

6               
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2 2 2

3 1 2 3 1 5 2 6 3 4 4 5 62I                  

     2 2 2 2 2
2 1 2 2 3 3 1 4 5

1

6DJ 2
6                    

3
3 3 1 2

1 2

3 27D 1J I I I I    

3
3

2
2

1 3 3

3 2
D

D

J
arcsin

J


 
  
 
 

  
6 6

     
 

 

Yield function: 

1
2

1
sin cos sin sin cos

3 3
t

D

I
F J c        

 
  

B. Yielding condition check: 
IF ( ) trial solutions correct are elastic (go to E) 0F 
IF ( ) elastic-plastic solution (CONTINUE) 0F 

T

1 2

1 2

T T T

MC MC MC MCD

D

F F F FI J

I J


    

                                
 

1 2

1 2

T T T T

MC MC MC MCD

D

G G G GI J

I J


   

          


                     
 

IF 
6

   
 





  .
6

const
     

1

sin

3
MCF

I





,      

1

sin

3
MCG

I





 

2 2

1 1
cos sin sin

2 3
MC

D D

F

J J
        

,   
2 2

1 1
cos sin sin

2 3
MC

D D

G

J J
        

 

2

cos sin
sin

3
MC

D

F
J

 


       
,   2

cos sin
sin

3
MC

D

G
J

 


       
 

 1 1 1 1 0 0 0
T

I


    

 

     2
1 2 3 1 2 3 1 2 3 4 5 6

1 1 1
2 2 2 2

3 3 3

T

DJ
2 2           


                

  

3 2

3 2

T TT

D D

D D

J J

J J

  
 

                       
 

2
3 3 2 3

2 3
2

1
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3
D D

D
D

J J
J

J


 




 

   
   
   

 
 
 

2 2
5 2 3 2 3 2 3 5

2 2
6 1 3 1 3 3 1 6

2 2
3 4 1 2 1 2 1 2 4

3 4 5 6 4 5 6 3 4

1 5 6 4 5 6 4 1 5

2 6 4 5 6 4 5 2 6

2 2 2 2

2 2 2 2

2 2 2 2

m

m

D m

m

m

m

A B

A B

J A B

B

B

B

        

        

        
          

         
         

      

      


                 

    

      











 

 2 2 2
4 5 6 1 2 2 3 3 1
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C. Stress correction (bisection loop): 
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D. IF (  ABS F TOL ) go to C with new d  

     t t P t P Pe e de    

E. End:  t t ,  t t pe  

 

5. Verification of the computational procedure 
 
Verification of the proposed computational procedure was done by solving elastic-plastic 
deformation of a sand box specimen, as specified in the literature [4]. The loading is 
modeled by prescribed displacement on the top of the model, while vertical sliding is 
allowed on the lateral sides. The bottom of the model is completely restricted. A half of the 
specimen is modeled with the use of the appropriate symmetry boundary conditions (Figure 
3). Eight-node 3D finite elements were used. Displacement is applied at the nodes on the 
model top side. 

  
Material data: 
Young’s modulus,   kPa 100E 
Poisson’s ratio,   0.3   
Angle of internal friction,  7.153  


 

Cohesion,    kPa 0.125c

Tension Cutoff limit,    0.01T 
Dimension,   m 1.0D 

Dimension,   m 0.5H

Figure 3. Sand specimen – geometry, material data and load function 
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The problem is solved using the program package PAK [5], by employing the described 
incremental plasticity method-IPM and the governing parameter method-GPM [4], both are 
built into the program PAK. Also, these results were compared with those obtained by the 
program ADINA [6]. Results of the analysis are given in Figure 4.  
 

 
Figure 4. Stress-strain relation (a) and the second invariant deviatoric stress as function of first stress invariant (b) 

 

6. Conclusions 
 
The results of the presented material model are compared with results obtained by Drucker-
Prager material model and as can be seen, these two models give similar results in the 
analyzed case. Results are also compared with the results of the other software solution and 
found very matching results. The advantage of the presented computational procedure is 
that it is formulated in general form so that it can be applied to various yield functions, 
whose yield function can be expressed in terms of stress invariants. Also, this procedure 
can be implemented in an explicit computationally efficient incremental scheme, where 
yield condition check D (Table 1) is not performed, but then very small load steps are 
necessary. 
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Abstract. Gear service life and stress state at the gear tooth root and its analysis are a 
contemporary topic of scientific investigations. Great influence on gear tooth root strength 
that is one of the primary subjects of this paper, are tooth root form and fillet radius. Special 
attention is given to analysis on impact of gear tooth fillet radius at the critical cross section 
on stress value and distribution. Stress intensity factor and gear working life depends 
directly on tooth root stress. Optimal gear form discovery relative to stress concentration is 
one of the main problems of gears design. In the first part this paper research is focused on 
finding the optimal fillet tooth root radius to minimize the root stress intensity. The problem 
of spur gear tooth root crack growth is analyzed in a second part of this paper. It is well 
known that a first initial crack appears at the gear tooth affected the most by tooth root stress 
concentration. Cyclic loading growth leads to the initiations of fatigue crack in the gear 
tooth fillet radius. After crack initiation the simple Paris equation is used for the further 
simulation of the fatigue crack growth. The stress intensity factor and its relationship with 
crack length K = f(a) are used for determination of a number of loading cycles Np that 
causes crack propagation from the initial to the critical length ac when the failure is 
occurred. This paper provides results achieved by application of numerical methods: finite 
element method (FEM) and real working conditions simulation. 

 

Keywords: finite element method - FEM, tooth root stress concentration, tooth root fillet 
radius, fatigue crack growth, service life. 

 
 
 

1. Introduction  
 
Gear load capacity and stress state depends to a large extent on main gear profile 
configuration parameters, which makes it one of the key areas of interest for scientific 
analysis. To support this analysis, gear kinematics, carrying capacity, strength, production 
and some other characteristics are being actively investigated. Great deal of gear tooth root 
load capacity have tooth root form, tooth root fillet radius, respectively. It has direct 
influence on the stress intensity factor as on gear service life.  
Real gear transmitters are multiple statically undetermined systems and stress concentration 
in a gear tooth root depends on many parameters. Optimal gear form and meshing 
parameters discovery relative to stress concentration is one of the main problems of gears 
design.  
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Tooth root critical cross section, according to ISO recommendation, is determined by tooth 
fillet radius tangent that is positioned 30° against gear symmetry line, and its dimensions 
are critical cross section width sFn and face width b.  
Tooth root critical cross section is exposed to a pressure load under radial component, and 
under tangential component it is exposed to bending and shearing. It all shows complex 
load state in the tooth root critical cross section. However, unwanted phenomenon as plastic 
deformations, crack initiation, even a gear failure appears on a tensile side of gear tooth. 
Because of that all, stress values on the tensile side of gear tooth are important for 
determination of applied stresses.  
It is well known that a first initial crack appears at the gear tooth affected the most by root 
stress concentration. The complete process of fatigue failure of mechanical elements may 
be divided into the following stages [1]: 

1) microscopic nucleation; 
2) short crack growth; 
3) long crack growth; 
4) final failure appearance. 

The crack initiation period accounts microscope nucleation and short crack growth, hence 
crack propagation period means long crack growth. The most of the service life depends to 
the crack propagation period. The complete gear service life may be determined from the 
sum of the number of stress cycles Ni required for the fatigue crack initiation and the 
number of stress cycles Np required for the fatigue crack propagation to the critical crack 
length when the final crack is possible to occur: 

i pN N N                       (1) 

The initiation phase of fatigue life of mechanical elements presents the growth of short 
cracks up to the size ath. The threshold crack length ath presents the transition point between 
short and long cracks. The Kitagawa-Takahashi plot [2] represents the fatigue crack 
growth, applied stress range (Δσ) against crack lenght (a) using logarithmic scale (Fig. 1).  
 

 
Figure 1. Applied stress values in a function of crack length  
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2. Determination of the gear load capacity according to tooth root strength 
 
Tooth root applied load caused by normal force Fbn acts in contact points on the meshed 
teeth profiles. For analyzing the stress conditions at the gear tooth root, the tooth is 
approximated with the console shaped mechanical model, embedded in the gear body, at 
the end of which the load acts in the direction of the teeth profile pressure line.  
Normal force can be divided in two components: 

o radial sin
anr bn FF F   and 

o tangential cos
ant bn FF F  , 

where the gear is exposed to a pressure load under radial component, and under tangential 
component, with the force arm hFa, it is exposed to bending and shearing. According to that, 
complex stress condition in a tooth root characterizes pressures and bending normal stresses 
and shear tangential stresses.   
Bending normal stress in a critical cross section is [3]: 

cos

2 /6

F Fan abn

n

F hM
s W bsF


                                       (2)                                              

and after some transformations we come to normal stress equation: 

  
2

6( / )cos

( / ) cos
t Fa n Fan t

Fn Fa
n Fn n n

F h m F
Y

bm s m b m




                                                   (3)                                               

where: 
YFa – shape factor 
αFan – angle between normal force Fbn and horizontal line 
Maximal normal stress of cylindrical spur gears in a tooth root cross section, according to 
stress concentration factor, is:  

 max nF s FY K                                    (4)           

where 

 F A V F FK K K K K
 

                               (5)  

is total load factor which consider disagreement between real and theoretical working 
conditions ( KA-application factor, Kv-dynamic factor, KFα-unequal load distribution factor, 
KFβ-load distribution factor).  
Tooth root fillet radius ρF is given in the form of:   

(1 sin )0

cp
F 




                                               (6) 

where сp presents  gear tip clearance (сp=(0.1÷0.3)m, m-module).    
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3. Characteristics of analyzed gear 
 
All analytical and numerical researches are carried out on a real construction with real 
condition simulation. Considered gear is a part of structural elements of great power 
planetary transmitter (big excavator of power 2x550kW) with following characteristics: 

o module m=24mm,  
o profile movement coefficient x1=0 and  x2=0.326, 
o face width b=350mm, 
o rotation moment Т=2528.8kNm, 
o number of rotation n=4.1596min-1, 
o number of teeth z1=20  and  z2=96, 
o gear material is carburized steel 17CrNiMo6 (according to DIN) with Young’s 

modulus E=2.1x105MPa and Poissons’s ratio ν=0.3. 
As a consequence of working conditions and irregular formed tooth root shapes appearance 
of failures is often remarked during the exploitation [4]. Because of that, the topic of this 
work is determination of exact tooth root stress and optimal tooth root shape.   
According to the theory, at the contact points B and D, double mesh follow transforms to 
single and reverse. In that points Fbn force acts in total value, while in points A and E, Fbn 
force acts with half of its total value. Hence, the most important loads for stress 
concentration appearance are the loads in contact points E and D for the driving gear, 
respectively contact points A and B at driven gear. Loads in other mesh contact points have 
no big influence on critical cross section stress concentration and they don’t cause failures 
and crack initiation in a tooth root.  In this work shall be represented only results for the 
driving gear and its D contact point because load in this point causes tooth root failures. 
Researches in this paper are deduced to stress determination for a driving gear tooth of 
observed planetary transmitter according to various tooth root fillet radius ρF. The tooth 
root fillet radius ρF has the most important influence on tooth root stress concentration, so 
that is one of the topics of this work. It is analyzed for eight different values of tooth root 
fillet radius ρF. The lowest value is ρF=4.56mm and it is incrementally increased to the 
value of ρF=10.94mm. Fig.2. shows dimensions of critical section for a driving gear tooth. 
 

 
Figure 2. Dimensions of the critical section for driving gear tooth 
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4. Analysis of results by FEM 
 
Numerical analysis in the first part of this paper is deduced to determination of Von Mises 
stresses and normal stresses for a driving gear of planetary transmitter according to the 
tooth root fillet radius ρF. Finite element method (FEM) is used for numerical analysis here. 
For that purpose finite element package FEMAP v.9.3 [5] is used. On the basis of the gear 
data, the 3D finite element model is made. One driving gear tooth has 12489 elements and 
14301 nodes. The mesh is refined in the tooth fillet region in order to show the best 
possible way the stress condition in that section. Only 50mm width layer of tooth is 
analyzed according to a supposition that load is equally arranged along the instantaneous 
tooth side contact line. The gear tooth is loaded with the normal force Fbn which is acting at 
the inner point of single tooth contact (D). Fig.3. shows 3D finite element model for the 
analyzed gear tooth.    
 

 
Figure 3. 3D finite element model for driving gear tooth 

 
Outer load, respectively, normal force Fbn that is equally arranged along the instantaneous 
tooth side contact line is changed with concentrated force at nodes along that line (21 nodes 
along the width b1). It is possible to get equal force distribution along the tooth width if it is 
possible to have more layers of finite elements and that sooths influence of concentrate 
force in the instant contact point.  
For the numerical simulation of failure crack propagation FRANC2D program is used [6]. 
A unique feature of FRANC2D finite element package is automatic crack propagation 
capability.   
Developed FEM (finite element method) of stress determination in gear tooth root allows 
not only good picture of stress distribution but even defines exact position of maximum 
stress value point. In the same time, it is possible to consider crack initiation and its growth 
up to the fatigue failure which is very important in engineering.  
 

5. Tooth root critical stress determination 
 
As it is said before, the normal force Fbn which is acting at the inner point of single tooth 
contact D causes tooth root stress concentration and fatigue failure. So, in this paper, only 
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results of Von Mises and normal stresses at tooth root critical cross section caused by load 
at D contact point shall be presented (Table1).  

Table 1. Von Mises σe and normal σy stresses at critical section of the gear tooth for the 
various values of fillet radius ρF  

Tensile side Pressured side Fillet 
radius 
ρF [mm] σe [MPa] σy [MPa] σe [MPa] σy [MPa] 

4.56 277.6251 246.4310 323.4744 286.6890 
5.47 261.8667 244.8961 303.9231 282.9113 
6.38 247.4392 224.7813 288.7467 262.7499 
7.29 233.5653 205.0326 271.2920 237.3590 
8.22 222.7844 192.2681 259.0119 222.4591 
9.12 213.8899 181.0111 248.1438 209.1441 
10.03 204.7536 170.2814 237.4938 196.9606 
10.94 198.0450 162.6787 229.6540 188.7827 

 
For researching in this paper the most important are stress values in the critical section 
nodes of tensile side of the gear because these stresses cause damages and failures of the 
gear at the end [3]. But because of whole stress state presentation in this paper critical stress 
values on the both sides of the gear tooth root are shown [7].   
It may be seen from Table1 that Von Mises σe and normal σy stresses become less as fillet 
radius ρF grows up and it is in agreement with analytical results (Eq.3). So, there is a 
recommendation for higher values of fillet radius, but only in allowed boundaries (Eq.6). 
Fig.4 shows the functional relationship between equivalent and normal stresses and various 
values of fillet radius ρF for the tensile and pressured sides of analyzed gear. This graph 
shows again a fact that tooth root stresses become less as fillet radius ρF grows up.  
 

 
Figure 4. Equivalent stress σе and normal stress σy in function of fillet radius ρF for the tensile and 
pressured side of a driving gear tooth 
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The greatest values of normal and equivalent stresses in the tooth root appear in the 
moment when the contact between two meshed gears is in the outer point of single mesh. It 
is supposed that tooth root stresses change linearly in exact range along contact line (А-В, 
B-D, D-E), so the diagrams of stresses in this paper show good agreement with that 
supposition. 
For driving gear there is some stress values disagreement of linear distribution for fillet 
radius less than ρF =5.47mm (Fig.4), but for driven gear disagreements of linear distribution 
are for fillet radius higher than ρF =10.03mm (not presented in this work) [7, 11, 12]. For 
that reason, these values of fillet radius should be boundary (5.47mm<ρF <10.03mm).    
Graphs in this research show that appropriate selection of fillet radius should reduce critical 
stresses for 30% and that is important information for designers.   
 

5.Fatigue crack propagation 
 

In this paper the simple Paris equation is used to describe a crack growth rate [8]: 

mda
C K

dN
                      (7) 

where a is a crack length, N is a number of loading cycles, and C and m are material 

parameters. The fatigue crack growth rate,
da

dN
, according to LEFM (linear elastic fracture 

mechanics) is a function of stress intensity range 
max min

K K K   . The number of loading 

cycles Np, in respect to the crack propagation period is determined by integration of 
equation (7): 

0

1p c

th

N a

m

a

da
dN

C K


                     (8) 

and that is number of cycles of period in which crack propagate from initial ath to critical 
length ac.  
According to complicated geometry of gear tooth root for the numerical simulation of 
failure crack propagation FRANC2D program is used [6]. The determination of the stress 
intensity factor is based on the displacement correlation method using singular quarter-
point six node triangular elements around the crack tip (Fig. 5) [9, 10].  
The stress intensity factor can be determined from the nodal displacement as: 
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   
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                (9) 
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where G is the share modules of the material, ν is the Poisson ratio, L is the finite element 
length on the crack face, u and ν are displacements of the finite elements nodes b, c, d and e 
(Fig.5). 

 
Figure 5. Crack tip with triangular quarter-point elements 

 

The combined stress intensity factor is: 

    2 2 21
I II

K K K                     (10) 

The computation method is based on incremental crack extensions where the size of 
increment is prescribed in advance [9, 10]. The equation for predicted crack propagation 
angle is: 

 

2

1

0

1
2 tan 8

4

I I

II II

K K

K K
    

       
               (11) 

It is proposed that crack propagates from the crack tip in a radial direction in a plane 
perpendicular to the direction of the maximum tangential tensile stress. After the end of 
every crack increment around the new crack tip is made new local mesh. This procedure is 
repeated until the stress intensity factor reaches its critical value Kc, the value of its fracture 
toughness (K=KIc). That is the moment when the crack reaches its critical length and when 
the tooth fracture is inspected.  
 

6. Practical example 
 

The initial crack can occur at the both sides of tooth root critical section but more important 
and dangerous is a crack at the tensile side of tooth. The normal force Fbn which is acting at 
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the inner point of single tooth contact (D) causes the highest stresses at tooth root critical 
section and it is the most important for crack initiation.  
In this paper only crack propagation of gear tooth with fillet radius ρF =7.29mm is analyzed. 
For the numerical simulation of failure crack propagation FRANC2D program is used [6]. 
A unique feature of FRANC2D finite element package is automatic crack propagation 
capability. The initial crack is placed perpendicularly to the surface at the point where the 
crack initiation has been determined previously (Fig.6).  
 

   
 

Figure 6. Finite element mesh around initial crack at tooth root 

 
The material parameters considered in this paper are [9, 10]: 

 σFlim=500MPa, 
 Kth=269MPa√mm, 
 KIc=2620MPa√mm,  
 C=3.31x10-17mm/cycle/ (MPa√mm)m, 
 m=4.16. 

 
Table 2.  Stress intensity factor K in function of crack length a and gear tooth crack 
propagation life  

a [mm] 
KI 

 [MPa mm0,5] 
KII 

 [MPa mm0,5] 
K 

 [MPa mm0,5] 
 N [cycles] 

2 549,9 2,724 524,578 141175 
4 627,8 17,5 599,116 363069 
6 685,4 21,78 654,16 521808 
8 718,1 19,08 685,265 634249 
10 790,1 21,75 753,99 713532 
12 829,2 9,18 791,05 769572 
14 927,2 30,59 884,97 809538 
16 981,7 15,69 936,6 838346 
18 1119 20,64 1067,64 859138 
20 1223 12,27 1166,73 873772 
22 1397 39,26 1333,18 883306 
24 1583 24,9 1510,27 888485 
26 1793 2,445 1710,41 890226 
28 2100 64,95 2005,32 890102 
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30 2418 70,64 2307,61 890832 
31 2767 1,26 2639,55 892799 

 
As it is said before, the initial crack corresponds to the threshold crack length ath and it is 
adopted that length is ath=1mm. During numerical simulation of crack propagation the 
crack increment size was Δа=2mm up to the crack length а=30mm and than Δа=1mm up to 
the ас=31mm when the total failure occurs.  
Table 2 presents numerical results for the stress intensity factor KI and KII, combined stress 
intensity factor K (Eq.10) and results for the crack propagation period number of cycles Np 
(Eq.8).  
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Figure 7. Stress intensity factor KI and KII in function of a crack length a 
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Figure 8. Combine stress intensity factor K in function of crack length a 

 
Fig.7 presents functional relationship between stress intensity factors KI and KII and crack 
length a. Analytical analysis shows that value of stress intensity factor KII is less than 5% of 
factor KI value for all crack lengths. Combine stress intensity factor values K in function of 
crack length a are presented on Fig.8.   
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Figure 9. Numerically determined crack propagation path 

Fig.9 shows the numerically determined crack propagation path in a gear tooth root.  
 
Service life of cracked gear tooth root is presented on Fig.10.  
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Figure 10. Service life of cracked gear tooth root 

 
It is obvious from graph N=f(a) (Fig.10) that the crack length a grows continually up to the 
value of a=20mm and then, for the short time period, it reaches its critical value ac. Crack 
length reaches its critical value when stress intensity factor get its fracture toughness what 
is in the same time its critical value (K=KIc). 
It is very important to determine precisely gear service life and because of that it is possible 
to change damaged parts on time and to prevent catastrophic failures.  
 

7. Conclusions 
 
Topic of this paper is forming efficient and reliable numerical model for the determination 
of tooth root phenomena caused by geometrical discontinuity under static and cyclic loads 
and gear service life determination. Results in this research show good agreement with data 
in literature and practice, so this methodology may be applied in practice.     
Critical tooth root stress concentration is caused by inner contact point load of single mesh 
follow (D) and this load is a main cause of initial cracks appearance so it is only researched 
in this paper.  
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The most important are tooth root stresses caused by load in the inner contact point of 
mesh, because they are the greatest and the most dangerous for failure appearance.  
It can be concluded, analyzing results of this research, that stresses reduce as tooth fillet 
radius grows up. Reduction of stress concentration acts directly on gear service life 
elongation because it deflects danger of initial cracks appearance and increases safety factor 
SF on that place. Although the stresses on pressured side are higher than on the tensile, 
stress concentration on the tensile side is more important for initial crack appearance. But 
for the better tooth root stress consideration, stresses on both tooth root sides are presented 
in this paper.  
In this research Von Mises and normal tooth root stresses are presented. All results show 
that Von Mises stresses have greater values then normal stresses.    
 This paper shows that appropriate fillet radius selection can increase tooth root stresses in 
its critical section even by 30%. It was an intention of this research, because in that case it 
could succeed better tooth root load capacity and service life elongation.  
In the second part of this work it is presented computation model for determination of gear 
service life in regard to bending fatigue in gear tooth root.  
The initial crack can occur at the both sides of tooth root critical section but more important 
and dangerous is a crack at the tensile side of tooth.  
In this paper only crack propagation of gear tooth with fillet radius ρF=7.29mm is analyzed.  
The initial crack is placed perpendicularly to the surface at the point where the crack 
initiation has been determined previously. 
For the crack growth determination it is proposed that crack propagates from the crack tip 
in a radial direction in a plane perpendicular to the direction of the maximum tangential 
tensile stress. After the end of every crack increment around the new crack tip is made new 
local mesh. This procedure is repeated until the stress intensity factor reaches its critical 
value Kc, the value of its fracture toughness (K=KIc). That is the moment when the crack 
reaches its critical length ac and when the tooth fracture is inspected.  
Graph N=f(a) (Fig.10) shows that the crack length a grows continually up to the value of 
a=20mm and then, for the short time period, it reaches its critical value ac. 
The estimated fatigue life of the gear deviates from real service life because some effects 
like non-homogenous material and possible causes of retardation of the crack propagation 
(crack closure) were not taken into account in the numerical analysis.  
We still don’t have acceptable data for the parameters that describe tooth root phenomena, 
so these analyses are actual further more. Accordingly, experimental results are required to 
provide the material parameters and further theoretical and numerical research is of great 
interest for science development.   
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Abstract. In this paper are given crystallographic theory basics with emphasis on crystal 
lattice types, possible slip directions, planes and systems. The material model implemented 
in ABAQUS is analyzed, and plastic deformation process of crystals is explained. The 
constitutive relations are considered, and Schmidt factors are given and explained. It ‘s also 
given connection between deformation hardening of crystal materials and slip rate by two 
hardening low: Assaro-Peirce-Needelman and Wu-Bassani. Structure of input file and 
results that we get using UMAT subroutine in ABAQUS are given on copper mono-crystal 
example. Different behavior of reverse oriented crystals is given on copper bi-crystal 
example, while results validation obtained using different element type is given on another 
poly-crystal example. Implicit stress integration for material model is developed based on 
papers [2],[17] and implemented to PAK finite element program. Solution results for single 
crystal and bi-crystal are given and compared with results given in [2] obtained by 
ABAQUS UMAT subroutine. 

 

1. Introduction 
 
Metals are usually polycrystalline; that is, made up of many crystals in which atoms are 
stacked in regular array. The grain size is usually about 100 m .  

If we assume that there is no preferred crystallographic orientation, but that the orientation 
changes randomly from one grain to the next, and if our sample of material contains a 
sufficiently large number of grains, we can get a reasonable physical feel that macro scale 
yielding of the material will be isotropic. Observations on single crystals show that slip 
tends to occur preferentially on certain crystal planes and in certain specific crystal 
directions. The combination of a slip plane and a slip direction is called a slip system. 
These tend to be the most densely packed planes and the directions in which the atoms are 
packed closest together. In face centered cubic (FCC) materials, the most densely packed 
planes are the diagonal planes of the unit cell. 
 

2. Material model 
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Crystalline materials and their lattice undergo elastic deformation and rotation. Inelastic 
deformation of a single crystal is assumed here to arise solely from crystalline slip. Greek 
letters will be used in work to note slip systems and lattice letters sums 1-3. Bold characters 
denote vectors and tensors and first derivatives are denoted with point. 

2.1. Deformation gradient and velocity gradient 
 
Total deformation gradient is given by: 

 * PF F F  (1) 

Where elastic part *F  denotes rotation and elastic deformation (stretching) of lattice and 
PF  denotes plastic shear of material to an intermediate reference configuration in which 

lattice orientation and spacing are the same as in the original reference configuration. 

Velocity gradient can be defined as: 
1 L F F  (2) 

 Using 1 P PF F I   final formulation of velocity gradient is: 
 

1 P 1 1       * * * P *L F F F F F F   (3) 

Rate of change PF  is connected with slip rate ( )  on  slip system: 

 
P 1   



  P ( ) ( ) ( )F F (m n )   (4) 

( )n   is unit vector in perpendicular direction of slip plain, ( )m   is unit vector in slip 
direction and ( )  is slip rate on  slip system. 

Velocity gradient in current configuration using sum of elastic and plastic velocity gradient: 
1 P*L F F L L     (5) 

And also: 
1L F F D Ω     (6) 

Where symmetric part of velocity gradient tensor D, and asymmetric partΩ are given by: 

 T1

2
D L L   (7) 

 T1

2
Ω L - L  (8) 

 

2.2 Schmid’s factors 
 
Shear stress   in system is main mechanism for arrival of dislocations, for current 
configuration is given by: 
 

0: Sσ    (9) 

In equation (1) 0S  represents Schmid’s tensor which is defined with dyadic product of 

vectors ( )m   and ( )n  . This, generally, non-symmetric tensor, can be decomposed on 
symmetric and asymmetric part: 
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1

2
( ) ( ) ( ) ( )P (m n n m )    

    (10) 

1
-

2
( ) ( ) ( ) ( )Q (m n n m )    

   (11) 

 

2.3 Hardening of rate-dependent crystalline materials 
 
For rate deformation models, slip rate is directly connected with shear stress: 

( )
( ) ( ) ( )

( )
a f

g


  



 
   

 
   (12) 

where ( )a   is referent deformation rate in current slip system  , ( )g   is variable that 

describes current strength of the system, while non-dimensional function ( )f   describes 
dependence of shear deformation rate on shear stress. 
 

2.3.1 Constitutive model Pierce-Assaro-Needelman 
 
Pierce, Assaro and Needelman have used simple form for the self hardening modulus [2]: 

2 0
0

s 0

h
h h( ) h sec h


  

  
 (13) 

  is the Taylor cumulative shear strain on all slip systems:  
t

( )

0

dt



     (14) 

Latent hardening modulus is given by: 

 h qh( )       (15) 

q is constant. These expressions of hardening modulus neglect the Bauschinger effect in a 
crystalline solid. 

2.3.2. Constitutive model Bassani-Wu  
 
Bassani and Wu used [7]: 

    ( )
0 s2 ( )

0 s s
s 0

h h
h h h sec h h G( ; )






                  
 (16) 

to express hardening modulus at crystalline materials. This expression depends of shear 
deformation  ( )  on all slip systems: 

 h qh      (17) 

where sh  is the hardening modulus during easy glide within the stage I hardening. 

 

2.4 Incremental formulation (rate-independent) 
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Incremental formulation has been used for specific materials where variables are not 
functions of time (rate independent plasticity). This formulation is detailed described in 
papers of various authors [8], [10], [11] and others, using two basic formulations Total 
Lagrange (TL) and Updated Lagrange (UL). 
Presented incremental formulation for plasticity of crystals is based on papers of [13] and 
[15]. Incremental formulation is convenient for numerical implementation. 
For this model we are using: 

 Cauchy stress, T , 
 deformation gradient F , 
 slip systems are denoted with  , every system is defined with unit normal vector 

0n   and unit vector 0m  which denote slip direction, assumption is that slip 

systems are defined in referent configuration ( 0m , 0n )  

 plastic deformation gradient PF  with  
 yield stress on slip system s 0    

If t is current moment and t is time increment, then we have t t    . We suppose that 
next quantities are known: 

 deformation gradients in referent and current configuration     tF ,F   

 unit vectors in referent configuration ( 0m , 0n )  

 Cauchy stress  T  , plastic deformation gradient  pF   and yield stress  s   

in referent configuration at beginning of time step 
Values that should be determined at the end of time step are      p sT ,F ,    , and 

orientation of slip systems in deformed configuration in moment   is given by next 
relations: 

  0
*m F m 

    (18) 

  T

0
*n F n

 
    (19) 

Elastic stretch for metals is usually infinitesimal, so that constitutive equation can be treated 
as linear function: 

       
* *T E  (20) 

 is fourth-order elastic tensor,  *T   is resolved stress related to assumed elastic solution 

in step and  *E  is Green-Lagrange elastic deformation. Next equation: 

           1 T
det* * * *T F F T F

        (21) 

gives relation between Cauchy stress  T   and second Piola Kirchhoff stress  *T  which 

is energetically conjugate with Green-Lagrange elastic deformation. 
If we use previous equation we get next relation for shear stress: 

       0
* * *C T S       (22) 

shear stress on slip system   for t t    . 
Now, we define trial elastic deformation and stress in moment t t    , with trial shear 
stress: 

   tr tr

0S*T       (23) 
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Potentially active system can be determined using: 

 

 

tr

tr

0 if s (t)

0 if s (t)

 



 

       
     

 (24) 

System that satisfies condition: 

 tr
s (t)     (25) 

is potentially inactive, and one with: 

 tr
s (t)     (26) 

is potentially active. Now, we can denote: 

 PA | 1,..., n     (27) 

as a set of potentially active slip systems, where are m n  slip systems which have slip 
rate different of zero and they represent active slip systems: 

 A | 1,..., m n      (28) 

Set of equations: 

A

A x b  



  (29) 

in matrix form: 
Ax = b (30) 

Coefficients of set matrix A are given with relation: 

           tr tr tr*
0 0A h t sign sign S sym C S    


        
 
  (31) 

Right hand side vector is: 

 tr
b s (t) 0        (32) 

Unknown represent increment of slip deformation: 
x 0     (33) 

Set of equations is solved iteratively to get vector of increments  , which is used to 

solve all variables dependent on  . 

2.5 Rate dependent formulation 
 
In this section the two integration schemes [2] related to time will be represented. The first 
assumes a linear relationship between stress increments, strain and state variables 
such as shear deformation, shear stresses, and yield strength in the slip system and so on. 
Stresses and state variables are calculated at the beginning of time increment. Second 
scheme solves the non-linear incremental equations using Newton – Raphson iterative 
method. Implicit time integration is used to solve stresses and state variables 
at the end of time increment. 

First slip deformation increment is defined    on slip system   in time increment t : 

   ( ) ( ) ( )t t t          (34) 

 
Using linear interpolation for t : 
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 ( ) ( ) ( )

t t tt 1  
           (35) 

where the lower index represents time period of time for ( )
t
 . Parameter θ 

can take values between 0 and 1, where for the θ = 0 we have the Euler integration scheme. 

Recommended values of θ are in 0.5 to 1 range. Slip rate ( )
t
 is function of shear stress    

and yield stress  g  . With Taylor development of slip rate we get: 

 
 

 
 

( ) ( )
( ) ( )
t t t g

g

 
  

  

 
      

 

    (36) 

 

2.6 Non-linear incremental formulation 

We will use incremental equation for shear deformation    on   slip system, but we will 

not use Taylor development for slip rate. All incremental equations in this formulation are 
current but they become non-linear because stresses and state variables are solved at the 
end of the time step. We get non-linear equation for shear deformation increment using 
Schmid’s law: 

         
   

   
t

t

t

1 t ta f 0
g g

 
   

 

   
            

   (37) 

Where    and  g   are shear stress and critical yield stress increments, respectively. 

Equation above is solved using Newton-Raphson iterative method, and linear solution is 
used as referent value.  
 

3. Examples and results 
 

3.1 Cooper mono-crystal rod example  
 
Uniaxial loading of copper mono crystal is analyzed as shown [2]. Rod is loaded by 
pressure of 200MPa, length is 100mm and square cross section is 10x10mm. Two edges of 
cross section are in [010] and [-101] crystal directions. Copper has FCC structure with 
elastic constants 11c 168400MPa , 12c 121400MPa , i 44c 75400MPa . We have only 

one set of slip system {111}<110>. Assaro and Pierce hardening law is used with advised 
values for starting hardening modulus 0h 541.5MPa , stress on part I s 109.5MPa   and 

0 60.8MPa  that are obtained experimentally for copper mono-crystal. 

Results for stress components are given on Fig 1. to Fig 6. Displacements are given on Fig. 
7 to Fig. 9. 
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Figure 1. Stress component - 11                  Figure 2. Stress component - 22  

 
 

 
Figure 3. Stress component - 33                  Figure 4. Stress component - 12  

 

 
Figure 5. Stress component - 23                Figure 6. Stress component - 13  
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Figure 7. Displacement in 1 – direction         Figure 8. Displacement in 2 - direction 

 

 
Figure 9. Displacement in 3 - direction 

 

3.2 Copper bi-crystal cube example 
 
Similar to previous mono crystal model, it is possible to generate mesh for poly crystals, bi 
–crystal in our case. As we explained, elements in input file are grouped in sets, and each 
set of elements are given one material. In this example we define material characteristics by 
changing material orientation of crystal grains and material constants are same as in 
previous example (copper). Copper bi-crystal made from two crystals of different 
orientation is analyzed. Some of stress components are shown in Fig. 10 to Fig. 12. 
Displacements are shown in Fig. 13 to Fig. 15. 
 

  
Figure 10. Stress component - 11                    Figure 11. Stress component - 22                     
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Figure 12. Stress component - 23                    Figure 13. Displacement in 1 – direction 

 
 

 
Figure 14. Displacement in 2 – direction           Figure 15. Displacement in 3 - direction 

 

4. Implementation of material model in program PAK 
 
Program PAK requires extra changes beside programming subroutine. UMAT material 
model is used as main subroutine as explained in previous chapter. All function and 
subroutine are connected in exact same procedure. Beside that, it was necessary to make 
certain changes in part connected with calling of subroutine. We are working on procedure 
for implementation some material models developed as UMAT routine for the ABAQUS 
program to PAK and vice versa. 
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Abstract. Buckling instability of simply supported elastic Timoshenko three-beam system, 
continuously joined by Winkler elastic layers and subjected to the same compressive axial 
loads, is studied. The model of Timoshenko beam includes the effects of axial loading, shear 
deformation and rotary inertia. Explicit analytical expressions are derived for the critical 
buckling load of single, double and triple beam system. It can be observed from these 
expressions that the critical buckling load depends on the Winkler elastic layer stiffness per 
length K, while the instability of the system increases with the increase in the number of 
beams and elastic layers. These results are of considerable practical interest and have wide 
application in engineering practice. 
 
 
 

1. Introduction  
 
Vibration and buckling problems of beams or beam-columns on elastic foundations occupy 
an important place in many fields of structural and foundation engineering. This problem is 
very often encountered in aeronautical, mechanical, and civil engineering applications. Its 
solution demands the modeling of (a) the mechanical behavior of the beam, (b) the 
mechanical behavior of the soil and (c) the form of interaction between the beam and the 
soil. As far as the beam is concerned, most engineering analyses are based on the classical 
BernoulliEuler beam theory, in which straight lines or planes normal to the neutral beam 
axis remain straight and normal after deformation. This theory thus neglects the effect of 
transverse shear deformations, a condition that holds only in the case of slender beams. To 
confront this problem, the well-known Timoshenko beam model, in which the effect of 
transverse shear deflections is considered, can be used. Matsunaga [1]  studies  buckling 
instabilities of a simply supported thick elastic beam subjected to axial stresses. Taking into 
account the effects of shear deformations and thickness changes, buckling loads and 
buckling displacement modes of thick beams are obtained. Based on the power series 
expansion of displacement components, a set of fundamental equations of a one-
dimensional higher-order beam theory is derived through the principle of virtual 
displacement. Several sets of truncated approximate theories are applied to solve the 
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eigenvalue problems of a thick beam. The convergence properties of the buckling loads of a 
simply supported thick beam are examined in detail and the comparison of the results with 
previously published ones is also made. On the basis of the BernoulliEuler beam theory, 
the properties of free transverse vibration and buckling of a double-beam system under 
compressive axial loading are investigated in paper Zhang et al. [2]. Explicit expressions 
are derived for the natural frequencies and the associated amplitude ratios of the two beams, 
and the analytical solutions of the critical buckling load is obtained. The influences of the 
compressive axial loading on the responses of the double-beam system are discussed. It is 
shown that the critical buckling load of the system is related to the axial compression ratio 
of the two beams and the Winkler elastic layer, and the properties of free transverse 
vibration of the system greatly depend on the axial compressions. Kelly and Srinivas [3] 
investigate the problem  of the free vibrations of a set of n axially loaded, stretched 
BernoulliEuler beams connected by elastic layers and connected to a Winkler type 
foundation. A normal-mode solution is applied to the governing partial differential 
equations to derive a set of coupled ordinary differential equations which are used to 
determine the natural frequencies and mode shapes. It is shown that the set differential 
equations can be written in self-adjoint form with an appropriate inner product. An exact 
solution for the general case is obtained, but numerical procedures must be used to 
determine the natural frequencies and mode shapes. The numerical procedure is difficult to 
apply, especially in determining higher frequencies. For the special case of identical beams, 
an exact expression for the natural frequencies is obtained in terms of the natural 
frequencies of a corresponding set of unstretched beams and the eigenvalues of the 
coupling matrix. Stojanović et al. [4]  study  the influence of rotary inertia and shear on the 
free vibration and buckling of a double-beam system under axial loading. It is assumed that 
the system under consideration is composed of two parallel and homogeneous simply 
supported beams continuously joined by a Winkler elastic layer. Both beams have the same 
length. It is also supposed that  buckling can only occur in the plane where the double-beam 
system lies. The explicit expressions are derived for natural frequencies and associated 
amplitude ratio of the two beams, and the analytical solution of the critical buckling is 
obtained. The influence of the characteristics of the Winkler elastic layer on natural 
frequencies, and the critical buckling force is determined. Li et al. [5]  analyze an exact 
dynamic stiffness matrix established for an elastically connected three-beam system, which 
is composed of three parallel beams of uniform properties with uniformly distributed-
connecting springs among them. The formulation includes the effects of shear deformation 
and rotary inertia of the beams. The dynamic stiffness matrix is derived by rigorous use of 
the analytical solutions of the governing differential equations of motion of the three-beam 
system in free vibration. The use of the dynamic stiffness matrix to study the three vibration 
characteristics of the three-beam system is demonstrated by applying the Muller root search 
algorithm. De Rosa [6] studies  the free vibration frequencies on Timoshenko beams on 
two-parameter elastic foundation. Two variants of the equation of motion are deduced, in 
which the second foundation parameter is a function of the total rotation of the beam or a 
function of the rotation due to bending only. Ariaei [7] investigate the dynamic response of 
an elastically connected multiple-beam system. The identical prismatic Timoshenko beams 
are assumed to be parallel and connected by a finite number of springs. The motion of the 
system is described by a coupled set of 2n partial differential equations. The method 
involves a change of variables and modal analysis to decouple and to solve the governing 
differential equations, respectively. 
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In this paper, buckling instability of simply supported elastic Timoshenko beams, 
continuously joined by Winkler elastic layers and subjected to the same compressive axial 
load, is studied. The beams have the same length l, and it is also supposed that  buckling 
can only occur in plane where the system beams lies. The model of Timoshenko beams 
includes the effects of axial loading, shear deformation and rotary inertia. Explicit 
analytical expressions are determined for the critical buckling load of single, double and 
triple beam models. It can be observed from these expressions that the critical buckling load 
depends on the Winkler elastic layer stiffness per length K,  while the instability of the 
system increases with the increase in the number of beams and elastic layers. 

 
 2. Formulation of the differential equations of the dynamic equilibrium and     
 structural model 
 
It can be seen from the literature  on the dynamic analysis of the elastically parallel-beam 
system that it is concentrated primarily on the case of a double-beam system of two parallel 
simply supported beams continuously joined by a Winkler elastic layer. Very few research 
papers can be found that  deal with the problem related to the elastically connected three-
beam system. Those studies of this region are limited to the particular cases of identical 
beams with some prescribed boundary conditions. It can  also  be seen that in most of the 
references, the simple BernoulliEuler beam theory has been used  to derive the necessary 
equation. The basic differential equations of motion for the analysis will be deduced by 
considering the Timoshenko beam of length l, Fig. 1a, subjected to axial compressive force 
F and  distributed lateral loads of intensity  and  which vary  with the distance z along 
the beam. Also,  this will be applied on the basis of the following assumptions: (a) the 
behavior of the beam material is linear elastic; (b) the cross-section is rigid and constant 
throughout the length of the beam and has one plane of symmetry; (c) shear deformations 
of the cross-section of the beam are taken into account while elastic axial deformations are 
ignored; (d) the equations are derived bearing in mind the geometric axial deformations; (e) 
the axial forces F acting on the ends of the beam are not changed with time. 

 
Figure 1. The physical model of the Timoshenko beam subjected to an axial compressive force F and  
distributed lateral loads of intensity  and . 

 
An element of length  between two cross sections is taken to be normal to the deflected 
axis of  the beam, Fig. 1b. Since the slope of the beam is small, the normal forces acting on 
the sides of the element can be taken to be equal to the axial compressive force F. The 
shearing force  is related to the following relationship 
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where  is the displacement of a cross-section in  direction,  is the global 

rotation of the cross-section,  is the bending rotation, G is the shear modulus, A is the area 
of the beam cross section, and k is the shear factor. Analogously, the relationship between 
bending moments M and bending angles  is given by  
 

 
 
where E is the Young modulus and  is the second moment of the area of the cross-section. 
Finally, forces and moments of inertia are given by  
 

 
 
respectively, where  is the mass density. The forces acting on a differential layered-beam 
element are shown in Fig. 1b. The dynamic-force equilibrium conditions of these forces are 
given by the following equations 
 

 
 

 
 
 Fig. 2 presents the development and solution of the differential equations of motion 
governing the free flexural vibrations of the elastically connected identical three-beam 
systems considering the effects of shear deformation and rotary inertia.  
 

 
Figure 2.  Identical three-beam systems. 

 
Each beam is made of  some material with the Young modulus E, and mass density , and 
has a cross-section with a uniform cross-section of area A and moment of inertia ,  
while beams  are subjected to the same compressive axial loading. The first beam is 
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connected to Winkler foundation of the stiffness per length K, and the second and  third 
beams are also connected by a continuous linear elastic layer of Winkler type of the same 
stiffness per length K. The transverse displacements of the beams are 

 and  are bending rotations. If we apply the 
abovementioned procedure to a differential element of each beam, the following set of 
coupled differential equations will be obtained: 
 

 
 

 
 

 
 

 
 

 
 

 
 
3. The axial buckling load of the elastically connected  identical three-beam system 
 
The stability behavior of simply supported Timoshenko beam systems on a Winkler elastic 
foundation is of great interest to both practicing engineers and researchers. The usual 
approach to formulating this problem is by including the foundation reaction into 
corresponding differential equation of the beam. The buckling of an elastically connected 
simply supported Timoshenko beams under some static compressive axial load is 
investigated. The analytical solution for the critical buckling load of the system is derived. 
The second-order partial differential Eqs. (5a) and (5b), (6a) and (6b), and (7a) and (7b), 
which are couplet together, can be further reduced by eliminating  and , 
respectively, to the following system fourth-order partial differential equations 
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The initial conditions in general form and boundary conditions for simply supported beams 
of the same length l are assumed as follows 
 

 
 

 
 
Assuming time harmonic motion and using separation of variables, the solutions of Eqs. 
(9a), (9b) and (9c), and the governing boundary conditions (11) can be written in the form 
 

 
 

where Tin(t) is the unknown time function, and Xn(z) is the known mode shape function for 
simply supported single beam, which is defined as 
 

 
 

Introducing the general solutions (12) into Eqs. (9) one gets the system ordinary differential 
equations 
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where 

 
The coefficients 
 

 
 
related to bending stiffness, shear stiffness and rotational effects, respectively, are now 
introduced. The shear beam model, the Rayleigh beam model and the simple Euler beam 
model can be obtained from the Timoshenko beam model by setting  to zero (that is, 
ignoring the rotational effect),  to infinity (ignoring the shear effect) and setting both  
to zero and  to infinity, respectively. The solutions of Eq. (14a), (14b) and (14c) can be 
assumed to have the following forms 
 

 
 
where  denotes the natural frequency of the system. Substituting Eq. (15) into Eqs. (14a), 
(14b) and (14c) results in  the following system of homogeneous algebraic equations for the 
unknown constants  
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Equations (16a), (16b) and (16c) have non-trivial solutions in the case when the 
determinant at the system matrix coefficients of the  and is equal to zero. This 
yields the following frequency (characteristic) equation, which is a twelfth order 
polynomial in . When the natural frequency of the system vanishes under the axial 
loading, the system begins to buckle. By introducing   into Eqs. (16a), (16b) and 
(16c), expressed in matrix form, they become 
 

 
 
where 

 
 
Using Gauss elimination and expanding the determinant 
 

 
 
where 
 

 
 
Solution to Eq. (19) is  taken from (http://mathword.wolfram.com/search/) as follows 
 

 
 

 
 

 
 
where 
 

 
 

 
 
If solutions  and  are substituted into the above Eq. (18), then the corresponding 
buckling loads for different vibration mode n will be obtained 
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As it can be seen, the values of the buckling loads  and  are positive and 

 Consequently,  is the critical buckling load corresponding to 
vibration mode , namely 
 

 
 
For  we obtain the critical buckling load of the Timoshenko beam: 
 

 
 
as shown in [8, pp. 134], representing the smallest load at which the beam ceases to be in 
stable equilibrium. 
 
 
3. 1. Critical buckling load to system with two Timoshenko beams 
 
Let us consider a system which consists of one Timoshenko beam on a Winkler elastic 
foundation connected to the other Timoshenko beam by a Winkler elastic layer. Each beam 
is subjected to the same compressive axial loading. Then matrix equation (17) is reduced, 
and it is as follows for the system shown in Fig. 3  
 
 

 
Figure 3.  Identical two-beam systems.  

 

 
 
Expanding the determinant we obtain 
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Solutions to Eq. (24) are 
 

 

 
 
If solutions  and  are substituted into the above Eq. (18), then the corresponding 
buckling loads for different vibration mode n will be obtained 
 

 
 
Consequently,  is the critical buckling load corresponding to vibration mode , for 
this system 
 

 
 
3. 2. Critical buckling load to system with Timoshenko beam resting on Winkler elastic    
 foundation 
 
Consider a simply supported Timoshenko beam under compressive axial loading resting on 
a Winkler elastic foundation, Fig. 4.  
 
 

 
 

Figure 4.  Timoshenko beam supported on a Winkler elastic foundation. 
 

In this case, matrix equation (23) is reduced and it becomes the following algebraic 
equation  
 

 
 
The solution of this equation is . If we replace this solution in the above Eq. (18), 
then the critical buckling load for the corresponding vibration mode  for this system 
is 
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The change in the critical buckling load in the function of stiffness of elastic layer K for 
systems with triple, double, and single Timoshenko beam are determined by analytical 
expressions (22), (26) and (28), and their graphs are given in Fig. 5. These functions also 
determine the boundaries of static stability of the corresponding system with a triple, 
double, or single Timoshenko beam under compressive axial loading resting on a Winkler 
elastic foundation. 
 

 
 

Figure 5.  Variations of the critical buckling loads of simple supported beams resting on a Winkler elastic  
foundation. 

 
4. Summary and conclusions 
 
In the present paper, the equations of dynamic equilibrium and the equations of natural 
vibration of the triple Timoshenko beam elastically connected to a Winkler elastic 
foundation are formulated. In order to derive these equations, the influence of constant axial 
forces at the ends of the same beams (second order theory), as well as the influence of the 
elastic foundation and elastic layer on the beams, are taken into account. Using the classical 
Bernoulli-Fourier method, the solutions of the differential equations of motion for the 
system are formulated. The explicit expressions for the critical buckling load of the systems 
with a triple, double, and single Timoshenko beam are obtained. It is observed from the 
numerical results that the critical buckling load is influenced by the Winkler foundation of 
the stiffness per length K and the number of Timoshenko beams. Also, it can be seen that 
the critical buckling load of the triple and double Timoshenko beam systems is always 
smaller than the one in the single beam system. 
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Abstract. In the present paper static and kinematic limit analysis of plates under bending is 
examined. An overview of literature is given. It is well know that static theorem gives lower 
bound, while kinematic theorem upper bound solution. Recently some attempt using 
numerical approach mostly finite elements have been published. In the paper all solutions 
will be analyzed, and an attempt of authors  to improve them will be given.  

 
 

1. Introduction 
 
In a society where the main goal is a greater economic benefit, there is a need to build more 
economical structures. Development of computer technology enabled the rapid progress in 
many fields of engineering and technology. Many methods that were useless without the 
use of fast computers now have a wide practical application. This has produced a revolution 
in building practices using the finite element method and the theory of plasticity. To a 
period when computers reached the level that allowed them to have practical use in solving 
complex problems in mathematics and technology, principle of elastic analysis has been 
prevalent in civil engineering. With limited use of computers and a modest knowledge in 
the field of theory of plasticity this principle gives us a safe solution. On the other hand 
elastic analysis provides a structure that is not economical. Designing by means of plastic 
analysis gives a more efficient and rational construction. Development of commercial 
software enabled the design of such structures, and the main cost of investors becomes 
construction material. Therefore, it is necessary to reduce its consumption in structures. 
Many countries have already exceeded the allowable stress theory to the theory of limit 
states to embrace this new principle. Application of the principle of theory of plasticity 
began in beams, but it quickly expanded its application to two- and three-dimensional 
elements. For the civil engineer the analysis of plates subjected to bending is of prime 
importance, so no wonder a lot of interest is shown in finding the exact solutions of 
capacity of these elements using theory of plasticity. 
 
Preparations for the yield line theory began in the early 90s and became famous thanks to 
Johanson [7]. The biggest advantage of this method is that it brought a new way of looking 
at the problems of capacity of plate. In that way it introduced a new view of slabs in our 
minds, and enabled solving slab systems that are not solvable by equivalent method. The 
yield line theory is quite well developed, especially the application on reinforced concrete 
slabs is popular. The fact that the yield line theory only provides an upper bound solution is 
no restriction for practical applications, because the solutions have been validated 
thoroughly by both experimental and theoretical research. The yield criterion is solely 
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based on bending moments. Plastic rotation can occur only if the corresponding bending 
moment is equal to the plastic moment mp, also indicated by yield moment or ultimate 
moment. By formation and increase of hinges, an indeterminate structure initially becomes 
determinate and then will transform to a mechanism. 
 
In the year of 1986 Manolakos and Mamalis [1] introduced a new technique, the end-fixity 
coefficients method. This method was developed for the prediction of upper- and lower-
bound loads to cause the plastic collapse of thin, uniformly loaded rectangular plates of 
rigid-perfectly plastic material, which is assumed to flow according to the Johansen yield 
criterion. They introduced an analysis for predicting the limit load of uniformly loaded 
rectangular plates applicable to various boundary conditions of the plates, based on the end-
fixity coefficients technique. They concluded that with an increasing number of clamped 
sides the difference between the lower- and upper-bound loads increases, with the 
maximum difference obtained in the case of the fully clamped plates.  
 
In 1978, Munro and Da Fonseca invented a computational method for yield line analysis 
that used triangular finite elements and the LP (linear programming). This method requires 
from users to define a triangular mesh that represents the actual position of the yield lines in 
whole slab. The slab was divided into triangular elements and the yield lines were 
assumed to develop only along the element boundaries. Deficiency of this method is that 
elements of a mesh introduced by the user may not include a critical yield line pattern. The 
method of Munro and Da Fonseca uses a fixed, arbitrary mesh of potential yield lines to 
predict the collapse load of a slab or plate. Although this method represents a considerable 
advance, the main drawback is that element boundaries of the triangular mesh may lie away 
from the true critical yield line pattern. Many papers on this subject were published later. It 
was clear that finding the best FEM was very important for defining yield lines in slabs. 
Thavalingam wrote a paper [5], which describes an optimization procedure for adjusting the 
mesh to provide a safer estimate of the collapse load. The authors have recently developed 
a semiautomatic geometrical optimization technique to examine the effect of adjusting the 
geometry of Munro and Da Fonseca’s stationary triangular mesh. A kinematic formulation 
is used to generate an LP model for a specific yield line. Results obtained using this mesh 
adjustment of the Munro and Da Fonseca yield line analysis of slabs using an optimization 
procedure improved previous solutions. The use of geometrical optimization techniques 
gives useful insight into characteristics of critical collapse. 
 
A lot of research was done on finding a method which give us a right yield line pattern. 
Much experimental and theoretical work was done in different software’s. Solmaz 
Pourrezay Khaligh [2] concluded that despite the fact that it is impossible to determine the 
exact crack path by ANSYS software, however, by observing the strain distribution in the 
slabs one can achieve the approximate yield line pattern.  
 

2. Limit analysis of plates 
 
Plastic analysis of plates is done using upper bound theory (yield lines) and lower bound 
theory. Equations which are used in these calculations are firstly equations of work method: 
 
W = Ed (1) 
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W is the work done by the external load, Ed is the amount of dissipated energy for a 
prescribed displacement during failure. 
 

 
(2) 

 
S is the area of a plate part, w is the displacement of the centre of gravity. 
 

 
 

(3) 

mp is the plastic moment,  is the angle between the plate parts, l is the length of the 
yield line. 
 
For the determination of a lower bound of the load factor at failure the equilibrium equation 
for the plate field has to be used: 
 

 
 

(4) 

3. Upper bound 
 

3.1. Upper bound of simply supported plate 
 

In this chapter rectangular plate (see Fig. 3.1) is being analyzed.  The plate is considered 
with uniformly distributed load λq and sides a and b. The ratio β=b/a is a variable with β≥1. 
The distance between point E and side AC is set to αa (see Fig. 2.1). Energy is dissipated in 
the yield lines only. 
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Figure 3.1. Rectangular simply supported plate. 

The data required for the work equation are gathered in the table 3.1 below. For the 
determination of the work, plate part ABEF is subdivided into two triangles after which (1, 
2, 3) has been applied. Also in this case the displacement of point E is set to w. 
 

Table 3.1 Data required for the work equation 
Plate  
part 

Areas Displacement 
Yield 
line 

lx ly |Δφx| |Δφy| 

АBE 1/2b*1/2a 1/3w FE b-2αa 0 4w/a 0 
EFB ½(b-2αa)*1/2a 2/3w AE, CE αa 1/2а 2w/a w/(αa) 
BDF 1/2a*αa 1/3w BF, DF αa 1/2а 2w/a w/(αa) 

 
The work done by the external load λq yields: 
 
W=2λq(1/4ba*1/3w+1/4a(b-2αa)*2/3w+1/2αa2*1/3w) 

W=1/2λqa(b-2/3αa)w 
 
The dissipated energy is calculated by making use of (3): 
 
Еd=mp((b-2αa)*4w/a)+4*mp(αa*2w/a+1/2a*w/αa) 

Еd=4mp(b/a+1/(2α))w 
 
Equating these two formulae according to (1, 2, 3) and introducing b=αa provides the 
following relation for the load factor: 
 
1/2λqa(b-2/3αa)w = 4mp(b/a+1/(2α))w 

 

 

(5) 

 
For a given value of β, parameter α has to be determined such that λ is minimized. 
Naturally, those values of α should correspond to physically possible positions of point E. 
This leads to the following condition: 
 

 
 
The result of this condition is that boundary minima have to be considered too. The desired 
stationary values can be obtained through: 
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This quadratic equation has two roots, the positive solution of which satisfies the listed 
condition is given by: 

 
 
 

(6) 

3.2. Upper bound of clamped rectangular plate 
 

In case of the rectangular clamped plate (see Fig. 3.2) this method provides the following 
relation for the load factor: 
 

 

(7) 

 

 
 

Figure 3.2. Rectangular clamped plate. 
 
The failure mechanism of Fig. 3.2 cannot be the real one. The three yield lines AB, AE and 
AC cannot come together as indicated without violating the yield criterion in other 
directions. In reality, yield zones are created in the corners of the plate (Fig. 3.3). 
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Figure 3.3. Yield zone and approximation by yield lines. 

 
The influence of such zones must be taken into account. In practical examples that is 
usually done by using an approximating pattern of yield lines (see Fig. 3.3b). The geometry 
of the yield zone is fixed by two parameters α1 and α2 (see Fig. 3.4). These parameters can 
be determined through a procedure of optimization. The work equation is used to solve the 
problem. 
 

 
 

Figure 3.4. Parameters α1 and α2. 
 

For the rectangular plate with work method it can be derived: 
 
 

 
 

(8) 

3.3. Solution analysis 
 

A number of examples of simply supported plates are displayed in the table below. 
 
 

Table 3.2 Simply supported plate. 
Type of plate β α λqa2/mp 

b=a 1 0,5 24,00 
b=2a 2 0,5 14,00 
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b=2a; optimized solution 2 0,651 14,14 

b=∞ ∞ 0,866 8,00 
For an infinitely long plate of width a (β → ∞), the factor α approaches 0.5√3 ≈ 0.866 and 
the load factor is reduced to the minimum value of 8mp/(qa2). The results are displayed 
graphically in Fig. 3.5.  
 

 
 

Figure 3.5. Results for rectangular simply supported plate. 
 
Naturally, the found values for λ are upper limits, which mean that the actual load factor is 
lower. In most cases one has to accept these solutions, because they are the only ones 
available. However, for this plate by a lower-bound calculation it can be shown that the 
calculated excess in load carrying capacity over the whole range is not more than 1%. For 
β=1 and β=∞ even the exact solution is found. 
 

4. Lower bound  
 

4.1. Lower bound for simply supported rectangular plate 
 

As input for the lower-bound calculation of simply supported plate the following moment 
distribution is assumed: 
 

 (9) 

 
(10) 
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 (11) 

The moments mxx and myy have a parabolic distribution with a maximum of mp in the 
middle of the plate and zero at both plate edges. This means that the boundary conditions 
are satisfied. The torque is a bi-linear distribution with a maximum of ±mp in the corners 
and zero in the middle of each span. The largest principal moment has to be smaller than 
+mp, and the smallest principal moment larger than –mp. The formulas for the determination 
of the principal moments are: 
 

 
(12) 

 
(13) 

The principal moments in each point can be determined from (12, 13). For both principal 
moments it then follows (9, 10, 11 and 12, 13) : 
 

 
 

 
 
In order to check the equilibrium condition, (9, 10, 11) has to be substituted into (4). It then 
follows that the moments are in equilibrium when λ is given by: 
 

 
(14) 

 
Fig. 4.1 shows λ as a function of β. The different contributions are indicated separately. 
Remarkable is the quite large contribution of the torque mxy, where it has to be noted that 
an eventual zeroing of mxy cannot be compensated by an increase of mxx and myy. 
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Figure 4.1. Results of lower bound calculation of rectangular simply supported plate. 
 

4.2. Lower bound for clamped rectangular plate 
 

As an input for the lower-bound calculation of clamped plate the following moment 
distribution is assumed: 
 

 
 

(15) 

 
 

(16) 

For this choice of the bending moment distribution the case becomes thistles, because no 
freedom is left to chose torsion moments along the edges and in the middle of the plate. The 
load factor for this thistles lower bound solution can be determined to be: 
 

 
(17) 

 
 
5. Analysis of upper and lower bound for different cases of rectangular plate 

 
5.1. Simply supported plate 

 
Comparison of the upper- and lower-bound calculations leads to the results shown in Table 
5.1. For β=1 and β=∞ the upper and lower bounds are equal, in which case the exact failure 
load is known. For the intermediate values of λ the differences are very small. It can be 
concluded that failure behavior of the simply supported rectangular plate has been fully 
analyzed. However such a situation is the exception rather than the rule. In the table the 
load factors λe, for which initial yielding occurs, are indicated too. Striking is that the 
difference between λe and λp is smaller for β=1 compared to β=2 to 3, while for β=∞ the 
value of λe equals λp. 
 

Table 5.1 Elastic and lower-upper bound for simply supported plate. 
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β Lower bound λр Upper bound λр Elastic λе 

1,0 24,0 24,0 20,8 
1,5 17,1 17,3 12,3 
2,0 14,0 14,2 9,8 
3,0 11,5 11,7 8,4 
4,0 10,5 10,7 8,1 
∞ 8,0 8,0 8,0 

mp/qa2=1 
 

 
5.2. Clamped plate 

 
A number of results obtained by formula (17) are listed in the last column of the Table 5.2. 
For the square plate a value of λ is found to be 44.0. Compared with the exact solution of  
λ=42.85 (found by Fox [9]) it can be concluded that the upper bound calculation leads to a 
very good result for a square plate. 
 

Table 5.2. Elastic and lower-upper bound for clamped plate. 
β Lower bound λр Upper bound λр Elastic λе 

1,0 32,0 44,0 19,8 
1,5 23,1 31,7 13,2 
2,0 20,0 27,0 12,0 
3,0 17,8 22,8 12,0 
4,0 17,0 21,0 12,0 
∞ 16,0 16,0 12,0 

mp/qa2=1 
 
The results of the previously discussed thistles lower bound calculation are displayed in the 
second column. It has to be concluded that the lower bound solution still falls far behind the 
corrected upper bound solution. Finally, in the first column ,the load factors can be found 
leading to initial yielding of the plate. The first point of yielding is situated in the middle of 
the fixed long plate edge. Striking is the big difference between the load factors of initial 
yielding and total failure, which means that dimensioning with respect to the largest elastic 
moment is very uneconomical. 
 
6. Conclusion  

 
To utilize the strength of structures beyond the elastic limit, many structures are designed to 
their ultimate strength. In complicated cases, however, for which an exact solution for the 
limit load causing collapse cannot be found, it is often necessary to turn to the upper- and 
lower bound plasticity theory, which enable the necessary collapse load to be bounded. 
Having this in mind it is obvious why so much attention is focused in finding better 
techniques for solving this problem. In the paper upper and lower bound of collapse load 
are presented for clamped or simply supported rectangular plates under bending.  Thos 
solutions, being very important, are useless in case of complicated shapes of plates and 
complicated boundary conditions. It is shown that numerical approaches in those cases are 
the best choice for every day engineering applications. 
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Abstract. In the present paper static and kinematic limit of vertical slope has been analyzed. 
An overview of  literature is given. It is well know from Drucker-Prager paper (1952) that 
lower bound (static) is H=2c/γ where c and γ are cohesion and specific weight of soil 
respectively, while upper bound (kinematic) is H=4c/γ. Recently some attempt using 
numerical approach, mostly finite elements, have been published. In the paper all solutions 
will be analyzed, and an attempt of authors  to improve them will be given.  

 
 
 

1. Introduction 
 
Problems of soil mechanics, including stability of slopes, bearing capacity of footings and 
pressures on retaining walls are often treated as problems of plasticity. Limit analysis is a 
powerful method for determining upper and lower bounds on the collapse loads of any 
structure. The upper bound (kinematic) and the lower bound (static) theorem of classical 
plasticity theory, which assumes a perfectly plastic soil model with an associated flow rule, 
are useful tools for predicting the stability problems in soil mechanics. 
 
The lower bound theorem states that the limit load calculated from a statically admissible 
stress field is a lower bound of the true collapse load. A stress field is statically admissible 
if it obeys the following requirements: 
 

a) Stresses everywhere satisfy differential equations of equilibrium (Eq. 3-5) 
b) Stresses comply with loads applied to the boundaries  
c) Stress distribution nowhere violates the yield criterion (Eq. 1) 
d) Stress discontinuities are permissible, provided that equilibrium is not violated 

(tangential stress discontinuity is permitted, but continuity of the corresponding 
normal and shear stress is required) 

 
We assume that slope has a sufficient length for the plane strain hypothesis to be 
admissible. Its strength properties are defined by a Mohr-Coulomb criterion of failure, with 
cohesion c and internal friction angle φ, or a Tresca criterion of cohesion c (with internal 
friction ignored). Tresca yield condition assumes that yield occurs when maximum shear 
stress τmax exceeds the shear strength of material. In this case (frictionless soil), the shear 
strength is equal to cohesion c. In a terms of component stresses, the Tresca yield criterion 
can be expressed as: 
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2

2
max 2

x y
xy c

 
 

 
   

 
 (1) 

According to Eq. (1), statically admissible stress field must satisfy the following condition: 

 
2

2 2 2

2
x y

xyF c
 


 

   
 

 (1) 

Differential equations of equilibrium (in Cartesian coordinates) are: 

 0xyx

x y

 
 

 
          xy y

x y

 


 
 

 
 (3) 

Sometimes it is more practical to express equilibrium equations in polar coordinates: 

   sinr
rr r

r





   



    

 
 (4) 

   cosr rr r
r


 


   


 

    
 

 (5) 

The upper bound theorem states that the power dissipated by any kinematically admissible 
velocity field can be equated to the power dissipated by external loads to give an upper 
bound off the true limit load. A kinematically admissible velocity field is one which 
satisfies compatibility, the flow rule and the velocity boundary conditions. Because an 
upper bound calculation considers only velocity modes and energy dissipation, the 
corresponding stress distribution (if one is computed) need not to be in equilibrium. Such a 
distribution, however, must satisfy the yield criterion. In that case, discontinuous flow 
states are permissible. 
 
The problem under consideration is the classical problem of the stability of a vertical slope. 
(Fig. 1). This slope is subjected only to its own weight. The constituent soil is assumed to 
be perfectly plastic body, homogeneous and isotropic, with a specific weight γ. 
 
Whatever the mechanism of collapse, the collapse equation is usually given in terms of a 
critical slope height H or stability number Q: 

 
H

Q
c


  (6) 
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Figure 1. The vertical slope 

 
The critical height is defined as the height at which the unsupported vertical slope will 
collapse due to its own weight. Solutions of stability number, derived from assumed 
mechanism of collapse will be upper bounds of  the true limit load, while values derived by 
analyzing of equilibrium stress fields which satisfy the yield condition will give the lower 
bounds. The range in which the true solution lies can be narrowed down by finding the 
highest possible lower bound solution and the lowest possible upper bound solution. 
 
Despite the numerous attempts which have been made, the exact solution of the stability 
number remains unknown. Up to now, only upper and lower bound estimates are available. 
In the past, for slope stability applications, most research concentrated on the upper bound 
method. This is due to the fact that the construction of proper statically admissible stress 
fields for finding lower bound solutions is a difficult task. It is necessary to point out that 
the validity of assuming the soil to be a perfectly plastic body is not an issue. No account is 
taken of such important practical matters as the effect of water in the soil or of the 
essentially different behavior of various constituents such as clay and sand. 

 

2. Static approach 
 
2.1. Drucker-Prager closed form solution (1952) 
 
The simplest possible equilibrium distribution of stress was derived by Drucker and Prager 
[1]. They divided observed soil into three zones (Fig. 2), assuming the state of stress in 
zones 1, 2 and 3 to be uniaxial compression, biaxial compression and hydrostatic 
compression , respectively.  

This discontinuous stress field satisfies equilibrium everywhere in the soil mass. Boundary 
conditions (both normal and shear stress to be zero on all surfaces) are also satisfied, as 
well as the continuity of the shear stresses between zones. Lower bound for the critical 
slope height is calculated from Tresca yield criterion (Eq. 1). Maximum shear stresses 
appear in zones 1 and 2, at the bottom of the slope (y=H), and its value is given by: 

 max

1

2
H c    (7) 

According to Eq. (6), lower bound for the stability number is given by: 

 2Q   (8) 
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Figure 2. Drucker-Prager lower bound solution 

 
2.2. Heyman’s closed form solution (1973) 
 

The better closed form solution of this problem was derived by Heyman [2]. He divided 
observed soil into seven zones sketched in Figure 3. The boundary PQRS must be free of 
shear stress and of direct stress normal to the boundary, while direct stresses parallel to the 
boundary are permitted. Assumed stress functions for each zone (Table 1) satisfy the 
equilibrium and the boundary conditions along PQRS. Function F (Eq. 2) for each zone is 
calculated from stress functions.. Continuity of stresses along boundaries between adjacent 
zones (for example, RB between 1 and 2, or AB between 1 and 4) is satisfied. 

 
Figure 3. Heyman’s lower bound solution 
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Stress functions for zones 3 and 6 are presented in polar coordinates (with poles in A and 
Q, respectively), satisfying differential equation of equilibrium in polar coordinates. Stress 
functions in other zones are presented in Cartesian coordinates. 
 
Maximum values of the F function (Eq. 2) and corresponding stability number for each 
zone are shown in Table 2. The largest (the most stringent) value of F function leads to 
lower bound for critical height of vertical slope. This occurs in zones 1, 2, 5 and 6, and 
lower bound for stability number is: 

 2.8284Q   (9) 

which is a better solution in comparison with Drucker-Prager solution.  
 
Table 1a. Stress functions for Heyman’s stress zones 

Zone Stress functions F function 

1 

 1

2x y x    

y y   

1

2xy y   

 22 2 21
4

16
F x y y       

2 

0x   

 1

2y x y    

1

2xy x   

 22 2 21
4

16
F x y x       

3 

1 1
sin cos 2

4 4r r H H         

1 1
sin cos 2

4 4
r H H         

1
sin

4r H    

1

4
F H  

4 

 1
2 2 3 2

4x x y H     

 1
2 2 2 2

4y x y H     

1

4xy H   

   2 22 1 1

32 16
F y H    

5 

 1
2 2 2 3

4x x y H     

 1
2 2 2 2

4y x y H     

1

4xy H   

 
2 2

2 1 1
3 2 4

8 4
F y H H            
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Table 1b. Stress functions for Heyman’s stress zones 

Zone Stress functions F function 

6 

1
sin 2

2r H      

1
sin 4 2 sin 2

4 2
r H

           
 

 

 1
1 cos 2

4r H     

1
cos

2
F H   

7 
8x

H
y H

      
 

 

y y   

0xy   

1
1

2 8
F H

    
 

 

 
Table 2. Maximum values of yield functions and corresponding stability numbers 

Zone Maximum of F function Stability number 

1 2 2 21

8
F H  (for x=y=H/2) 2 2 2.8284Q    

2 2 2 21

8
F H (for x=y=H/2) 2 2 2.8284Q    

3 
1

4
F H  4Q   

4 2 2 25

64
F H (for 

2

H
y  ) 

8
3.5777

5
Q    

5 2 2 21

8
F H (for 2y H ) 2 2 2.8284Q    

6 2

4
F H (for θ = π/4) 2 2 2.8284Q    

7 
8

16
F H

 
  

16
3.2933

8
Q


 


 

 

3. Kinematic approach 
 

3.1. Translational mechanism (Drucker and Prager, 1952) 
 
The notion of a critical height in the context of limit analysis appears in an early paper of 
Drucker and Prager [1]. They assume that the failure occurs by sliding along a plane 
making an angle  with the vertical (Fig. 3). 
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Figure 3.  Translation mechanism of failure 

Equating the rate of external work to the rate of internal energy dissipation gives: 

21
cos

2 cos
  


    

H
H tg V c V                                            (11) 

and: 
4 1

sin 2 
 

c
H                                   (12) 

For 45  ° :    

4




c
H                                      (13) 

and stability number is 4Q . 

 
3.2. Rotational mechanism (Chen, 1975). 
 
The failure surface (velocity discontinuity) is assumed to pass through the toe of the slope. 
The normality rule in plasticity theory requires that the velocity discontinuity vector be 
inclined to the rupture surface at the internal friction angle of the soil , and the shape of 
the rupture surface in the rigid rotation mechanism must be a log-spiral (Fig. 4): 

 
Figure 4. Proposed rotational failure mechanism with velocity field 
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The region A-B-C rotates as a rigid body about the center of rotation O, with the materials 
below the logarithmic surface BC remaining at rest, The surface BC is a thin layer surface 
of velocity discontinuity. The assumed mechanism can be specified completely by three 
variables: andH. Equation for the logarithmic spiral is given by: 

              1( )
1( )      tgr r e                                                                 (14) 

The rate of energy dissipation in the soil Wi, and the rate of work due to the soil selfweight, 
We were derived by Chen 1975 [8]. The rate of external work for the required region A-B-C 
is found by simple algebraic summation the rates of work We1, We2, We3 due to the soil 
weight in the regions O-B-C, O-A-B and O-A-C, respectively. 

Region O-B-C:      3
1 1 1 1 2( , )  eW r f                                                                    (15) 

Region O-A-B:      3
2 1 2 1 2( , )  eW r f                 (16) 

Region O-A-C:     3
3 1 3 1 2( , )  eW r f                               (17) 

where the functions 1 1 2( , ) f , 2 1 2( , ) f , 3 1 2( , ) f  are defined  as: 

2 13( )
2 2 1 1

1 1 2 2

(3 cos sin ) 3 cos sin
( , )

3(1 9 )

       
 



   




tgtg e tg
f

tg
                    (18) 

2

2 1 2 1 1 12
1 1

1 1
( , ) sin cos sin

3 6
     

L L
f

r r
                                                              (19) 

2 1( )2
3 1 2 2

1

1
( , ) cos

3
       tgH

f e
r

                                                                        (20) 

The rate of work due to the soil selfweight We is now obtained by the simple algebraic 
summation: 

3
1 2 3 1 1 1 2 2 1 2 3 1 2( ( , ) ( , ) ( , ))           e e e eW W W W r f f f                            (21) 

The internal disipation of energy occurs along the discontinuity surface BC (Fig. 4) and it 
may be found by multiplying the differential area / cos rd  of this surface by cohesion c 

times the tangential discontinuity in velocity, cosV : 

1 2 1

2 2 2
2( ) 2( )2 1

1

1 1

cos ( 1)
cos 2

 
     

 

  
 

       tg tg
i

crrd
W c V cr e d e

tg
             (22) 

Equating the rate of external work to the rate of internal energy dissipation gives: 

2 1 2 12( ) ( )
2 1

1 1 2 2 1 2 3 1 2

( 1)(sin sin )

2 ( ( , ) ( , ) ( , ))

      
       

   


 

tg tge ec
H

tg f f f
                    (23) 

or: 

1 2( , ) 



c

H f                   (24) 

The function 1 2( , ) f is found to have a minimum value near the point 1 =40°, 2 =65° for 

case =20°, where it has the value 3.831 ( )
4 2

 
 tg  for all values of , so that: 
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3.831 ( )
4 2

 


 cr

c
H tg                   (25) 

For Tresca material  the function is found to have a minimum value near the point 

1 =27.44°, 2 =57.52°, so that

3.831


cr

c
H                   (26) 

and stability number is 3.831Q . 

The value 3.831 is an improvement of the previous solution 4.0 as given in (12). 
 
3.3 Multiple – rotation  mechanism (Bekaert, 1995). 
 

Bekaert [4] considered a subdivision of the soil mass into n blocks i=MiMi+1Si+1Si and n 
points i, located outside the of the soil mass (0 ≤ i ≤ n-1), where MiMi+1 is an arc of log-
spiral of focus i and SiSi+1 is segment located on the vertical facing of the slope (Fig. 5). 
 

 
Figure 5. Subdivision of the soil mass into blocks 

 
All the blocks i are given a virtual rigid body rotation about i. The mechanism is fully 
determined by the set of 3 1n parameters ( , )

ji My  when 0 2 1  i n  and 0 1  j n . 

The mechanism is relevant as far as: 

- 1( , )
2


   i i i iM S                                  (27) 

- 0 1   i n        i is not located in the soil                           (28) 

- 0 1   i n  
0 1

1 0


     
i iS S S Sny y y y                            (29) 
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- 0 1   i n      

0 1
1 0


     

i iM M M Mny y y y                            (30) 

- 0 2 2   i n   0 10
2


      i i                (31) 

 
The internal disipation of energy is: 

2 1 2

21 1
2( )

1
0 0

( 1) cos
2

    




 



 

        i i

n n
tg

i i i i i i i
i i

c
W M e c M S

tg
            (31) 

 
The rate of external work is:
 

2 1 2
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           (33) 
 
Equating the rate of external work to the rate of internal energy dissipation gives: 

 ,
min ( , )



  
j

i Mj
i M

relevant y

H
Q f y

c
                (34) 

A numerical minimization gives the value of Q (=0) as a function of the number of blocks 
(Fig. 6).  
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 Figure 6. Upper bound estimates for multiple rotation mechanism (case =0)  

 

The calculus has been performed up to 15 rotation centers and gives the following best 
upper bound estimate for stability number is Q(=0) = 3.793. 
 
 
4. Numerical solution 
 
Although the lower and upper bound theorems are particularly useful tools for the analysis 
of stability, they are often difficult to apply to practical problems, involving complicated 
loadings, inhomogeneous material properties and complex geometry. Constructing the 
statically admissible stress fields and kinematically admissible velocity fields manually, 
even for simple problems, is a very difficult task. Alternative method of computing lower 
and upper bounds is using of numerical methods. The most common numerical formulation 
of the static and kinematic theorems is based on a finite element discretization of the 
continuum.  
 
4.1. Static approach 
 
Finite element. The continuum is discretized into a mesh of three-noded triangular elements 
(Fig. 7), with the nodal variables being the unknown stresses σx, σy and τxy. 

 
Figure 7. Three-noded triangular element  

 
For each element the vector of nodal stresses is: 

 

   

( )

( )

( )

i

x

i

y

i

xy









 
 
 
 
 

  i = 1-3              (35) 

 
Each stress varies throughout an element according to: 

3

1
x i xi

i

N 


  ;          
3

1
y i yi

i

N 


  ;          
3

1
xy i xyi

i

N 


               (36) 
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where σxi, σyi and τxyi are the nodal stresses and Ni are linear shape functions. 

Unlike the usual form of the finite element method, each node is unique to a particular 
element and more than one node may share the same coordinates. This kind of mesh is 
reffered as “fully discontinuous” mesh. 

 
Discontinuity equilibrium. Statically admissible stress discontinuities are permitted to occur 
at the boundaries between adjacent triangles. In order to permit statically admissible 
discontinuities at the edges of adjacent elements, it is necessary to enforce additional 
constraints on the nodal stresses. Figure 8 illustrates two triangles, a and b, sharing side d 
defined by nodal pairs (1, 2) and (3, 4). Equilibrium of the discontinuity requires that at 
every point along d: 

a b
n n  ;          a b                             (37) 

 
Since the stresses vary linearly along each element edge, this condition is equivalent to 
enforcing the constraints: 

1 2
a b

n n  ;          3 4
a b

n n  ;          1 2
a b  ;          3 4

a b               (38) 

 
Figure 8. Stress discontinuity between adjacent triangles  

 
Linearization of the yield condition (Pastor, 2000).  Since we wish to formulate the lower 
bound theorem as a linear programming problem, it is necessary to approximate the yield 
surface by a yield criterion which is a linear function of the unknown stresses. For the 
Tresca yield criteria, this is achieved by employing a polygonal approximation to the yield 
surface. Polygon is inscribed inside parent Tresca yield surface, ensuring that the solution 
obeys the conditions of the lower bound theorem (Eq. 12). 
 
Tresca yield criterion, linearized from inside, is expressed by: 

2 2
( ) ( ) cos 2 sin 2 cosr x y xy

k k
f c

m m m

 
  


     ,  k = 1 – m            (39) 

 
where m is a linearization parameter, greater or equal to 3. 
 
Application of the stress boundary conditions, equilibrium equations (Eq. 3-5) and yield 
criterion (Eq. 37) leads to an expression for the collapse load or stability number which is 
maximized subject to a set of linear constraints on the stresses. 
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The best numerical solution for the lower bound, using linear programming, was derived by 
Pastor [5]. Mesh of triangles included 3232 elements, and its implementation leads to the 
following stability number: 

 3.76037Q   (40) 

Non-linear programming solution (Lyamin and Sloan, 2002).  Up to date, the best known 
lower bound solution of the presented problem was derived by Lyamin and Sloan [7], who 
used linear finite elements method and non-linear programming. Non-linear programming 
formulations are more complex to solve, but avoid the need to linearize the yield surface. 
This new approach is vastly superior to a commonly used linear programming formulation, 
especially for large scale applications. 
 
In this case, solution algorithm needs to compute first and second derivatives of the yield 
function with respect to the unknown stresses, which require the yield function to be 
convex and smooth. For Tresca yield function, which has singularities in their derivatives, 
it was necessary to adopt a smooth approximation of the original yield surface. In this 
solution a two-parameter hyperbolic approximation for smoothing the tip and corners of the 
Mohr-Coulomb model has been used.  
 
The numerical solution for the lower bound using non-linear programming with 6400 
elements mesh leads to the best known lower bound for stability number: 

 3.772Q   (41) 

 
4.2. Kinematic approach 
 
Finite element. The three-noded triangle is also used for the upper bound limit analysis 
(Fig. 9) Each element is associated with six unknown nodal displacements. For each 
triangle displacement vector is: 
 

   
( )

( )

i

x

i

y

u

u
 

  
 
  

  i = 1-3              (42) 

 

 
Figure 9. Three-noded triangle 
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The displacement are assumed to vary linearly throughout each triangle according to: 

3

1
x

i
i x

i

u uN


 ;          
3

1
y

i
i y

i

u uN


                 (43) 

where xu  and yu  are the nodal displacements in the x and y directions, respectively, and Ni 

are linear shape functions. 
 
Linearization of the yield surface (Pastor, 2000). In the kinematic solution, the polygon is 
defined to circumscribe the parent yield surface so that the solution obtained is a strict 
upper bound. 
 
The Tresca (or Mises) criterion, here linearized from the outside, is expressed by: 

2 2
( ) ( ) cos 2 sin 2 0

 
      r x y xy

r r
f c

m m
 ,  r = 1 – m              (44) 

where m, a linearization parameter, is greater than or equal to 3. 

The kinematic theorem requires that the strain field  be kinematically admissible (KA), 
i.e. is derived from a displacement velocity field u which satisfies the boundary 
conditions, and plastically admissible (PA), i.e.  satisfies the normality law: 

( )f
 









   ,  ( ) 0f  , 0                 (45) 

Pastor [5] considered the discretized structure in a mesh of NT triangles, denoting by ek, for 
which each side is a line of potential discontinuity in displacement velocity (Fig. 10). The 
displacement velocity tensor at any point of ek are expressed by (positive compression): 

, ,

1
( )

2
ij i j j iu u                       (46) 

 
Figure 10. Discontinuity segment Sk 
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The displacement velocity field is constant on each finite element and is expressed linearly 
in relation to the nodal variables by appropriate derivation of the interpolation functions. 
The boundary conditions in displacement velocity will be satisfied by cancelling the 
components of a fictional node associated with the boundary of the mesh, a potential 
discontinuity line. Relations (44) and (45) must be written on each element ek and thus the 
unknowns of the problem are nodal displacements ux

k and uy
k and the plastic coefficients λr

k 

 

Discontinuity lines in displacement velocity. A typical velocity discontinuity (segment Sk) 
is shown in Figure 10. The discontinuity occurs at the common edge between two adjacent 
triangles, defined by the nodal pairs (1, 2) and (3, 4), and is of  zero thickness. The 
boundaries of the plasticity domain in the Mohr plane are:  

 

( ) 0G c                     (47) 
 

The velocity discontinuity components across the discontinuity mast satisfy the flow rule: 
 

  ( )G






u



, 0                   (48) 

( , )n    ,  ( ) 0G                   (49) 
 

and plastically admissible conditions are obtained as: 

    0
i

nu  ,    1 2

i i i

tu    ,   0i

j    i= I, II   j=1,2             (50)

   
Plastic flow may occur in both the continuum and the velocity discontinuities. The total 
power dissipated in these modes constitutes the objective function and is expressed in terms 
of the unknowns. The power dissipated along a velocity discontinuity may be written as: 
 

  1 2( ) min ( )c   u                  (51) 

 
The power dissipated by plastic flow throughout a triangle is: 
 

1

( ) min 2
n

k r
r

cs  


  
 
 

                  (52) 

 
The functional to optimize is the total dissipated power ( )P  in the structure discretized in 

triangular finite elements: 
 

4

,
1 1 1 1

1
( ) min ( 2 ) ( )

2

NT n Ndisc
k k

r k i k
k r k i

P c s l   
   

  
 
 
                    (53)

   
where NT is number of finite elements, NDISC is number of segments along discontinuity, 
sk is the surface of the element Sk and lk is length of the element Sk. 

804



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 C-54 

 
 
The optimal form of the discontinuity line separating the mobile block from the rest of the 
body is Bekaert's kinematic mechanism of rotating blocks [4]. The zone set out by this 
mechanism is divided into horizontal and vertical bands whose respective widths xn and yn 

are in arithmetic progression so as to make the discretization at the foot of the slope denser. 
The final problem is the one of linear optimization. The optimal displacement velocity 
fields u are then obtained and these fields are analysed using totally independent post-
treatment procedures. The results are given in relation to the number of planes n linearizing 
the criterion (Table 3) and in relation of h, which is the number of elements on the vertical 
facing of the slope (Table 4): 
 
        Table 3. Stabilitu number as a function of the number of planes n  linearizing the criterion  

N 1 24 36 48 6600 72 84 96 

Q 3.800081 3.79620 3.79421 3.9339 3.79279 3.79240 3.79210 3.79185 

  
        Table 4. Stabilitu number as a function of h  

h 6 12 18 24 30 36 42 

Q 3.834987 3.804778 3.796194 3.7992139 3.788489 3.786743 3.785864 

 
The best kinematic value for stability number, obtained for h=42 is Q= 3.7859. 

 
 
5. Conclusion 
 
In the present paper thorough study was made to analyze the problem of height limit of 
vertical slope. Starting from Drucker-Prager [1] paper via Chen [8], nice closed form 
solutions were done using both static and kinematic theorem. Despite the numerous 
attempts which have been made and shown in the paper, the exact solution of the stability 
problem of vertical slope remains unknown. It turns out that numerical approach is the best 
way to find solution closed to exact one, which is very important for everyday engineering 
application. 
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Abstract: Development of ballastless slab track structure with "mass-spring" 
system was starting about 20 years ago and different kinds of those track systems 
have been successfully in use for urban transportation systems. By these systems 
under the slab the elastic elements are inserted to provide protection from 
bothersome vibration and noise. The present article explains the principal aspects 
of calculation verifications by means of simulation model for the selected type of 
"mass-spring" track system. 

 
 

1. Introduction 
 
Rail traffic are an integral part of the public transportation systems in the central arias of 
many cities. The proximity to the neighboring buildings, the sensitivity of the population 
and the necessity to share the route with motor trafic are factors for track design and 
construction.  
Rail traffic causes vibrations that are mainly caused by rolling between the running wheel 
and the rails (direct structure borne noise) and propagate via superstructure and the tunnel 
through the ground into nearby buildings and can cause audible secondary air-borne noise.  
Railway tracks within urban environment have usually to fulfil certain reqirements 
concerning emission of noise and vibration. The decisive range of vibration is: 5 Hz to 20 
Hz and of structure borne air noise is: 40 Hz to 80 Hz.    
Comparisons between different possibilities concerning reduction of noise and vibration 
showed that measures at the railway superstructure itself are usually preferable from a 
technical and economic point of view.  A wide variety of measures are available and 
effective tools for reducing structure borne noise at the source. These measures include the 
use of highly alastic pads for rail fasteners, ballast and sleeper mats, elastic supports for 
slab tracks of so-called "mass-spring" systems. Decisive parameter for vibration absorption 
is the natural frequency (eigen- frequency) of the selected superstructure system.     
 
2. Types of "mass-spring" systems 
 
"Mass-spring" systems are used in applications where the isolation demands, in terms of 
structure-borne noise, are very high (Figure 1.). Over recent decades, a wide range of mass-
spring systems have been developed. There are systems that use in-situ concrete or pre-
fabricated concrete components, their combination, with or without a ballast bed. The type 
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of chosen construction is a basic factor in the design of elastic supports for mass-spring 
systems. 
 
 

 
 
Figure 1. – Damping efect of mass-spring system 
 
 There are three different types of such systems (Figure 2.) /1/ :   
 full surface layer, 
 linear support, 
 discrete bearings. 
 
 
 

          

 
 
Figure 2. Types of mass-spring systems 
 
In all types of such systems elastic elements make possible the following /1/: 
- reduce the loads on the superstructure, the substructure and the subgrade 
- reduce wear of rails and wheels 
- increase track elasticity 
- protect the environment against vibrations and structure-born noise 
- fast construction 
- keep track maintenance costs very low. 
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3. "Mass-spring" systems with discrete bearings 
 
Discrete bearings are predetermined by the form of the track slab or track trough sections. 
These slabs can be prefabricated or cast in site.  
When cast in site, an insulation sheet is placed on the foundation to prevent from bonding, 
so that the slab can be later raised. The slab is lifted after hardening and than the bearings 
are inserted through the installation holes in the slab sections. If the longitudinal sides of the 
slab are free, it is possible to lift the slab with jacks that can be applied from the sides. 
The joints between the slabs are connected with plastic-coated pins, which will be cemented 
with morter,  or with resin in a dovetail pattern. The bearings close to the joints will be 1,5 
times stiffer than the standard ones. 
In the transition zones between the mass-spring system and the conventional slab track 
bearings with a higher degree of stiffness are installed to reduce track depresion, in order to 
prevent excessive track fatigue and the risk of crack /2/.  
Due to the relatively low surface area of the supports, special attention must be paid to the 
horisontal forces arising from train operations. In order to limit the deflections as reqired, 
the perfect balance between the shear modulus, elasticity, support thickness and the surface 
area of the support must be found.  
By using individual bearings the lowest tuning freqencies can be achieved. Depending of 
the mass of superstructure toward the well-known formula: 
 
                                                f [Hz]= 1/2π (k/m)1/2 

 
the natural (eigen) freqency is between 5 and 10 Hz. Low eigen frequncy of less than about 
20 Hz is required. It allows the maximum isolation level against structure-borne noise of up 
to 30 dB /2/. 
There is a descrepancy between reqired natural structure freqency and the rail deflection: 
the softer the bearing material is, the lower the natural freqency and the higher the 
deflection is. 
New generation of high performance elastomers (for example Sylomer by Getzner) are 
materials for elastic supports in all mass-spring systems. They offer many advantages when 
used as elastic bearings for slab track and ballast mats, such as /2/: 
- reliable, homogeneous and durable alastic properties 
- resistance to short-term, extreme overloading 
- ease to use in compensating construction tolerances 
- adaptable to all application by varying the density of the material, the thickness and 
the surface area of the support. 
For justification the statements exposed previously a number of  Sylomer bearings 
installed in mass-spring systems are listed /2/. 
 
Type of bearing   Bearing thickness   Natural frequency  Track deflection   Mass of 
superstructure 
                                     /mm/                      /Hz/                     /mm/                        /t/m/ 
 
Sylodyn N 70            70                          5,2                        9,2                           11,0   
Sylodyn N 70            59                          6,0                        7,0                             7,5  
Sylomer S 50            50                           8,0                        3,9                            7,0 
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Sylomer S 50            50                         10,0                        2,5                            4,5 
   
 
Natural rubber is widely used material for discrete bearings (for example Tiflex), meanly 
because of its unbeatable dynamic characteristics and long proven service record on 
bridges. 
 
4. Modelling the "heavy mass-spring" systems 
 
The example of track superstructure system is designed as "heavy mass-spring" system 
(Figure 3.) for the open track section at light rail system as a part of rail public 
transportation system in the city /6/. 
 

 
 
Figure 3. - Heavy mass-spring system 
 
 
The structure consistes of prefabricated concrete track slab dimensions of 24039050 cm, 
surrounds by in-situ concrete trough and supported by discrete elastic bearings 400400 
mm with thickness of 40 mm. The static elasticity coefficient is of 30,7 N/m3 and the 
density is of 400kg/m3 (Figure 4.). 
 

 
Figure 4. – Charateristics of the example of heavy mass-spring system 
 
The input for track parameters are: 
- type of rail 49E1 
- fasteners spacing 65cm 
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- rail pad elasticity 200 kN7cm 
The competent load is the electric locomotive of passenger ICE train with an axleload of 
196 kN and the axle distance of 3,0 m. 
The elastic line of the rail and rail supporting forces (Figure 5.) acting on the slab are 
calculated toward the Zimmerman’s theory of the elasticaly supported beam, using the 
Vincler’s hypothesys, as folows /12/.  
Rail deflection: 

   iiQ
U2

k
y        

 (1) 
     where: 

    
 ixk

ii
i

e

xkcosxksin



  - influence coefficient of wheel distance  xi  

 4
xEI4

U
k    - coefficient of relative stiffness of the track supports toward the rail 

 UD/L - elasticity modulus of the track 
               EIx  - bending stiffness of the rail. 
Supporting forces: 

   iiQ
2

kL
S        

 (2) 

 
 
Figure 5. - Rail supporting forces and deflections for ICE electric loco 
 
The forces and the deformations of the slab track structure are calculated by means of 
program TOWER in the finite elements method.  

98 kN 98 kN

0.23 8.12 24.10 36.53 23.33 10.54 13.90 30.10 34.08 17.23 4.11

0.00 

-0.50

-1.00 

-1.50 

-2.00 

3.0 m

Supporting 
forces [kN]

Rail deflection
 [mm]

811



 
 
 
 
 
 
 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 C-55 

 

The settlements of soil substructure are obtained from the Schlicher's formula /6/: 

 



 B

FE

P1
s

o

2
o        

 (3) 
where: 
 0  - soil Poisson's coefficient 
 E0 - soil elasticity modulus 
 P - slab load 
 F - track structure supporting surface 
 B - width of the track structure 
  - coefficient depending on the shape of the structure surface and the position of 
the point where 
      the settlement is determined 
 The soil stiffness is: 

 mkN145185
0054,0

898

s

P
k 


      

 (4) 
 The stiffness of the members that simulate the slab bearings: 
kzi = c Fppi               (5) 
where:   c = 30,7N/cm3   - elasticity coefficient of Sylomer   
            Fppi - slab area that corresponds to one member. 
 
The model consists of five track slabs of the shape in the Figure 4 elasticaly supported on 
the soil with the stiffness velue defined with formula (4). The discretisation of the three-
dimensional computational model is presented in the Figure 6.  
The load are the rail supporting forces calculated for the ICE train, represented in the figure 
5.  
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Figure 6. - Computational model 
 
The position of the load on the slabs is shown in the Figure 7 /6/. 
    

 
Figure 7. - Load on the slabs 
 
In the Figure 8. the diagram of track slabs deflections and the deformed shape of the model 
are given /6/.  
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Figure 8. - Track slabs deflections and the deformed shape of the model 
 
5. Conclusion 
The track slab "mass-spring" system is used in urban area although it is fairly expensive, 
becouse it completely fulfilled the special requirements, especially for the slab deflection 
limits and isolation from vibration and noise at the source. Depending on the used elastic 
elements materials, it is possible to influence on the slab stress and strain state within wide 
limits. in the presented example the maximum deflection of 4,56 mm is acceptable, because 
it agrees with the measured one /3/. 
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Several methods for a calculation of derivatives of eigenvectors with respect to design 
parameters are described here. These are the finite-difference method, the modal method, a 
modified modal method, Nelson's method, an improved first-order approximation of eigenvalues 
and eigenvectors and an iterative method. By combining the other structural reanalysis 
techniques and one of these sensitivity methods, it is possible to enhance the efficiency and the 
accuracy of structural optimization techniques for determining the optimum condition of 
mechanical structure specified by an analyst. 

 
  INTRODUCTION  

 
 A number of techniques exist that can be applied to the dynamic reanalysis of 
mechanical structures. One of the most popular of these is sensitivity analysis which has 
been developed and applied by several workers to the general eigenvalue problem [1] and, 
more specifically, to applications of structural dynamic modification analysis in references 
[2-3]. Some of the areas where sensitivity analysis has been applied include (i) system 
identification, (ii) development of insensitive control systems, (iii) use in gradient-based 
mathematical programming methods, (iv) approximation of system response to a change in 
a system parameter, and (v) assessment of design changes on system performance [4]. In 
this area, both first- and higher-order eigenvalue and eigenvector sensitivities have been 
investigated with a view to predicting the response of a modified structure from  knowledge 
of its spatial and modal properties in the original, or unmodified, state. The sensitivity 
analysis of a mechanical structure is based on a Taylor expansion of eigenvalues and 
eigenvectors of the unmodified structure. Traditionally, a truncated Taylor or matrix power 
series evaluated at a nominal design point is used to approximate the eigen parameters of 
modified structures [5,6].  

 
MODAL SENSITIVITY ANALYSIS 

 
 Modal design sensitivities are the derivatives of the eigensystem of a dynamic 
system with respect to those variables which are available for modification by the designer. 
A typical modification would be the change in diameter of a circular section. This would 
affect both the mass of the section, proportional to the square of the diameter, and its 
stiffness, which depends on the second moment of area of the section. A change in length 

816

mailto:ntrisovic@mas.bg.ac.rs
mailto:tlazovic@mas.bg.ac.rs
mailto:acibulj@tmf.bg.ac.rs


 
 
 
 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011                    C-56 

 

would have a mass effect directly proportional to length, but a stiffness change depending 
on the cube of length. Changing material would similarly affect mass, stiffness and 
damping. The design variables depend on the type of optimization problem. In the design of 
structural components, such as stiffened panels and cylinders, the design parameters 
represent the spacing of the stiffeners, the size and shape of the stiffeners, and the thickness 
of the skin. If the skin and/or stiffeners are made of layered composities, the orientation of 
the fibers and their proportion can become additional variables. The sizes of the elements 
are design variables of a structural system of fixed configuration (frames, trusses, wings, 
fuselages, etc). The thickness of plates, cross-sectional areas of bars, areas, moments of 
inertia, and torsional constants of beams represent sizes of the elements. The parameters 
may be spatial if the optimization includes configuration.  Shape sensitivity analysis of 
physical systems under dynamic loads may be important from different points of view (i) to 
understand and model the system's behavior better with respect to shape, (ii) to optimize the 
physical shapes of the desired systems responses in a prescribed time interval, or (iii) to 
identify shapes by utilizing the system's measured response in time.  

 
  PROBLEM STATEMENT. DERIVATION 
 
 The matrix form of the equation of undamped motion of an FE model is: 
          0)()(  txKtxM   (1) 

 The free-vibration natural frequencies and mode shapes of a linear structural 
system can be computed by solving the above eigenvalue problem 
 }]{[}]{[ iii QMQK   (2) 

where  are the structural stiffness and mass matrix, respectively. The system 

matrices are considered to be a general function of the design variables denoted by 
, and 

][],[ MK

,...,,{ 21 vvv },...,}{ pj vV  i  and  are the eigenvalue and the eigenvector of 

mode i, respectively. The eigenvalue and eigenvector derivatives can be calculated by 
performing partial differentiation of the equation (2) to an updating structural parameter vj: 
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 This is an equation for the eigenvector sensitivity and 
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 (4)  

 
the formula for the eigenvalue sensitivity of the ith mode to the jth design parameter. 
Equations (3-4) have been derived under the assumption that the baseline eigenvectors have 

been mass normalized:        1 i
T

i QMQ . 

 From this formula, it can be seen that the sensitivity of an eigenvalue to an design 
parameter can be calculated from the eigenvalue, the corresponding eigenvector, and the 
sensitivities of the stiffness and mass matrices to the design parameter (variable).  
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 DESCRIPTION OF THE SENSITIVITY METHODS 
 
 There mainly exist three categories in the literature: the modal method, the direct 
method, and the iterative method. Several methods for calculating eigenvector derivatives, 

, are described. Every method, exept the finite-difference method, requires the 

mass matrix and stiffness matrix derivatives, 

  ji vQ  /

jvM  /][  and  jvK  /][ , respectively.  

 
  Finite-Difference Method 
 
 The most straightforward approach for calculating the derivatives is the finite-
difference method. In the finite-difference method, Eq. (2) is solved for , the 

jth design variable is perturbed by 

oldii QQ }{}{ 

jv , and a new eigenvector  is obtained 

by solving Eq. (2) again, where  

newiQ }{iQ }{ ' 

joldj vvnewjv  ,, . The derivative is approximated by 

the expression 

 
     

j

oldinewi

j

i

v

QQ

v

Q








 (5) 

 To reduce numerical errors associated with Eq. (5), attention should be paid to the 
step size . An algotithm for determining the optimum step size has been developed to 

further reduce numerical errors and is described in Ref. [8]. 
jv

 
 Modal Method 
  
 The modal method expresses the derivative of an eigenvector as a series expansion 
of the system eigenvectors. Because this method is based on the series expansion of the 
eigenvalues and eigenvectors of the modified (perturbed) system, the efficiency of this 
method is limited. The approximate derivative is expressed as [11]: 
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where the coefficients Aijk are calculated using 
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  Considering the orthogonality property of the eigenvector, {Qi}, 

, and partial-differentiating this equation with respect to the updating 

parameter, vj, for , it can be obtained that: 
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 The expression for   ji vQ  /

 
 from Eq. (6) is substituted into Eq. (8), and using 

the orthogonality condition    1i
T

i QMQ , the coefficients Aijk are obtained: 
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][

2

1
. (9) 

 
 Modified Modal Method 
  
 The modified modal method uses a pseudostatic solution of Eq (3) as an initial 
approximation to the mode shape derivative. This is similar in principle to the mode-
acceleration method used in transient structural analysis [9]. Equation (3) is solved by 
neglecting the quantity   jii vQM  /][  and obtaining the pseudostatic solution for 

  
sji vQ  / , which is 
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 This pseudostatic solution is added to Eq. (6) to obtain 
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where ijkA  are coefficients for the modified modal method. To obtain the coefficients 

ijkA , Eq. (11) is substituted into Eq. (3), and the result is premultiplied by . When 

simplified, this result becomes 

 TkQ
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 The relative convergence of the modified modal method vs the modal method for a 
given number of eigenvectors can be anticipated by dividing Eq. (12) by Eq. (7): 
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 Assuming that to calculate   ji vQ  /  accurately i modes or more are needed; 

then for k>i, ijkA  is smaller than Aijk, and Eq. (11) will converge faster than Eq. (6). 
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 Nelson's Method  

. (3
nvecto

 
 Nelson's method (the direct method) obtains an exact solution to Eq ). This 
method expresses the eige r derivative in terms of a particular solution  ij  and a 

complementary solution   iji cQ   where cij is an undetermined coefficient. In t  

solution for equation (3) can be written in the form of [7]: 

 

his case, any
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jv

  The particular solution is found by identifying the component of the eigenvector 
{Qi} with the largest absolute value and constraining th
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e derivative of that component to 
o. Combining equations (15) and (8), it is shown that  
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 The coefficient c  can be obtained by the following formula: 
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d First-Order Approximation of Eigenvalues and Eigenvectors  

e pert
by 

 
  Improve
  
 A method based on reduced basis approximation concepts is presented for 
improved first-order approximation of eigenvalues and eigenvectors of modified structural 
dynamic systems [10]. The approximation procedure involves the use of the baseline 
eigenvector and the first-order approximation term as basic vector for Ritz analysis of the 
perturbed eigenvalue problem. An assumption is made that the eigenvector of th urbed 
system can be approximated in the subspace spanned  iQ  and , an 

pproximation for the perturbed ei

 iQ
a genvector can be written as 

      iii QQQ  11
ˆ   (18) 

where ζ1 and ζ2 are undetermined scalar quantities in the approximate representation of the 
perturbed eigenvector. The assumption implicit in this proposition is that, even for 
moderate rge perturbations in the structural parameters, the first-order approximation 
yields a  iQ  vector, which usually gives a reasonable indication of the likely change of a 

baseline eigenvector, although the magnitude or ev

 to la

en direction of change may be 
rroneous. Eq. (18) cane  be expressed in matrix form as 

   ZTQ̂ i ][  (19) 

here [Tw ]=[Qi, ΔQi]
2 n  and     21

11,  TZ . 

 Substituting equation (19) in to equation (2) and premultiplying by [T]T, the 
sulting set of equations can be ere xpressed as 

}]{[}]{[ ZMZK TT   (20) 

here 
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and 

l transformation, the mass normalized perturbed eigenvector can be 
written as [10]: 
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equality relationship can be estabilished as criteria for selection of 
e best approximation 

where s the zero order Rayleigh quotient approximation which is defined below as 

 

th
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 axim lue of 

21 / , (ii) minimum d ance from the zero-order Rayleigh quotient 0rqa
i , (iii) 

minimum distance from i

ist

 , (iv) minimum magnitude, (v) minimum distance from the root

selected for the previous mode. This approximation procedure could also be interpreted
ov

 

 as 
an impr ed Rayleigh tient approximation procedure with one free ter, i.e.,  quo parame

12 / . 

 
  Iterative Method for Calculating Eigenvectors Derivatives 

m  was derived originally in Ref. [14]. The basic iterative equation 
after p( ) iterations is 

  
 The calculation of the eigenvector derivatives involves extensive computational 
effort. The direct method is one of the most efficient methods that produces exact solutions 
and does not need eigenvectors more than those whose derivatives are to be computed. But 
because its amount of computational effort is proportional to the number of eigenvector 
derivatives required, the application of the method becomes expensive when many 
eigenvector derivatives are demanded. On the other hand, the truncated modal method has 
an insuperable efficiency but suffers a serious accuracy problem. To improve the accuracy 
of the modal method, Wang [12] proposed a modified modal method, which was extended 
by Liu et al. [13] and Zhang and Zerva [14] to an iterative algorithm that can be used as an 
exact method as well as an approximate method and, just like the direct method, does not 
require additional eigenvalues and eigenvectors. The method assumes that the inverse 
stiffness matrix exists. Recently, Lin and Lim [15] and Zeng [16] presented an approach to 
deal with singular stiffness matrices. The convergence rate of the iterative method depends 
mainly on the ratio of the specified eigenvalue to the lowest unavailable one, and when the 
ratio approaches 1, the convergence rate of the corresponding eigenvector derivative will 
reduce quickly and the method becomes more expensive than the direct method. The 
iterative ethod used here

p 1
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  (26) ,...2,1;  pqk
where 
  = component of   kuV    jk vQ  /  in the range of  unavailable eigenvectors 

   nQ,...,qQ 1 , 

 = pth iterative solution for  pkuV  kuV , 

 = stands for the initial value.  0kuV

The term  represents the error because of the ith unknown eigenvector. When p 

tends to infinity,  vanishes because 

 p
ik  /

k


 p

i/ 1/ ik  , and  pkuV  converges to the 

exact solution with any initial value.  Equation (26) also suggests that  0kuV  can be set 

equal to zero. Note that in each iteration, t e roundoff error in the subspace spanned by the 
lower available eigenvectors  

h
 qQQ ,...,1  will be automatically wiped out, which results 

in a very stable iterative process.  

 
 CONCLUDING REMARKS 
  
 This paper reviewed several methods for eigensensitivity analysis with respect to 
design variables. These were the finite-difference method, the modal method, a modified 
modal method, Nelson's method, an improved first-order approximation of eigenvalues and 
eigenvectors and an iterative method. Nelson's method was the least computationally 
intensive, and since it is an exact method, it is the method recommended. When the original 
mode shapes were used as initial approximations to the subspace eigensolution of the 
perturbed problem, the finite-difference method was competitive with Nelson's method. The 
modified modal method always converged faster than the modal method when at least as 
many modes were used in the approximation as the number of the mode shape being 
differentiated. The modified modal method can compete with Nelson's method for the first 
mode shape derivative when the number of modes needed in the summation was known 
before the eigensolution was performed. Detailed comparasion an improved first-order 
approximation [10] with other approximation techniques indicate that significant 
improvements are achieved with a relatively small extra computational effort. An iterative 
method is simple, systematic, efficient and numerically stable. 
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Abstract. Sandwich beam has two, thin, outer layers made of elastic material and middle 
layer-core with relatively low stiffness, compared to outer layers stiffness. Calculation of 
these structures is based on assumptions that all three layers deform simultaneously and that 
there is a joint neutral line between outer layers. With this approach to the calculation it is 
possible to describe, with high grade of accuracy, the stress and the strain state of structure 
as well as local influence within each of the layers. In this paper is presented the influence of 
high temperature on critical buckling pressure force for a sandwich beam composed of two, 
thin elastic, outer layers of same thickness and middle layer with bending stiffness that can 
be neglected compared to the outer layers stiffness, based on the broken cross section line 
hypothesis. The critical temperature during buckling is determined on the example of a 
beam with restrained ends, and non uniform temperature distribution. 

 
 
 

1. Introduction 
 
Sandwich beam stability in elastic deformation area, at high temperatures, was reviewed in 
this paper. Sandwich beam consists of two outer layers (supporting layers) of small 
thickness  and middle layer with height of 2h made of material with trivial strength 
compared to the strength of outer layers material. Outer layers deform according to 
Bernoulli’s hypothesis on perpendicular cross section, while cross section of middle layer 
rotates as stiff set and does not need to be perpendicular to the bended central axis of a 
beam. This hypothesis is kinematic. It sets the law of point displacement variation in terms 
of beam thickness and does not depend on material properties. Normal stress is linearly 
distributed along cross section height, with zero value on central axis. That means that edge 
fibbers are completely used, and as fibbers approaches to the central axis their participation 
in bending action becomes insignificant. That leaded to the appearance of sandwich 
structures with two outer layers made of solid material, set on a certain distance and 
connected by middle layer in form of ribs made of the same material or this interspace is 
filled with less solid material, which provides corporate action of a structure. Calculation of 
structures with solid middle layer does not differ from the calculation of thin homogenous 
rods, and calculation of structures with middle layer made of less solid material is based on 
the broken line hypothesis [1], [2], Fig. 1. 
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Figure 1. Sandwich beam 

 
Supporting layers of fully restrained beam are submitted to heating in such way that 
temperature in direction of its longitudinal axis changes according to parabolic law, while 
temperature change along the thickness of supporting layers is linear: 
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and middle layer temperature equals T0, as shown in Fig. 2. Critical temperature Tcr was 
determined for a beam heated in such way. In first case, maximal temperature values of 
outer layers are equal (T1=T2), and in they are different (T1≠T2). 

 
Figure 2. Temperature distribution on fully restrained beam 

 

2. Displacement and Deformation Component 
 
If beam cross section deforms into the broken line shown in Fig. 1, displacement 
component of a random point on the cross section will be: 

 for upper layer,   hzh   , 
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, 1u 






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
,    xwxw u , (3) 

 for lower layer,   hzh , 
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
,    xwxw b , (4) 

 for middle layer, hzh  , 
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z
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 ,     xwxw m , (5) 

where 

   221 uuu  ,   221 uuu  . (6) 

 
Deformation components, different than zero, are determined according to the known 
expressions of elastic theory: 

 
x

w

z

u

x

u
xzx 











  , . (7) 

 

3. Forces and Bending Moments 
 
Normal stress xu and shear stress xzu will appear in outer layers of a beam, and only shear 
stress xzm in the middle layer. Deformation xu, at any point in direction of longitudinal axis 
of a beam upper layer, is defined as: 

 ),(1
u

u zxt
E
x

x  


 , (8) 

where E – is elasticity modulus, t1(x, z) – is temperature [oC] at any point of a beam upper 
layer determined in Eq. (1) and - is coefficient of material linear expansion. On the other 
hand that deformation, according to Eqs. (7) and (3), is calculated as: 

 
2

2
1

u
d

d

2d

d

x

w
xz

x

u
x 






 

 . (9) 

Expression for bending moment Mxu will be obtained if right-hand sides of Eqs. (8) and (9) 

are multiplied by 





 

2


xz  and integrated over layer thickness. Bending moment in 

lower layer of a beam Mxb is determined the same way, so it follows: 
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where temperature influence is determined by parameters: 
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Forces, in each layer of a beam, are obtained by stress integration for the central line of a 
beam cross section, over the appropriate layer height as shown in Fig. 3. Total forces and 
moments of sandwich package are determined by summing of appropriate forces and 
moments for each layer. Those forces and moments, according to Eqs. (3) to (6), can be 
expressed by displacement components as: 
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where G3 – is shearing modulus for middle layer material, B = Ed – is axial stiffness, D = 
Ed 3 / 12 – is bending stiffness per unit width of beam outer layers and temperature 
parameters are: 
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Figure 3. Positive forces and moments in sandwich beam cross section 

 

4. Differential Stability Equations and Contour Conditions 
 
Differential stability equations are obtained from static equilibrium condition for forces 
appearing in cross sections of a beam element, as shown in Fig. 3. Those equations, 
expressed by displacement components u, u and w, are reduced to: 
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Eq. (19) is independent to Eqs. (20) and (21) and it has trivial solution in terms of function 
u, so the beam stability problem is reduced to solving the system of two differential 
equations (20) and (21) with unknown functions u

(x) and w(x), which must satisfy contour 
conditions as well. Contour conditions can be expressed by displacement components or by 
appropriate transversal forces and moments. Valid geometric leaning conditions for fully 
restrained beam are: 

 w = 0, 0
d

d


x

w
, u= 0, for x = 0 and x = l. (22) 
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Temperature influence to the beam stability is determined by parameters  and , and it 
can be seen from Eqs. (20) and (21). The basic differential equations are not different from 
the stability equations of a beam submitted to pressure forces, if parameters are equal (= 
2) or if they are constant in longitudinal axis direction, or if they change by linear law. 
 

5. Numerical Results and Conclusions 
 
Solving of a beam differential stability equations is shown on the example of fully 
restrained beam with length l, shown in Fig. 1, submitted to the heating of outer layers in 
longitudinal axis direction according to Eqs. (1) and (2). Pressure force will appear at the 
beam restrain point as: 

 )( bu0 xxxx NNNN  , (23) 

where Nxu and Nxb are pressure forces in the beam outer layers, determined as: 
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Total pressure force is obtained by integration of Eqs. (24), based on Eqs. (1), (2) and (23), 
as: 
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where T1 and T2 are maximal temperature values on upper and lower supporting layer of the 
beam, respectively. Required temperature parameters in basic stability equations, according 
to Eqs. (12), (13), (17) and (18), are: 
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If dimensionless coordinate is introduced as: 
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differential stability equations (20) and (21) are reduced to the following form:  
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where pressure force coefficient  and shearing coefficient k are defined in terms of 
pressure force Nx0, and shearing modulus G3, respectively as: 
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and dimensionless geometric coefficients r and h1 are: 
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and temperature parameters are: 
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Right-hand sides of Eqs. (29) and (30) are equal to zero if heating temperatures of the outer 
beam layers are equal (t1(x,z)=t2(x,z)), so the stability problem is reduced to the solving of 
homogenous differential equations with unknown displacement components w(), u(). 
Displacement components that satisfy these homogenous differential equations, for the 
stress state before critical (D = 0, r = 0), can be assumed as: 
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where axial pressure force coefficient is: 
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Unknown integration constants C1 to C4 are calculated from contour conditions (22) as: 

 w = 0u , for and (37) 

Condition for the system of algebraic equations with unknown constants C1 to C4 to have 
nontrivial solutions, when displacement components (34) and (35) are included in contour 
conditions (37), is reduced to the following equation:  
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which is satisfied for the lowest value of parameter s = 2. Minimal value of pressure force 
coefficient is: 
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and minimal value of the critical temperature is: 
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In case that the beam outer layers are submitted to the temperatures t1 and t2, determined by 
Eqs. (1) and (2), the stability problem is reduced to the solving of non homogenous system 
of differential equations (29) and (30). For the strain before critical (D = 0, r = 0), 
considering parameters (17) and (18), this system of differential equations is:  
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System of differential equations (41) and (42) will be satisfied if displacement components 
are assumed as: 
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When Eqs. (43) and (44) are included into contour conditions (37), following system of 
algebraic equations in terms of unknown constants Ci (i = 1,...,4), is obtained: 
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Solving of system (45), in terms of unknown constants Ci (i = 1,...4), gives: 
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where  is pressure force coefficient, determined by Eq. (31). 
 
The lowest value of parameter s, of critical pressure force coefficient , is determined from 
contour condition dw/dx = 0 for = , from the following equation: 
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Eq. (47) has one solution equal to zero, real solutions s = 2n (n=1, 2, ...) and real solutions 
of following equation: 
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Solutions of Eq. (48), in terms of parameter s, different than zero are determined as:  

 

S

s  , (49) 
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where S is a solution of following function: 
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Values of parameter S depend on material parameters and geometry of the beam, as it can 
be seen from Eqs. (31) and (50). Function f(z) is illustrated in Fig. 4, for the following 
values of these parameters: E = 21 000 kN/cm2, = 0,2 cm, h = 4 cm, G3 = 35 kN/cm2, = 
0,0000125 1/0C. Solutions of the illustrated function are S = 1,723153076; 6,8826688; 
8,939108457; …, and minimal solution is S = 1.723153076, and minimal value of 
parameter s is s = 0,548496594. 

 
Figure 4. Function f (z) 

 
Thence, equation for determination of the critical temperature minimal value, according to 
Eqs. (25), (31) and (36), is reduced to: 
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where coefficient c is related to the ratio of maximal temperature values on outer layers of 
the beam: 

 
1

2

T

T
c  . (52) 

Variation of the critical temperature Tcr, is illustrated in Fig. 5 for the coefficient values c = 
0,1; c = 0,5; c = 0,9 and k = 0,1; k = 0,25; k = 0,5 determined according to Eq. (31). Lines a 
correspond to variation of the critical temperature minimal value for sandwich beam 
submitted to non uniform heating of outer layers and equal maximal temperature values (T1 
= T2), and lines b correspond to the case of different maximal temperature values (T1 ≠ T2). 
Lines c, in the same diagram, show the critical temperature variation for homogenous beam 
with bending stiffness D = EH3 / 12 and cross section height H = h + . 
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Figure 5. Critical temperature 

 a – sandwich beam, T1 = T2 

 b – sandwich beam, T1 ≠ T2 
 c – homogenous beam 
 
It can be seen that, in all three cases, critical temperature values are less different with 
increment of a beam length. For shorter beams these differences are higher. Critical 
temperature values for sandwich beam, with middle layer of high shearing stiffness (G3=∞, 
k=0), are not much different than critical temperature values for homogenous beam, as 
shown in Fig. 6. 

 
Figure 6. Critical temperature, G3 = ∞ 

 a – sandwich beam, T1 = T2 

 b – sandwich beam, T1 ≠ T2 
 c – homogenous beam 
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Displacement components u() i w() of sandwich beam submitted to non uniform heating 
with critical temperature T1 = Tcr determined according to Eq. (51) are shown in Fig. 7 and 
Fig. 8. 

 
Figure 7. Sandwich beam deflection w () 

 

 
Figure 8. Displacement component u() 
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Abstract. This paper discusses the problem of contact effects in wire rope strand subjected 
to axial loading, to be more specific, it explores how different types of contact affect the 
wire rope static behavior. The analysis was carried out by finite element method based 
computer program. The software used allowed three different types of contacts, including 
friction, and all of them were applied in this analysis. The wire rope was subjected to two 
different types of axial loading.  The comparison of the obtained results was carried out on 
the parametric 3D model of 6x7 IWRC. 

 
 
 

1. Introduction 
 
High strength wire ropes are very important tensile structural members. Due to their 
flexibility and high strength, ropes are in widespread use throughout the mechanical, 
electrical, mining and naval engineer industries. Applications include lifts, suspension 
bridges, electrical power transmission, aircraft arresting cables, and mining equipment. It is 
well known that a major advantage of such elements is their capacity to support large axial 
load.  
In order to predict the wire rope behavior, several theoretical models and analytical studies 
have been presented in the literature, [1, 2]. Most of them neglect frictional and contact 
effects, but there are some, that takes those effects into consideration. 
As technology and computer sciences were developing and became more available, 
numerical analyses started to be frequently used in predicting the wire rope behavior. 
One of the first finite element analysis of simple straight strand has been presented by Jiang 
et. al in [3]. 
Elata et. al [4] developed a new model for simulating the mechanical response of an IWRC. 
Elasto-plastic contact problem of laying wire rope using finite element analysis has been 
presented in [5]. 
A realistic 3D structural model and finite element analysis of a simple wire strand has been 
briefly explained in [6], by Imrak and Erdonmez. The same authors presented 3D solid 
model and wire-by-wire analysis of IWRC in [7]. 
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The frictionless contact effects in wire rope strand subjected to axial loading was analyzed 
in [8]. 
 
Some of the mentioned analyses ignored frictional effects, but there were some [3, 4, 6, 7, 
8], that took those effects into consideration. However, analysis of other contact effects in 
IWRC was neglected in available literature. Also, all of them introduced axial loading as 
applied axial strain, except in [9] were authors used axial force which was evenly 
distributed between wires. 
Because of these reasons and its complex geometry, it is still very difficult to model and 
analyze wire ropes, using numerical methods, such as finite element method. Also, this kind 
of analysis requires substantial computer resources. 
Nevertheless, numerical analysis must be employed to provide a better understanding, and 
hence prediction, of the mechanical behavior of the wire rope strands, thus reducing the 
need for expensive tests (because of which the experimental results reported in the literature 
are very limited). In order to accomplish all of that, the aim of this paper was to explore 
some aspects of behavior of wire rope strand subjected to axial loading, using the finite 
element method based computer program. The special emphasis was the effect of different 
types of contact and different types of axial loading, regarding force distribution, on the 
wire rope static behavior. 
 

2. Finite element model and analysis 
 
Model of the wire rope considered here is shown in Figure 1. As it can be seen, the cross 
section of a wire rope consists of one simple, straight, seven-wire strand surrounded by six 
seven wire strands. Such cross section is often used as a rope core in a more complex rope 
and as such is sometimes called an independent wire rope core or IWRC. It is a member of 
complex wire ropes that carries the greatest amount of axial loading. 
 

 
 

Figure 1. Cross section of IWRC. 

 
A 3D finite element model of IWRC was created by using both CATIA and Ansys13 
Workbench. First, the parametric geometrical model was created in Generative Shape 
Design mode of Catia. The obtained geometrical model was then imported to Ansys13 
Workbench. This program allowed specification of material properties, application of loads, 
generation of finite element mesh, and contact definition as well as solving and obtaining 
necessary output data. 
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It is well known that very important issue in any finite element analysis is the element 
selection and mesh size. If the created mesh is too coarse then the problem may not 
converge due to increased time steps and there will be no solution. On the other hand, too 
fine mesh may cause similar difficulty because of large number of elements and nodes, i.e. 
large numbers of equations. This can also significantly increase computational time. So, 
several different 3D models were made, with different numbers of elements in order to 
obtain the optimal FEM model, regarding accuracy and computational time. 
Finite element used for meshing all analyzed models was SOLID186, a brick solid element 
that is used in 3D modeling of solid structures, as default element. 
The software used in this study allows two types of linear contacts, and both of them were 
applied in this analysis. Bonded contact is the default configuration of contact and applies 
to all contact regions (surfaces, solids, lines, faces, edges). If contact regions are bonded, 
then no sliding or separation between faces or edges is allowed, as if the bodies were glued. 
No Separation contact setting is similar to the bonded case. It only applies to regions of 
faces (for 3-D solids) or edges (for 2-D plates). Separation of faces in contact is not 
allowed, but small amounts of frictionless sliding can occur along contact faces. 
Also, frictional contact was available, and this nonlinear analysis was carried out, as well. 
In this setting, two contacting faces can carry shear stresses up to a certain magnitude 
across their interface before they start sliding relative to each other. It only applies to 
regions of faces. This state is known as "sticking." The model defines an equivalent shear 
stress at which sliding on the face begins as a fraction of the contact pressure. Once the 
shear stress is exceeded, the two faces will slide relative to each other. The coefficient of 
friction can be any non-negative value. 
The axial loading behavior was analyzed, with two different load settings. 

2.1. Axial loading by applying evenly distributed axial force 
 
First, axial loading behavior was investigated by applying an axial force to the free end of 
the IWRC 6x7 wire rope, while the other end of the IWRC was fixed. The total force of 900 
kN was applied in increments of 100 kN. The total force was evenly distributed between 
wires. 
The IWRC 6x7 wire rope has been taken as an example. The core strand radius of center 
wire was r1=1.97mm, and outer wire r2=1.865mm, and pitch length 70mm; the outer strand 
center wire radius was r3=1.6mm, and outer wire radius r4=1.5 mm and pitch length 
193mm. The overall length of the wire rope model was 18mm. 
The model was meshed, and the prescribed boundary conditions (Figure 2) were used for 
solving. As mentioned, on one end of the model the degrees of freedom in all three 
directions were constrained, and on the other end the displacement in x and y directions 
were restrained to zero. 
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Figure 2. 3D Finite element model – mesh and boundary conditions 

For two types of linear contacts elastic behavior was analyzed, were the modulus of 
elasticity was E=1.88e11 Pa, and was Poisson’s ratio ν=0.3. 
For model with frictional contact, nonlinear analysis was carried out. The additional IWRC 
material properties used in elastic-plastic analysis are defined as: the yield strength 
Rp0.2=1.54e9 Pa, tangent modulus Et=2.46e10 Pa, ultimate tensile strength Rm=1.8e9 Pa, 
while the friction coefficient was =0.115. 
The solutions were obtained for three different meshed models, also for 298683, 616646 
and 1531845 numbers of nodes or 61166, 134925 and 341925 numbers of elements 
respectively, for two types of linear contact settings. For nonlinear model the solution was 
obtained only for 298683 number of nodes, because this type of analysis is time consuming 
and requires significant computer resources. 
The solution calculated in this analysis was total deformation. The maximum deformation, 
i.e., strain occurs on the outer wire of outer strand (Figure 3) for all mashed models. 
 

   
 

Figure 3. FEM solution-Total deformation  

As mentioned, the numerical models were solved, and results are presented in the following 
diagrams. 
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Figure 4. Diagram of axial force - BONDED 
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Figure 5. Diagram of axial force - NO SEPARATION 
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Figure 6. Diagram of axial force - FRICTION 

The output data in this load case were axial strain, which was calculated for each individual 
wire. The applied forces are given as a function of maximal calculated strain. The 
maximum value of strain on the axis is 0.015 on all diagrams. This enabled comparison of 
the obtained results. 
As it can be seen on first two diagrams (Figures 4, 5), there is no major difference between 
results obtained for different number of nodes, and that is the reason why the nonlinear 
model for this load case was calculated only for minimum number of nodes (Figure 6). 
The following diagram (Figure 7) shows the solutions obtained for all three different types 
of contact for the meshed model with minimal numbers of nodes.  
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Figure 7. Diagram of axial force for three different types of contact 

As it can be seen, there are rather good agreement between results in the elastic area, i.e. 
until value of resulting axial strain reaches 0.008. As the value of the applied axial force 
rises, the difference between obtained solutions becomes more significant. 
 

2.2. Axial loading by applying unevenly distributed axial force 
 
Also, axial loading behavior was investigated by applying unevenly distributed axial force 
to the free end of the IWRC 6x7 wire rope, while the other end of the IWRC was fixed. The 
total force of 900 kN was applied in increments of 100 kN. 
The axial force distribution used in this analysis is simplified load distribution obtained 
from wire by wire analysis in [7], and it is shown in Table 1. When the loads are sorted 
according to those percentages, center wire of the core strand, labeled CCW (Figure 8), 
carries the major portion of axial force. The next layer of outer core wires (OCW) carries 
slightly lesser portion of axial force. Similar relation of axial force distribution exists in the 
outer strand. The outer strand wires (OSW) carry the smallest amount of applied axial 
force. 
 

IWRC Axial force distribution  

Central Core Wire               (CCW) 3.86% 
Outer Core Wire (1 of 6)     (OCW) 2.72% 
Core Strand 20.18% 
Strand Central Wire             (SCW) 2.21% 
Outer Strand Wire  (1 of 6) (OSW) 1.85% 
Outer Strand (1 of 6) 13.30% 

Total 20,18% + 6 x 13,3%=100% 

 
Table 1. Axial force distribution 

If the axial load of the core strand is compared with the outer strand of the IWRC, core 
strand carries an average 20.18% while one of the outer strands carries an average 13.30% 
of the total axial load. 
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CCW

OCW

CSW

OSW

 
 

Figure 8. Wire labeling 

The other applied settings for two linear contacts, and nonlinear frictional contact were the 
same as in previous analysis. 
As before, the solutions were obtained for three different meshed models, for two types of 
linear contact settings. For nonlinear type of contact the solution was obtained only for 
model with 298683 number of nodes. 
The solution calculated in this analysis, also, was total deformation. The maximum 
deformation, i.e., strain occurs, again, on the outer wire of outer strand (Figure 9) for all 
mashed models. 
 

   
 

Figure 9. FEM solution-Total deformation  

Again, results for solved numerical models are presented in the following diagrams. 
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Figure 10. Diagram of axial force - BONDED 
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Figure 11. Diagram of axial force - NO SEPARATION 
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Figure 12. Diagram of axial force - FRICTION 

 
As before, the output data in this load case were axial strain, which was calculated for each 
individual wire. The applied forces are given as a function of maximal calculated strain. As 
it can be seen on diagrams shown on Figures 10 and 11, there is excellent agreement 
between results obtained for different number of nodes, and that is the main reason why the 
nonlinear model for this load case was calculated only for minimum number of nodes 
(Figure 12). 
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Figure 13. Diagram of axial force for three different types of contact 

The diagram presented on Figure 13 shows the solutions obtained for all three different 
types of contact for the meshed model with minimal numbers of nodes. 
As it can be seen, there is rather good agreement between results in the elastic area, i.e. 
until value of resulting axial strain reaches 0.008. Also, the agreement between results is 
better than in previous load settings. 

 

3. Comparison of the results 
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The next diagram (Figure 14) shows the comparison between results obtained in two 
different load cases, to be more accurate, it represents the variation of axial force with axial 
strain for two load cases calculated in this analysis, and results from [7]. 
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Figure 14. Variation of axial force with axial strain for two load cases 

As it can be seen, there is good agreement of the results. The relative error between results 
from [7] and solution obtained for second load settings is about 10%, which could be quite 
acceptable from an engineering point of view. It can be concluded that improving of 
accuracy can be achieved by employing better axial force distribution. However, it is 
obvious that refining the mesh and increasing the number of finite elements will lead to 
enhanced accuracy. 

 
4. Conclusion 
 
Using commercial software, which is currently widely available, some aspects of  behavior 
of wire rope strand subjected to axial loading were investigated, using the finite element 
method based computer program. The wire rope was subjected to two different types of 
axial loading, regarding force distribution. The two different types of linear contacts 
between wires were applied, as well as frictional contact. It is established that there is no 
major difference between solutions obtained for different node numbers, when linear 
contacts are consered. The obtained results in the case when the load was applied as evenly 
distibuted axial force, showed rather good agreements with the results from the literature 
that was available, especially in the elastic area. In the other load case, when the load was 
applied as unevenly distributed axial force, the agreement of the results was improuved. In 
both load cases it has been shown that linear type of contact is more than adequate in the 
elastic domain. However, in plastic area, frictional contact must be used, in order to achive 
acceptable accuracy. This analysis showed that suitable load distribution can be used to 
improuve results. This emphasis, once more, the significance of creating suitable finite 
element model of IWRC, in order to provide a better understanding, and hence prediction, 
of the mechanical behavior of the wire rope strands. 
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ABSTRACT. Starting from the theoretical foundations of the structural dynamics we come 
to the equation for calculating the effects of seismic forces, while introducing at the same 
time certain simplifications that do not have a significant impact on its accuracy. Special 
attention is paid to the studying of the behavior of masonry buildings and their significance, 
since majority of such facilities are located in most rural and suburban areas, and they 
suffer mostly during earthquakes, which was also the case during Kraljevo earthquake. For 
the so-called "simple masonry buildings" direct evidence of safety is not required (EC8), 
which, in this case, has not proven justified. The regulations for the construction of high 
buildings in earthquake areas [31/81] say: Checking the resistance of masonry buildings is 
performed by: 1) the method of allowable stresses, when the tightening control of the main 
stresses in individual elements (walls) should not exceed the values given in Table 4. of 
the regulations manual,  which also provides a form for their calculation, 2) in cases when 
the assessment is carried out in accordance to the Final element method, the resistance of 
buildings is compared to the total horizontal seismic force, in accordance to the  Article 21, 
comprising the use of values for  main tightening tension from the  Table 5. of 
the regulations manual. As for the Eurocode 8, structural analysis and proof of safety 
depends on the computational model of the building. Elastic response spectra of ground 
acceleration represent the spectral envelope of different types of ground vibrations. Seismic 
hazard is described by only one parameter. Seismo-genetic characteristics define, in 
different countries,   a large number of parameters, so that national organizations can adapt 
them according to their specific conditions. 
 
Keywords: mechanical properties, masonry buildings, allowable stresses, final element 
method, calculation.  
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1. Dynamic calculation of seismic forces  
 

1.1. Introduction  
 
The theoretical approach to consideration of earthquake effects is the analysis of forced 
vibrations generated due to the displacement of subsoil, such as in the event of 
displacement of the soil on which rest foundations of a structure. Displacement of subsoil 
affects the structure as an external disturbance force, that is, the task is reduced to the 
analysis of forced vibrations of the dynamic system which modeled the observed structure. 
The dynamic calculation of structures in respect to the effects of seismic forces is carried 
out, as a rule, on the simplified mechanical models, using discretization of the created 
distribution of masses, whether by the set of the finite number of concentrated masses, or 
by the application of the finite elements method. Due to the complexity of the issue, no 
entirely adequate calculation method has been developed up to date, and the principal 
difficulty is predicting the character and intensity of an earthquake. Very strong 
earthquakes are rare, and precise seismological measurements were successful in a 
relatively small number of strong earthquakes. The other difficulty is that a realistic 
analysis of earthquake effects can be provided only if the behaviour of the structure outside 
the elastic area is taken into consideration. In earthquakes, plastic deformations are regular, 
thus it would not be cost-efficient  to design the structures supposing they are completely 
elastic. However, analysis of a system with a large number of degrees of freedom in the 
plastic area, adjoined by an irregular and insufficiently certain nature of soil movement 
makes any accurate solution almost impossible. For this reason, in practice, this problem is 
reduced to a static problem, even though there are also tendencies to consider the structures 
in dynamical terms. The analysis of seismic effects is very successfully conducted by 
implementing the so called spectral theory where the dependency of maximum amplitudes 
of displacement, velocity, acceleration, stress etc. on the own frequency of the system is 
observed. In this manner the “response spectra“ are obtained, showing the maximum 
amplitudes (of displacement, velocity, acceleration and other) of all the possible linear 
systems with one degree of freedom (fig. 1) in respect to some given cause, such as soil 
movement. The abscissae of such “spectrum” are characteristic of system frequency, and 
the ordinates are characteristic of maximum value of amplitudes. Therefore, the response 
spectrum indicates how a dynamic system reacts at various values characteristic for 
frequencies.  
 

 
fig. 1. Dynamic model of the system with one degree of freedom 
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As already mentioned, the correct seismic calculation must include behaviour of the 
structure in the plastic area, so recently, the non-linear analysis methods are being 
progressively developed. Existence of contemporary automatic computers, enables 
development of such methods requiring very extensive calculation, but which much better 
describe the behaviour of a structure in earthquakes. Simultaneously with the theoretical 
approach, the experimental methods are developed, either on the models or the structures 
themselves, where the data required for evaluation of dynamic behaviour of a structure in 
earthquake are measured and recorded.  
 

2. Determination of seismic forces  
 

2.1. Forced vibrations of a system with one degree of freedom  
 
In the case of the system with one degree of freedom (Fig.1.) the differential equation in the 
most general case is:  

  tFkxxcxm   . (1) 

It is the equation of forced damped vibrations, where (1), m is mass, c- damping coefficient, 
k- stiffness constant and F(t)- disturbing force. If F(t)=0, the vibration is free and with 
damping, and if c=0, there are free vibrations without dumping. For the solution of the 
equation (1) it is necessary to know the initial kinematic state, that is the initial velocity 

 and initial displacement x0. The force F(t), as it has been said, is an arbitrary 

disturbance force. The solution of the inhomogeneous equation (1) is equal to the sum of 
the general solution of the homogeneous par of equation (the so called left side) and the 
particular solution of the entire equation. In the first part of this solution, the influence of 
the initial conditions is reflected, and it can be laid down as: 
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Where 
krc

c
 , is the ratio between the actual and critical damping, also called the relative 

damping, and d is the frequency of damped vibrations, i.e. : 

 21  d . (3) 

If the damping is strong, i.e.  ξ ≥1, the system motion is aperiodic, there no vibrations.  
The second part of the solution, the so called particular integral, can give as steady forced 
vibration which can be written as: 
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If there is no damping, the solution of a homogeneous part is given by the expression : 

   t
x

txtx 
0  sincos 0  (5) 

And the solution of the steady forced vibration is: 

     
m 0

This integral is very important in the dynamic analysis of structures and is called the 
Duhamel integral, or superposition integral, or convolution integral. Its value depends, of 
course, of time variable function F(t). The more accurate measure of the intensity of ground 

dtFtx
t

p   )(sin)(
1

. (6) 

e new variable 
=xg+x, is introduced, then the differential equation is reduced to the form: 

displacement can be obtained by observing the simple oscillator with one degree of 
freedom (fig.1.) which is exposed to moving ground xg(t). 
In earthquakes, principally important are the vibrations generated due to the soil 

isplacement. If the displacement is given by the function x(t), and if thd
xt
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 gxmkxxcxm    (7b) 

That is isplacement of the s, the d ubsoil here plays the role of the disturbing force having the 
value , so the solution is: 
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For the system without damping it is: 

 

 

    
 0

Earthquakes can be treated as a system of vibration waves propagating through the ground 
from the place where the sudden displacement of earth mass occurred due to a certain 
tectonic disturbance. The impulse displacement disturbance propagates in all directions so 
the instruments can record displacement, velocity and acceleration. An accelerographic 
recording of three components of soil displacement would be the complete description of an 
arthquake, but from the standpoint of effects of earthquake on behaviour of th

dtxtx
t

g )(sin)(
1

   . (9) 

e structure, 
e most important data are the amplitude, the frequent spectrum and duration.  

e
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.2. Spectral analysis method  

nd the displ essed 
by the Duhamel integral which due to the disturbing force 

2

 

In Fig. 1. the system is exposed to soil displacement xg(t) a acement is expr

gef xmF  has the form: 

     
m d 0

If here the approximation ωd ≈ ω, is adopted, that is, the frequency of vibrations with 
damping is substituted by vibrations without damping, and if the mark “-“ is omitted, 
because it has no importance for the analys
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is of earthquake effects, for the Duhamel 
integral, the following expression is obtained: 
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ity the maximum value of the system response 
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rm of adequate nomograms. In the similar manner, the spectral 
displacement: 
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This parameter (13) is called the spectral pseudo velocity of soil displacement ωg. It 
depends not only of the history of soil displacement, but also on the frequency of vibrations 
and relative damping of oscillator. Such spectra, for the various values of damping ξ are 
drawn in the fo
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he spectral acceleration is the measure for maximum elastic force of the T oscillator  

       TmSTSmTkSf ds ,,, 2
max   pad . (16) 

  TSx a
t , . (17) 

The mentioned spectra are basic characteristics of an oscillator when soil is displacing, that 
is, also the characteristics of a structure in earthquakes. These spectra are valid only in 
linearly-elastic area, because the Duhamel integral is valid only for such areas. The 
response spectrum can be applied only with modal analysis.  
According to previous statements, the theoretical basis of the structural design, complying 
to our regulations, utilize the application of spectral analysis, at which the static influences 
required for further calculation of the structures (moments, transversal forces) are obtained. 
These influences are added to the existing load of the structures as an additional load for the 
definitive static design. In our country, the calculation according to the standing rules for 
determination of seismic forces is obligatory, and there it is precisely specified what forces 
in the calculation are combined with the action of seismic forces. It is assumed that the 
seismic forces act on the structure in horizontal planes in an arbitrary direction. For high-
rise buildings, it is assumed that the forces act at the level of ceilings. The calculation is, as 
a rule, carried out for two orthogonal directions, separately for each one. The effects of 
vertical components of seismic forces should be taken into consideration, especially in 
those structures where such action could generate a significant increase of load, or endanger 
their stability.  
A particularly important point in analyzing the earthquake effects is interaction of the 
foundation soil and the structure. When there is no structure, in earthquake the soil can 
move freely. But a structure by virtue of its movement, causes additional movement of soil. 
In order to process the problem mathematically, the finite elements method is successfully 
employed, where the soil and the structure are modeled according to the existing geometry 
and mechanical characteristics of such heterogeneous media.  
In practice, often the character of an earthquake is obtained from the recorded 
accelerogram, i.e. it is known that the time dependency of acceleration in earthquake is 
known. In this case, a dynamic analysis of the structure is conducted, in a way that the 
disturbing force for all masses is this function of acceleration a(t) multiplied with a 
corresponding mass mk, applying the method of vibration propagation according to 
characteristic forms when the systems with multiple degrees of freedom are in question. 
The latest research and observations of earthquakes indicated that here were very severe 
damage and demolition even of those structures that had been properly designed to 
withstand the action of seismic forces. The reasons lie in the fact that the nature of 
earthquakes is still not sufficiently researched, and also in the fact that the behaviour of the 
structures in post-elastic area has not been sufficiently explained. Nowadays it is known 
that he actual seismic forces in the structure calculated on the basis of the theory of 
elasticity are at times 5-6 times bigger than the predicted ones, calculated according to the 
regulations. However, the structures withstand such stresses, as they absorb a certain 
amount of received kinetic energy through its ductility and adapt in the plastic area to the 
action of such generated great force. Therefore, the correct calculation of structures should 
equally observe the necessary stiffness and ductility. The ductility factor comprises the 
relation between the maximum elasto-plastic displacement and displacement on the limit of 
yield. 
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By its nature, the earthquake is the phenomenon which, by many parameters has a 
probabilistic character. These are the disturbing forces which are stochastically (randomly) 
variable in time, so the analysis must be based on the theory of mathematical statistics and 
probability theory.   
 
3. Design and calculation of seismically resistant masonry buildings according to 
Eurocode 8 (EC8) 
 
3.1. Basic mechanical characteristics of non-reinforced walls  
 
Mechanical characteristics of non-reinforced walls which are important for design of 
compressive strength (f), shear strength (fv) and bending strength (fx)- are in principle 
determined by corresponding standard (experimental) research, serving for definition of the 
so called characteristic values of strengths. EC6, through the appropriate European norms, 
prescribes the testing procedures for the mentioned strengths, and when defining the 
characteristic values, it presents the conditions for fractal of 5 %. However, it also permits 
it to be determined on the basis of the expression (it primarily refers to the characteristic 
compressive strength, in the case of walls built using general purpose mortar): 

  2
25,065,0

mm
NfKff mbk  .  

Here the compressive strength fb of the used element for building is normalized, and fm is 
the compressive strength of mortar. The value of the constant K, on the other hand, in the 
observed case depends on the group to which the used building elements belong, then on 
the type of the wall and some other conditions (which is all precisely defined in EC6) and 
its range varies between 0,4 to 0,6. 
For the walls built using the light mortars, EC6 provides the relations  

   65,0
bk Kff 

Providing that fb cannot be higher than 15N/mm2, and K=0,55-0,80. 
Characteristic wall shear strength is defined by EC6 through the expression: 

 dvkvk ff 4,00    

Where fvk0 is the so called basic shear strength (for the case σd=0) and σd is the compressive 
stress in the wall. For the walls built using general purpose mortar, having streZa zidove 
izvedene primenom maltera opšte namene čvrstoće fvk0 definisani su tabelarno pri čemu 
mora da bude ispunjen uslov fvk≤0,065fb pri čemu fkv nikada ne može da bude veće od 
graničnih vrednosti u tabeli. 
 
3.2. Design of seismically resistant masonry buildings according to EC8 
 
The paper makes prominent the requirements formulated by Eurocode 8 with a view of the 
presentation of local soil conditions, and they are defined by relevant seismic parameters.  
The elastic and design spectra were designed. For the structures built in seismic areas, in 
EC8 there are requirements that the structure must not collapse and the damage must be 
limited. The difference in the level of reliability was applied in classification of the 
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structures into various importance categories, marked as K0 coefficient. Each importance 
category is assigned a corresponding importance factor gt (K0). In order to satisfy the 
mentioned requirements, one must allow for the limit state, bearing capacity, and ensure 
that the structure possess the prescribed resistance and ductility, check the structural 
stability to toppling and sliding, as well as of the foundation and foundation soil the limit 
state of serviceability refers to checking and limitation of characteristic deformations, such 
as the relative displacements of floors etc. The construction site location and the nature of 
the foundation soil should be such so as there is no risk of soil failure, slope instability and 
permanent settlement caused by liquefaction or densification in the event of earthquakes. In 
the framework of EC8, the classification to A, B and C categories, from good to weak soil, 
was done. 
EC8 provides for the division of national territories into seismic areas depending on the 
local hazard, and it is constant within this zones and described via one parameter, that is via 
the value of effective maximum acceleration of soil at the level of bedrock or solid soil, 
which is called the design acceleration of soil ag. The design acceleration of soil for each 
seismic zone is adopted by appropriate national institutions, and it corresponds to the 
relevant return period of ║475║ years. If the design acceleration ag  is not higher than 
║0,10║ g those are low seismic activity zones. Earthquake action in EC8 is presented in 
principle by the elastic spectrum of soil acceleration response. As a reference return period, 
EC8 defines elastic spectra of response Se(T) for the masonry buildings by a relation  

   







 110 0

B
geB T

T
SaTSTT                                         (18) 

Where Sl(T) is the ordinate of elastic spectrum of response, T is the period of vibrations of 
the linear system with one degree of freedom, ag is the design acceleration of soil for the 
reference return period, β0 is the factor of amplification of spectral acceleration  for 5% of 
viscous damping, TB is the limit of the interval of constant spectral acceleration and S is the 

soil parameter. The corrective factor of damping is   7,02/7   , where ξ is the 

value of viscous damping of structure in percents. Elastic response spectra in EC8, s it is 
presented represent the envelope of spectra of various types of soil oscillations which have 
not been mentioned here. due to a great discrepancy in seismic hazard and seismo-tectonic 
characteristics in the variety of member states, earthquake action was defined via a 
sufficiently number of parameters whose numerical values are given only as indicative, so 
the national organizations in each member state can adapt the earthquake effects according 
to their specific conditions.  
The design spectrum is obtained by modification and reduction of the elastic spectrum of 
response, and it is a non-dimensional parameter which represents the total seismic 
parameter for horizontal direction (in analogy with the Code [3]). 
According to our regulations, for the specific category of soil the form of the curve of this 
coefficient is relatively simple to define in the function of the system period, because it 
depends only on the dynamic coefficient Kd (the remaining parameters defining it are 
adopted). The design spectra are introduced with the goal to avoid the non-linearity of 
analyses, and in order to include the energy dissipation and ductile behaviour, the reduction 
is accomplished by introduction of the behaviour factor q. This factor q approximates the 
relation of seismic forces if its response would be elastic with 5% of viscous damping. For 
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the reference return period, the design spectrum Sd(T) is defined by the following 
expression which would correspond to the masonry buildings: 

  















 110 0

qT

T
STSTT

B
dB

                                        (19) 

Where Sd(T) is the ordinate of the designed spectrum which is normalized with g, and with 
d is normalized the ratio of the design soil acceleration ag and the gravitational acceleration 

 gag / . The design spectrum is non-dimensional parameter, and represents, in fact, 

the total seismic coefficient for the horizontal direction K (in compliance with the definition 
[3]). The method of determination of seismic effects is simplified or multi-modal to the 
analysis (to which corresponds the method of equivalent load in the Code [3]). In this 
method, for each considered tone of vibrations, it is necessary to determine the appropriate 
shear force in Fbi, which is the result of multiplication of effective mass mef,i and ordinate 
Sda(Ti). The design spectrum of acceleration Sda(Ti) is obtained when the design spectrum 
Sd(Ti) is multiplied with the gravitational acceleration g : 

   gTSTS idida                                                                                          (20) 

In our Code [3] the diagrams M, depending on the soil category are given. 
The other approach to presentation of seismic action is via the intensity spectrum and time 
history, though in this case which entails the method of analysis of mechanical behaviour of 
the structure they are not necessary because it is needed to design a separate design 
spectrum for each specific structure, and they mostly relate to very significant structures, 
and the masonry buildings in the country and suburban districts are very similar and bear no 
importance for the application of direct dynamic analysis.  
 
3. National regulations and numerical examples  
 
The standing Code of technical standards for construction of high-rise structures in seismic 
areas, devotes twenty seven articles to masonry buildings. The code was put into effect in 
1981, after the Temporary regulations of 1964. Formulation of new regulations was aimed 
at introducing new findings, to use the existing experiences and to simplify the calculation 
as much as possible. In the regulations, firstly was performed a detailed categorization of 
high-rise buildings, according to the importance degree K0 (≥1,5-0,75). The Code was 
conceived in such manner so that he earthquakes of strongest intensity can cause damage, 
but not collapse of bearing structures, which in turn defines the degree of seismic risk. In 
the code further describes seismic activity and seismic parameters (coefficient of seismic 
activity Ks and dynamic coefficient Kd). In relation to this, a detailed categorization of soil 
is given as a basis for determination of seismic parameters. According to the code, the 
bearing structure analysis is carried out either according to the limit state theory, or the 
elasticity theory, thus to this aim the corresponding safety coefficients, maximum 
deflections, etc. have been prescribed. Seismic design of structures according to the Code is 
carried out either by the application of equivalent static load or dynamic analysis method.  
 
3.1. Equivalent static load method  
 
According to the standing Code (31/81) [3] the total seismic forces S is determined 
according to the expression (article 21) 
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                                                                                                         (21) KGS 

Where K is the total seismic coefficient for horizontal direction, and G is total weight of the 
structure and equipment. The total seismic coefficient for horizontal K is calculated 
according to he expression  

                                                                                          (22) pds KKKKK 0
Where in our case the designations are: 
K0 = 1,0, coefficient of the structure category , 
Ks = 0,100, coefficient of seismic intensity for 9°MSK-64, 
Kd = 0,70/T, dynamic coefficient (II soil category ) 
Kp = 1,6, ductility and damping coefficient. 
Limit values of coefficient Kd are: 1,0 > Kd > 0,47.  
According to the Code, verification of resistance of masonry buildings is carried out by the 
method of permissible stresses or limit state methods. the calculation of resistance of walls 
to shearing is obligatory. If the building’s height and width are higher than 1,5 the walls are 
also checked to bending, on which occasion the permissible stresses for vertical load of 
walls according to technical norms for building walls are increased for 50%. 
If the verification of resistance is performed according to the permissible stresses method, 
the main tensile stresses in certain elements (walls) are checked, whose values for certain 
types of walls must not exceed the values given in the table 4 of the Code. 
 
3.2. Numerical example  
 
In the considered case, for the solid brick wall (6×12×24cm) 
M0 100, MM 25,   σn,doz=9N/cm2 
The principal tensile stresses in certain elements (walls) are calculated according to the 
formula: 

                          doznn ,
02

0

2
0

2
5,1

4
                                   (23) 

Where: 
τ0- is the average shear stress in the wall element from the seismic action received by the 
elements . 
σ0- is the average stress in the wall element from vertical load, 
σn,doz- is the permitted main tensile stress. 

   22
2

/873,8
2

242,39
775,135,1

4

242,39
cmNn                

2
,

2 /0,9/873,8 cmNcmN doznn                                                  

which satisfies the required condition.  
Should the verification of the resistance is performed according to the limit state method, 
what is compared is the resistance of the structure with the total horizontal seismic force 
according to he article 21 of this code, when the safety factor is no less than Y=1,5. The 
resistance of the wall element is calculated according to the formula: 

                        
srun

srun





,

0,
0 1

5,1 


                                                           (24) 
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Where: 
σn,ruš – is the main tensile stress in the wall at demolition, whose values for the individual 
types of walls are given in the table 5 of the code, and concretely σn,ruš is: for solid brick 
(6×12×24cm) M0 100, MM 25,   σn,ruš=18,0N/cm2 

2
0 /40,21

0,18

242,39
1

5,1

18
cmN                                                

2
,

2
0 /0,18/40,21 cmNcmN srun                                                  

which satisfies the required condition.  
If the building walls are made of material (blocks, mortar), for which the values of 
permissible and failure main tensile stresses are not given in the tables 4 and 5 (there are 5 
types of walls) these stresses are determined on the basis of the results obtained through 
experimental research.  
 
4. Conclusion  
 
Due to the action of earthquake, the structure foundation may move, caused by the 
movement of the foundation soil. Dynamic calculation of the structure in respect to the 
effects of seismic forces is, as rule, reduced to a simplified mechanical model, using the 
discretization of actual distribution of masses. Aseismic engineering represents a number of 
contradictions and opposites for which an appropriate compromise must be found, that will 
not be at the expense of safety of people and property. Due to the complexity of the issue, 
no entirely adequate calculation method has been developed up to date, and the principal 
difficulty is predicting the character and intensity of an earthquake. The other difficulty is 
that a realistic analysis of earthquake effects can be provided only if the behaviour of the 
structure outside the elastic area is taken into consideration, which is very complicated even 
when contemporary computing machines are used. All this also applies to the design of 
masonry buildings with their mechanical characteristics, which are unfavorable for this type 
of effects. Due to their great stiffness, that is, small deformations and considerable dead 
weight, the masonry buildings attract large seismic forces which due to their low ductility, 
resilience and damping, they are not able to receive and transfer, so they prevalently sustain 
damage from the shear stress. Unfortunately, brick is among the most widespread material 
in our parts, particularly in the country and suburban areas and it must by taken into 
account. Connecting of vertical and horizontal ring beams a s well as connecting of bearing 
and partition walls via floor slabs is very important for the aseismic behavior of the 
structure as whole, and its individual elements. 
Determination of design seismic forces is based on the analysis of forced vibrations of the 
system with one or more degrees of freedom. The most employed theory, both worldwide 
and nationwide is the spectral theory, which represents the basis both international and 
national regulations for design of structures to withstand earthquake effects. The essence of 
the procedure applied in the systems with one degree of freedom, that is, the spectra of 
responses by definition represent the maximum response of the system depending on the 
nature of the system and of the damping, for a specific dynamic load. Apart from the 
elastic, there are also non-elastic spectra of response, design spectra, standardized design 
spectra for various categories of soil, in the function of damping and the period, spectra of 
strength (EC8), furrdevo spectra, as well as other types of spectra. Also, the design 
accelerograms are used, and determination of design earthquake loads, etc.  
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In our Code as well as in EC8 it is specified that the structure must not collapse and that the 
damage must be limited. In order to satisfy the mentioned requirements, the limit states of 
bearing capacity must be verified (resistance, ductility, stability, toppling, sliding, 
foundation and foundation soil), and the limit state of serviceability (deformation, floor 
displacement, etc.). 
According to our Code [3] the check of masonry buildings is performed by: the methods of 
permissible stresses when the main tensile stresses in walls are controlled, and which are 
given in the table 4 of the code, and according to the limit states method, when the 
resistance of the structure with the total seismic force is compared, and the corresponding 
stresses of collapsibility are given in table 5 of the code.  
Nevertheless, the preventive protection is the best form of protection of human lives and 
property, given it is harmonized with the level of development and future needs of a 
society. Aseismic engineering, as an important component of civil engineering and 
designing, undergoes an intensive development. If the status of technical regulations in the 
field of seismic is considered, it can be perceived that it is being intensively improved, both 
world and nationwide, as a number of Codes and Technical Standard Regulations have 
been enacted in this area in the recent years.   
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Abstract. Structures in which the connections are not absolutely rigid, but allow some 
relative rotation of the cross sections at the ends of a member, are the systems with elastic, 
i.e. semi-rigid connections. Having in mind that such connections are quite common in 
constructions, especially in the precast ones, it is of interest to consider their design taking 
into account the elasticity of joint connections. Review of the design using Deformation 
method, with detailed derivation and explanations, is given by M. Djuric, M. Milicevic and 
S. Zdravkovic in their papers [1], [2]. Here, the method will be briefly presented with the 
necessary terms for its practical application. The numerical example of calculation of the 
influences in a simple structure with semi-rigid connections according to the second order 
theory, the critical load and buckling length of the members, is given in the paper with 
corresponding analysis. On the base of author's detailed study it is concluded that the degree 
of rigidity of connections is of special importance for precast structures, as well as for 
earthquake-damaged structures where connections become semi-rigid due to earthquake 
action. Knowing that a small change of the connection rigidity significantly affects the 
redistribution of static and deformation values, this must be given adequate attention, as in 
Euro codes, because it affects the safety and security, as well as the cost of the structure. 

 
Keywords: semi-rigid connection, The deformation method, The second-order theory, 
critical load, buckling length. 

 
 
 

1. Introduction  
 
In the case of the optimal dimensioning of real structures there is a need to take into 
account the elasticity of joint connections in the design, i.e. real rigidity of the connection. 
The structures with elastic (semi-rigid) connections are the systems where connections 
between members are not absolutely rigid, but generally allow some relative flexibility in 
the direction of generalized displacements, which for the linear in plane element means: 
horizontal and vertical displacement and rotation of the end cross sections in joints. It was 
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observed that the level of rigidity of connection is of special importance for precast and 
earthquake-damaged structures, where it affects the redistribution of static and deformation 
values, critical load, buckling length and the basic dynamic characteristics of structure. 
European regulations, i.e. Eurocodes for structures (in particular Eurocode 3, 4 and 
Eurocode Eurocode 8), take due account to the design and construction of systems with 
semi-rigid connections. 
The basic ideas of deformation method originating from the end of the twentieth century 
when, at the suggestion of Professor Asimont's Munich Technical High School announced 
a competition to find methods of analyzing trusses with rigid joints. The award went to H. 
Manderla and this method is basically known as an accurate method of deformation. Otto 
More, solving this problem approximately (1892), neglecting the effect of normal forces on 
the deformation of beam, gave a method known as the approximate method of deformation. 
Further development in the direction of simplification was made by K.A. Čališev, and 
continued by Hardy Cross (1930) who applied the infinite series for finding of finite values 
of the actual end moments. Kani’s procedure followed, so that he has obtained bending 
moments as limits of infinite sequences. Significant contribution to the further development 
of deformation method for the calculation of frames according to the theory of the second 
order and to the solution of the problem of stability of structures was given by M. Djuric 
[1]. Deformation method is a contemporary method of the theory of structures and is now 
its main method. 
Wilson, Moore and Batho have also contributed to the development of design of structures 
with semi-rigid connections since 1917 by experimental tests on steel structures. Similar 
tests were performed during the 1930th by Rowan and Rathbun, and Monforton and Wu 
(1963). Russian scientist Denkevič (1967) has occupied himself with the calculation of 
reinforced concrete frames with semi-rigid connections, while Lionberger and Weaver 
(1969), Lightfoot and Le Messuvier (1974), Batizan (1978) and the Russian Shapiro (1974) 
have continued. 
COST C1 project contributes to creating the necessary new knowledge about the behavior 
of joints in order to improve design, safety and economy of structures, and to develop and 
integrate approaches in design of semi-rigid connections by organizing symposia.  
The economic studies have shown that regardless of the material the savings are between 
5% and 20% of the total construction cost, which is not negligible. 
 

2. Design according to the second order theory 
 

2.1. The basic design assumptions 
 
Linear statics of structures, which is applied in everyday engineering practice, is based on 
the following assumptions: 
a) Strains  in the member axis, rotation of the cross-sections φ and their derivatives are 
small sizes, whose squares and higher powers can be neglected (the assumption of small 
deformations). 
b) Displacements of the points of application of external and internal forces are small 
compared to the basic dimensions of beams, and that the conditions of equilibrium can be 
established on undeformed system configuration (assumption of small displacements of the 
points of application of external and internal forces); 
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c) The stress-strain relationship or temperature changes is linear (Hooke's law applies).  
 
The first assumption provides the geometric, the second static, and the third physical or 
material linearity in solving the problems of statics of structures. 
The equilibrium between internal and external forces, however, really is established on the 
deformed configuration of the system and consequently equilibrium conditions are 
nonlinear. Relationships between strains and displacements in the rigorous formulation are 
also nonlinear. 
The special forms of general nonlinear theories may be obtained by introducing additional 
assumptions in general theories of material and geometrical nonlinearity, such as  The 
theory of plasticity in the field of material nonlinearity, and The second-order theory in the 
frame of geometrically nonlinear analysis. These theories are of particular practical 
importance in analyzing the behavior of civil engineering structures. In this paper briefly 
will be presented the design according to The second-order theory, which is particularly 
important in solving the problem of stability of structures. 
 

2.2.  Design of the system with rigidly fixed members according to The  second order theory 

Strain state of the straight beam before and after deformation (Fig. 1.), can be described by 
the angle of rotation of the beam and deformation angles at the ends of the beam in all 
analog as well as in The first order theory, 

                        ikiik   ;         ikkki                                           (1.a, b) 

based on the principle of superposition, according to Fig.2. Expressions (1) can be written 
as: 

ikkiikiktikoikik MM   ,, ,        ikkiikiktkiokiki MM   ,,         (2 a, b) 

Where: 
 ik  and ik  or ik  and ki   are deformation angles due to unit values of moments 

ikM  i kiM ,  

while 
 oik ,  and oki,  or tik ,  and tki ,  are deformation angles due to the loading or 

temperature differences Fig.2. All these values are determined by the second-order theory 

for the same value of normal force ikS  or the value  by use of well-known method of 

initial parameters 2, 4. 
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      Figure 1. Straight beam before and after deformation           Figure 2. Deformation angles of the straight beam 

If the following notation is introduced: 
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The bending moments at the ends of a rigidly fixed beam, called beam of type k, can be 
determined from (1) and (2) as: 

ikikikkikiikik mcbaM   ,           kiikkikkiiikki mcabM             (5) 

For the beam of type g, which is fixed at one end and hinged at the opposite, the moment at 
the end i is determined according to: 

 igigiigig mdM  )(                               (6) 

In the second-order theory it is necessary to determine the expression for the moment at the 
end of the member of type s (cantilever) which in the first-order theory does not depend on 
the deformation of this member and is introduced in the calculation as a known value 4. In 
the second-order theory, if the cantilever is loaded by normal force, the bending moment at 
fixed end depends on the deformation of the structure, that is on the rotation of the fixed  
end and it is determined according to:   

 isiisis meM                                            (7) 

In expressions (7) and (10) there are: 
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so called beam constants according to the second-order theory.    

Rotation angles (4), beam constants (8) and initial bending moments isigkiik mimmm ,, , in 

expressions (5) to (7) depending of the  value given in (3) are, for example, presented in 
tables in 3, 4. 
Since these considerations are based on the approximate method of deformation, where the 
influence of axial forces on the deformation is taken approximately, there are the same kind 
and number of deformation unknown values in the second-order theory as in the first-order 
theory. Number of deformation unknown values is (m+n), where m is the number of 
unknown angles of rotation of joints, and n number of independent parameters of 
displacement of the system truss. These values are determined from the m equations of 
rotation of joints and n  equations of displacement, but according to M. Djuric 2,  the 
work of distributed fictitious moments is added to the work of external load in the equations 
of displacement. 
The equations of rotation are: 
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where notation is introduced: 
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The equations of displacement are:                    
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)()(

)(

)(

,,,
2

,,

,,
2

,,,,

,,
'

cabtabjabab
ab ab

ab

ik ig
jjigigjikkiikjo

labjabab
ig ab ab

ab
ligjigiglikjikki

ik
ikjl

g
jigigjik

k
ikji

EI
RmmmC

EI
dccC

dcB

























 

 







  (12) 

In the equations (12) the upper sign refers to compressed members and the lower to 
tensioned members, while 

ab

means the sum of the members of type k, type g and at the 

both ends hinged members. 
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2.3. Design of the structures with semi-rigid  connections according to the second-order theory  
 
This method is presented with detailed derivation of expressions and corresponding 
explanations by M. Milicevic and S. Zdravkovic in the works 5, 7. Here the method will 
be briefly presented with the necessary terms for its practical application. 
 
If one assumes that the level of rigidity of connection of the member ik in joint i is ik and 

ki   in joint k, and rotations of the joints due to deformation are i and k , while member 

end cross-section rotations are 'i and 'k .  

Bending moments ikM   and kiM  at the ends of the member with semi-rigid  connections can 

be determined from the expression: 

 )()('' t
ik

o
ikikikkikiikik mmcbaM                                    (13a) 

 

 )()('' t
ki

o
kiikkikkiiikki mmcabM                              (13b)  

 
or in terms of ki  , :   

 )()(''' t
ik

o
ikikIKkikiikik mmcbaM                          (14a) 

 

 )()('''' t
ki

o
kiikkikkiiikki mmcabM                                  (14b) 

 
Relations between well known beam constants, as well as  initial moments, for members 
with semi-rigid  connections of the first-order theory and new ones of the second-order 
theory are derived on the basis of their physical meaning shown in (Fig.3). 

 
 

Figure 3. The physical meaning of beam constants and initial moments for members with semi-rigid  connections 

 
Deformation angles of the members with semi-rigid  connections at the same value of normal 
force in this case can be also determined by the principle of superposition: 

863



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011         C-60 

 

  
ik

ik
kiikikik a

b )1('  ;        
ki

ik
ikkikiki a

b
  )1('  (15) 

 ),(),(),(' )1( to
ik

ik

ik
kiik

to
ikik

to
ik a

b      

 ),(),(),(' )1( to
ki

ki

ik
ikki

to
kiki

to
ki a

b     , (16) 

beam constants and  initial moments for members with semi-rigid  connections are: 
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MM  1'  (17h,i)  

As it could be seen, here the beams of type k and type g are treated as a unique type k that is 
member with semi-rigid connections. From expression (17) it follows that for 1 kiik   

the member is rigidly fixed at both ends, that is type k, and for 0;1  kiik  the member 

is rigidly fixed in i and elasticaly in k, that is type g in the first order-theory. For 
0 kiik  the member is hinged at its both ends. Cantilevers are also elastically fixed in 

joints. All constants of members are to be determined depending on the value of normal 
force in the member by use of expressions (8). 

The bending moments at the ends of the member ikM   and kiM  can be determined from the 

expressions: 

 '

1

)(''''
ik

n

j
j

j
ikikkikiikik mcbaM  



  (18a) 

 '

1

)(''''
ki

n

j
j

j
ikkikkiiikki mcabM  



  (18b) 

The equations of rotation and displacement look like: 

 0' 
k

iik MM ,                                              (i=1,2,...,m) (19a) 

 0)()()( )(''  f
jj

j
ik

ik
kiik mRpRMM  ,       (j=1,2,...,n) (19b)  
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where )( f

j mR is, similar as in 2, the work of fictitious distributed moments. 

After some matematical transformations, the conditional equations (19) in the deformation 
method for the system with semi-rigid connections according to the second-order theory are 
obtained in the form: 

 0'
0

1

'''  


i

n

j
jijk

k
ikiii ABAA         (i=1,2,...,m) (20a) 

 0'
0

1

'

1

'' 


j

n

l
ljli

m

i
ji CCB                        (j=1,2,...,n) (20b) 

where the folloing notation is introduced: 

   
k s

isikii eaA '' ;      ''
ikik bA  ;      i

k
iki MmA   ''

0  (21a) 

 ''''
ji

k

j
ikikij BcB     (21b) 

 )()(
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)()(''' )( l
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j
ab

ik ab ab

ab
c

l
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j
ikkiikljjl L

EIccCC   
   (21c) 

 )()()( )()()(
2

)('''
0

c
ab

t
ab

j
ab

ab ab

ab
cj

j
ikki

ik
ikj L

EIpRmmC 


 


    (21d) 

Unknown deformation values ),...,2,1( mii   and ),...,2,1( njj   are determined by 

solving the system of equations (20), and after that the bending moments at the ends of 
members with semi-rigid connections can be calculated according to (18). 

Equations (20) can be presented in matrix form using the block matrices:  

 
































'
0

'
0

0

'
0

C

A

CB

BA







 (22) 

 
The block matrix A  is square matrix of order m x m, block matrix C  is square matrix of 
order n x n, B  is rectangular matrix of order n x m, while B   is transposed matrix B . The 

vector of unknowns 


 is of order 1 x m, and vector of unknowns 


 of order 1 x n, as 

well as the vectors of free terms 0A


 and 0C


, respectively. The coefficients of these 

matrices are determined by expressions (21). 
 
3.  Determination of critical load 
 
According to one definition given in 2, critical load is the smallest value of load for which 
a homogeneous system of equations of The second-order theory has at least one solution 
other than trivial. Homogeneous problem of The linearized second-order theory is given by 
the system of equations (20) or (22) when the free terms 0iA  and 0jC  are omitted, and 

shown in matrix form it is as follows: 
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 0






















CB

BA
 (23) 

The coefficients of these matrices are determined by expressions (21). 

Necessary and sufficient condition of existence of nontrivial solution of the system of 
equations (23) is that its determinant is zero: 

 0det 










CB

BA
 (24) 

Equation (24) is the stability equation of the system with semi-rigid connections based on 
that, considering that here is the problem of eigenvalues, may be determined many values ω 
and thus the corresponding values of critical load parameter. Of course, the smallest value 
ω which determines the smallest value of load parameter is of the most practical 
importance. 
In the works 5, 6, 7, 8 through numerical examples of frames with a simple structure 
values of bending moments, critical load and buckling length of members for different 
levels of rigidity of connections are calculated. 
 
4. Numerical example 

In order to illustrate the design of structures according to the above presented theory for the 
systems with semi-rigid connections, using technical method of deformation, the frame 
shown in Fig.4. is analyzed. 

 

 
Figure 4. Frame with semi-rigid connections in joints 

 

Given system is three times deformationaly indeterminate. Unknown are angles of rotation 
φ1 and φ2, as well as a displacement parameter of the system truss. State 11  of 

displacements of system truss is shown in Fig.5. A conditional equations for determining 
the unknowns can be shown in a matrix form: 
 

0

19

20

10

1

2

1

11
'

1211

212221

111211


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
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


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
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Figure 5. State of displacement of system truss 

Design procedure for this frame is shown in details for the case when degree of fixing in 
joints 1 and 2 is 02413   , and in joints 3 and 4 95,04231   . 

 
4.1. The design of the frame according to the second-order theory 
 
In the second-order theory coefficients kiikikkiik ccbaa ,,,, , and moments kiik mm , are defined 

according to (17). Based on the calculated normal forces according to the first-order theory 
and expression (3) it is: 

 539,0
26800

150
2,72413   

For the calculated values ω, based on Table 1 in 3, the following coeficients are 
determined: 

 
9708,5;0098,2;9610,3

6;2;4

241324132413

121212





ccbbaa

cba  

Constants rigidly restrained members according to the theory of second order are: 

 

EI
EI

ccEI
EI

c

EI
EI

bbEI
EI

b

EI
EI

aaEI
EI

a

833,0
2,7

9997,5
;575,3

24

3,146

;278,0
2,7

0001,2
;192,1

24

3,142

;555,0
2,7

9996,3
;383,2

24

3,144

241312

241312

241312
















 

Based on Table 8 in 3, the bending moments for rigid fixing are calculated according to 
the second-order theory: 

 
kNmmm

kNmmm

90,32,79,008374,0

;81,72,78,108374,0
2

4224

2
3113




 

The bar constants for semi-rigidly fixed members according to the second-order theory are 
determined by expressions (17): 

 

EIEIcc

EIEIaa

393,0
555,0

829,0
278,0)01(829,095.0

395,0
555,0

278,0
278,0)01(555,095.0

'
42

'
31

'
42

'
31





















, 
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and the initial moments for semi-rigidly fixed members according to the second-order 
theory by (17f) and (17g): 

 

kNmm

kNmm

56,5
555,0

900,3
278,0)01(90,395.0

17,11
555,0

810,7
278,0)01(81,795.0

'
42

'
31





















. 

Similar to the first-order theory, this system can be seen as once deformationaly 
indeterminate with an unknown displacement parameter 1 , which is determined from the 

equation: 

 0'
101

'
11  CC  

According to (21c) it is: 

 EI
EI

EIC 705,0
2,7

539,0
220,1)393,00(

2
2

11   

and (21d): 

 25,536.30.12,7)9.08,1(0,1)56,50(0,1)17,110(10 C  

The nknown displacement parameter 1 now is: 

 EICC /53,75/ 11101   

(according to the first-order theory is EI/53,671  ), 

based on which, according to equations (18) the bending moments diagram is determined in 
accordance with the second-order theory, which is shown in Fig.6. 
 

 
Figure 6. Diagram of bending moments in accordance with the second order theory  

 

4.2. Determination of critical load and buckling length 

 

For the purpose of determination of the critical load, the system shown in Fig.4. is replaced 
by an equivalent system (Fig.7.), where the intensity of uniformly distributed load is 
expressed by the load parameter P. 
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Figure 7. System equivalent to the system in Fig.4. 

 

Based on the values of axial forces and expressions (3) defines the following: 

 
EI

P
u  ,  012  ,   2,72413   (a) 

The system of Fig.7. is three times the deformation due to the vague but can be seen as 
once a strain vague, and according to (23) and (24) equation of stability in this case reduces 
to: 

  0det 11 C  

Based on (21c) equations of stability in this case is: 

 0
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539,02424539,02424539,02424

539,01313539,01313539,01313

2,7
;

2,7
;
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;
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c
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
 

Value of  , for which the condition (b) is fulfilled, based on (a), determines the value of 
critical load: 

 EIP crcr
2  

In the case of considered frame structure is: 

 214,0cr , and therefore  

 kNEIPcr 44,1227268000458,00458,0  . 

and buckling length, 

 .68,14
0458,0

22

mEI
EI

EI
P

l
kr

k 


 

 
5. Conclusion 
 

2 1 

3 4 

P 
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The structures with elastic (semi-rigid) connections are the systems where connections 
between members are not absolutely rigid, but generally allow some relative flexibility in 
the direction of generalized displacements. The paper deals with plane frames that consist 
of straight members. 
On the basis of performed analysis it can be concluded that the level of rigidity of 
connections should be taken into account in structural design. The relatively low level of 
rigidity of connections in precast structures and structures damaged due to earthquake can 
favorably affect the redistribution of bending moments, and this fact should be used when 
calculating, as accompanying measures are easy to achieve. Also, not enough secured but 
assumed rigid connections may have adverse consequences in the structural design. 
Depending on the physical and mechanical properties of materials used and the behavior of 
joint connections, i.e. on the flexibility of the system during the action of forces, the most 
often influences have to be calculated according to The second-order theory. This paper 
presents such calculation of influences by use of Deformation method and determination of 
the critical load and buckling length. In this way, more real behavior of the system is 
calculated, i.e. the behavior of structure in its deformed position. The detailed calculation of 
the structure in accordance with the second-order theory and the determination of critical 
load and buckling length is shown by presented numerical example, which is of special 
importance for practical use. 
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Abstract. In this paper a modified Zener model of viscoelastic body was used for modeling 
a polymer gel. The proposed model includes fractional derivatives of contact impact force 
and elongation as well as restrictions on the coefficients that follow from the second law of 
thermodynamics. Reimann-Liouville fractional derivatives were approximated numerically 
using the Grünwald-Letnikov definition. Four coefficients of the model have been calculated 
by numerical procedure on the basis of the experiment given in [1], where polymer gel in a 
cylindrical column was collided by a weight in the vertical direction. The acceleration and 
the displacement of the contact surface were measured during the experiment. Dynamical 
behavior of the polymer gel modeled by modified Zener model as well as other fractional 
derivative models given in [1] were compared. 

 
 
 

1. Introduction 
 
In recent years polymers have become an engineering structural material of choice due to 
low cost, ease of processing, weight savings, corrosion resistance and other major 
advantages. In fact modern polymeric adhesives and polymer matrix composites (PMC) or 
fiber-reinforced plastics (FRP) are today being used in many severe structural environments 
of the aerospace, automotive and other industries. The use of polymeric materials pervades 
our experience both in our daily lives and in our engineering profession. 

Fundamental deformation of materials is classified into three types: elastic, plastic, and 
viscous deformations. Polymeric material shows time-dependent properties even at room 
temperature. Deformation of metallic materials is also time-dependent at high temperature. 
One manifestation of the time dependent character of polymers is that they exhibit 
characteristics of both an elastic solid and that of a viscous fluid. For this reason, materials 
such as polymers that exhibit such properties are often said to be viscoelastic. 
Viscoelasticity considers in addition a dissipative phenomenon due to "internal friction," 
such as between molecules in polymers. 

According to [2], not all models which arise in applications are suitable for describing 
viscoelastic behaviour. The selection of the proper constitutive model from all the available 
ones plays important role in studying dynamical behaviour of polymers. Because of the fact 
that stress is proportional to the zeroth derivative of strain for solids and to the first 
derivative of strain for fluids, it is natural to suppose that for materials that have properties 
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of both solids and fluids (viscoelastic materials), stress may be proportional to the strain 
derivative of noninteger order  , where 0 1  , [3]. Namely, fractional calculus based 
constitutive models are a powerful extension of the standard integer calculus based models, 
that offer a new alternative for describing the properties of viscoelastic materials. A number 
of fractional derivative models have been proposed, see [4], [5], [6] and [7].  
 
Silicone belongs to a large class of polymeric synthetic materials in solid, liquid, or gel 
form, that usually have resistance to temperature, water, and chemicals, and good insulating 
and lubricating properties, making them suitable for wide use as oils, water-repellents, 
resins, etc. It has numerous industrial applications such as vibration isolation, shock 
absorption, thermal conductivity and many others.  
 
Fukunaga and Shimizu proposed several nonlinear fractional derivative models for 
describing the properties of a silicone gel and compared them to experimental data of 
impulsive motion, see [1]. Impact problems in the framework of Hertz type theory and 
application of fractional derivatives can be seen in [8] and [9]. Our intention was to apply a 
modified Zener model (which predicts behaviour of viscoelastic materials with significant 
accuracy, including only four constants) to the experimental data of [1] and to compare it 
with the ones proposed by Fukunaga and Shimizu. Four constants of the viscoelastic model 
will be calculated by numerical procedure, and by fitting through experimental data 
reported in [1]. Good agreement between experimental results and theoretical predictions 
are expected. 
 

2. The model 
 
Consider a rigid body of mass M moving without rotation in a vertical direction and 
impacting with a velocity v0 at t=0 against a viscoelastic material, which is fixed on a 
horizontal surface, Fig. 1. Viscoelastic body is modeled as a straight cylindrical rod of 
height H and diameter d. The mass of the rod is negligibly small compared to the mass of 
the rigid body.  
 

 
 

  Figure 1. Collision between a rigid body and a viscoelastic rod, free body diagram. 
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We assume that the viscoelastic rod undergoes uniaxial isothermal affine compression 
where the deformation is measured by coordinate x and every part of the rod deforms in the 
same ratio as its bulk.  
 
The differential equation of motion of the body together with initial conditions read 

 (2) (1)
0, (0) 0, (0) , (0) 0.Mx Mg f x x v f      (1) 

where we used (·)(k)=dk(·)/dtk to denote the k-th derivative with respect to time t, g to denote 
gravitational acceleration and f to denote the contact force between the rigid body and the 
viscoelastic rod.  
 
For describing dynamical behaviour of the viscoelastic rod a modified Zener model was 
used. It comprises fractional derivatives of stress and strain and it has more advantages than 
model which include integer order derivatives (Zener or Kelvin-Voight model) [2]. The 
relation between contact force f and displacement x during the compression of the 
viscoelastic rod reads  

  ( ) ( )
f x

E A
f f x x

H
 

     , (2) 

where  is a real number (0<<1), E is the modulus of elasticity of the rod, f and x are 
the constants of dimension [time]. (·)() stands for the -th derivative taken in the standard 
Riemann-Liouville form: 

      
 

 
 0

1

1

t g ud d
g t g t du

dt dt t u




 
 

  

 
 
 

 , (3) 

 denotes the Euler Gamma function. The contact force f is given as f=Awhere A is the 
cross sectional area of the rod and  is the stress. It is assumed that the cross sectional area 
remains the same during the deformation. In order to be well behaved it is assumed that 
coefficients of the model satisfy restrictions, which follow from the second law of 
thermodynamics [10], 

 0, 0,f x fE        . (4) 

There exists a number of methods for identification of the parameters of fractional models 
based on stress relaxation and creep experiments and various dynamical tests, see [11], 
[12], [13], [14] and [15]. 
 
We shall use the impulse response of the viscoelastic material in order to determine the four 
unknown parameters of a modified Zener model (α, E, τfα, τxα). Experimental data are taken 
from the paper of Fukunaga and Shimizu [1]. They conducted experiments where mass M 
impinges against a viscoelastic rod made of a polymer gel (silicone gel, type 5 of Taica 
Corporation), see Fig.1. In these experiments the acceleration x(2) and the displacement x of 
the mass m during the collision were measured.  
 
We applied the differential equation of motion Eq. (1) together with the constitutive 
equation Eq. (2) to the experimental results. Several values of the displacement were 
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chosen from the experimental impulse response curve presented in Fig. 6 of the paper [1], 
which were used in the fitting procedure. The least squares method was used for calculation 
of four unknown parameters (α, E, τfα, τxα). 
 

3. Identification of the parameters of the modified Zener model 
 
In order to determine the values of four model parameters for describing dynamical 
behaviour of silicone gel it is necessary to find the solution of Eqs. (1) and (2) together with 
Eq. (4). To do so the Laplace transform method was used. If X(s) and F(s) are the Laplace 
transform of x(t) and f(t) respectively, from Eq. (2) one can get  

 
1

1
x

f

E A s
F X

H s


 











, (5) 

where we have used the standard expression for the Laplace transform of fractional 
derivative 

  ( )

0
0

1 ( )
{ ( )} ( ) ,

(1 ) ( )

t

t

x u
x t s X s du

t u
 

 

 
      

L  

where  ( ) ( )x t X X s L  and where the term in brackets vanishes if 
0

lim ( )
x

z t


is bounded, 

see [16]. The inversion of Eq. (5) yields the following relation between the contact force f(t) 
and the displacement x(t) 

 
0

1
( ) ( ) 1 ( ) ( ; ) .x

f f

E A
f t x t x t u e u du

H
 


 


 

  
         

  (6) 

In this term ( ; ) ( )e t E t     stands for the Mittag-Leffler-type function, see [17] and 

[18]. Substituting f(t) into Eq. (1) one can obtain that the impact problem is governed by a 
single integro-differential equation 

 (2)

0

1
( ) 1 ( ) ( ; ) ,x

f f

E A
x x t x t u e u du g

MH
 


 


 

  
          

   

 (1)
0(0) 0, (0) .x x v   (7) 

For computing the solution of the impact problem the numerical method presented in [3] 
was applied. First of all, by introducing the variable 0( ) ( )z t x t v t   the non-homogeneous 

initial condition Eq. (1)3 was removed and Eqs. (1) and (2) become  

 (2) (1), (0) 0, (0) 0, (0) 0,mz mg f z z f      (8) 

 
1

( ) ( )
0 0

(2)
.

(2 )f x x

E A t
f f z v t z v

H


 

    


 
       

 (9) 
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Secondly, for a time step h, ( , 0,1, 2,...)mt m h m   , we take the first and second 

derivatives as standard difference approximations:  (1)
1 / ,m m mz z z h   

 (2) 2
1 12 / ,m m m mz z z z h     and the fractional derivative in the form 

 ( )

0

m

j m j
j

u h u  




  , (10) 

where   is a real number 0 1  , and coefficients ( 0,..., )j j m   are calculated by the 

recurrence relationships: 

  0 1

1
1, (1 ) , 1, 2, 3,...j j j

j

   


    . (11) 

From Eqs. (8) and (9) using Eqs. (10) and (11) we get the algorithm for obtaining the 
numerical solution for 1, 2,...m   
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
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 ,  

 2
1 12m

m m m

f
z h g z z

M 
     
 

, (12) 

where 0 1 00, 0.z z f   Finally the displacement x reads 

 0 , 0,1, 2,...m mx z v mh m    (13) 

 
For the purpose of determination of unknown parameters of the viscoelastic material the 
displacement x should be defined as a function of time and these four parameters 

 , , , ,x fx x t E     . Forcing this function to pass through the several points of 

experimental curve by the least squares method, which means finding the minimum of the 
following function  

     2

0

, , , , , , , ,
N

x f i x f EXPi
i

t E x t E x           


    , (14) 

where EXPix  are experimental values of the displacement in time instants it  ( 1, 2,..., )i N  

leads to the values of the model parameters. In the following section E is given in MPa, x 
in mm, x  and f  in s, while time t is measured in miliseconds. 
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4. Results 
 
In this section we interpret the behaviour of a viscoelastic material (silicone gel) during 
impact by the single integro-differential equation, Eq. (7). In the experiment reported in [1], 
the viscoelastic specimen was of diameter d=20 mm and height H=5 mm. Mass of the rigid 
body was M=0.276 kg and initial velocity was v0=0.77 m/s. By choosing fifteen points from 
the experimental curve given in Fig. 6. of the mentioned paper, and by applying the 
suggested numerical procedure the following values of the four parameters of the modified 
Zener model were obtained: 

 0.74, 0.1195, 0.112, 0.023.x fE         (15) 

The agreement between predicted and experimental results can be seen in Fig. 2. 
 

 
 

  Figure 2. .Predicted and experimental values of the displacement during the impact. 

 
Experimental values of the displacement x during the collision are presented with a dashed 
line with marks while the values obtained by the fractional model are presented with a solid 
line. The normalized root mean square error is less than 1.5%. By use of a modified Zener 
model a good approximation of experimental results was obtain. In addition, important 
properties of this fractional model are: its simplicity and small number of parameters (α, 
E, τfα , τxα).  
 
Several nonlinear fractional-derivative models have been proposed by Fukunaga and 
Shimizu, see [7] and [19]. Some of these models are suitable for description of the 
mechanical properties of viscoelastic materials but they require more parameters and model 
refinement.  
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5. Conclusion 
 
In this paper we have analyzed impulse response of a polymer gel. A modified Zener model 
was used to describe mechanical properties of a viscoelastic material during impact. The 
problem was formulated by a single integro-differential equation, Eq. (7) which was solved 
numerically. On the basis of experimental data from [1], four parameters of the fractional 
model were obtained by the fitting procedure described in the section three of this paper. 
Good agreement between experimental results and theoretical predictions can be seen in 
Fig. 2.  
 
Stress relaxation and creep tests are usually performed for determination of the coefficients 
of rheological models. In this paper four parameters of the fractional model were calculated 
from experimental data of an impact experiment whose duration was much shorter than 
duration of a stress relaxation or creep experiment. It would be interesting to use the last 
two mentioned experiments to predict the response of the system and compare these results 
with ones given in this paper.  
 
Presented results are obtained with the assumption that mass of a viscoelastic rod can be 
neglected. In cases where the mass must be taken into account, the assumption of affine 
deformation of the specimen would not be correct because displacement would depend on a 
position of a point, see [20], [21]. What is more, the bulk of a viscoelastic rod would 
perform an oscillatory motion which should be measured during experiment in order to get 
more precise results.  
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Abstract. One of the most valid techniques of material testing at high strain rate is Split 
Pressure Hopkinson bar. Obtained information have one of the main role in many industries  
like automotive, aerospace, military, structural, etc.  Analytical equation of stress, strain and 
strain rate and numerical modeling of bars and specimen was presented in this paper. The 
equations that stand behind Hopkinson bar use measurements of the strain in incident and 
transmitter bar to calculate the stress - strain rate relationship for specimen.  Stress waves 
that propagate trough bars and specimen, need to be acquire at two reference points on both 
bars. One point is for incident and reflected waves from specimen and other point is for 
transmitted wave.  Numerical modeling of bars and specimen was used to collect strain data 
in this reference points.  Obtained results from simulation for different impact velocity were 
discussed. Conclusion will be use as relevant data in design of Hopkinson bar set-up.   

 
 
 

1. Introduction 
 
Increasing demand in design of structures under extreme dynamic conditions requires 
determining accurate and reliable material properties at high strain rate. Front structures of 
passenger vehicle, ballistic and mine protections on military vehicles are one of the main 
areas that require additional information’s that describe mechanical deformation behavior 
of the material under high strain rate in detail. Collecting that kind of information’s, require 
appropriate experimental set-up. But, because of his complexity, numerical simulations of 
material tests can be very useful. The LS-DYNA code was applied for finite-element 
simulations of Split Hopkinson Pressure Bar (SHPB). The use of LS-DYNA helped reduce 
the number of experimental set-ups and provide answers to initial related design questions 
such as characteristics of the striker and bars. 
 

2. Propagation of Elastic Wave in Solids 
 
In solids, elastic waves can propagate in four principle modes that are based on the way the 
particles oscillate. Sound can propagate as longitudinal waves, shear waves, surface waves, 
and in thin materials as plate waves. Longitudinal and shear waves are the two modes of 
propagation most widely used in material testing. The most important and basic wave 
forms, according to [1] in solids are: 
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• On first place, we have longitudinal waves, Fig 1., of compressive or tensile type which 
cause particle motions along the propagation direction and they are the fastest wave forms 
in solids. In literature, they are also called primary waves and, sometimes, density waves 
because their particle density changes as they move. The longitudinal wave propagation 
speed is usually denoted by cL 

• The next fastest waves propagating, denoted as cS, are the shear or secondary waves, Fig 1.  
They are causing particle motion perpendicular to the wave propagation. Shear waves 
require an acoustically solid material for effective propagation and they are relatively weak 
when compared to longitudinal waves. Also, shear waves are usually generated in materials 
using some of the energy from longitudinal waves. 
• Along the surfaces of solids propagate so called Rayleigh waves setting surface particles 
into elliptic motion. 
• In structures of finite bending stiffness flexural waves propagate upon dynamic loading. 
For mathematical representation of wave propagation in solids, two methods can be 
established: the momentum equation and equilibrium considerations. The last one will be 
used to find relations which describe the motion of waves involving the sound speed of the 
medium as well as displacements and their spatial and time derivatives. 
 

 
 

Figure 1. Graphical representation of waves, λ – wave length 

 

3. Hopkinson Bar set-up 
 
Dynamic loading of structures can act with different strain rate level, Fig 2. Proper 
selection of set-up and instrumentations for various level of strain rate is very important and 
is not easy. One of the approaches in selecting is defining strain rate level as low, moderate 
and high strain rate in terms of instrumentations [1]. According to this approach, the low 
dynamics are considered to be around  = 102 [s−1], the moderate regime covers  < 104 
[s−1] and the high dynamic strain rates are related to shock wave propagation processes 
with strain rates up to  ≤ 107 [s−1]. 
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Figure 2. Strain rate regimes for some classes of application and typical testing facilities to characterize the related 

material behavior, [1] 

 
One of the most adequate set-up to test materials in the strain rate regime between a few 
hundred and several 103 [s−1] is the Split Hopkinson bar (SHB). It was first developed by 
Hopkinson as a single bar facility and the second bar was added by Kolsky, today known as 
Split Hopkinson Pressure Bar (SHPB), or just Kolsky bar. In meanwhile, there are various 
variations of the Hopkinson-Kolsky bars which include compressive, tensile and torsion 
loading form of specimens.  
Widely used form of bars is compressive Split Hopkinson Pressure Bar (SHPB) in which a 
specimen is placed between two bars, an incident and a transmitter bar, Fig. 3. Impacting 
the incident bar with a striker introduces an acoustic wave propagating towards the 
specimen. At the interface between incident bar and specimen, the acoustic wave is partly 
transmitted into the specimen and partly reflected back into the incident bar. The 
transmitted component travels through the specimen. At the interface to the transmitter bar, 
again, a partly transmission and reflection takes place. An elastic wave of finally 
transmitted intensity travels into the transmitter bar. The derivation of stress-strain relations 
from the set-up uses strain signals measured with stain gages on the incident bar and on the 
transmitter bar, respectively. 
Another, highly interest set-up of Hopkinson bar, was represented in [2]. In this 
configuration, one bar act as pre-stressed bar for energy storage and in same time as 
incident bar. After releasing of blocking device, an incident tension pulse propagates 
through the specimen and transmitter bar on same way as descry ibe above. This set-up will 
be the part of the future work. 

 
Figure 3. Split Hopkinson pressured bar 

 

3. Equations of wave propagations 
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Equations that describe one-dimensional propagations of longitudinal wave can be started 
with the differential element that belongs to one bar [3], Fig. 4. Since the two bars are 
identical, it is only necessary to consider one of them in developing the equation of motion. 
The differential element has length dx and cross sectional area Ao. After impact, on all 
particles that belongs to differential element, act two compression forces F1 and F2. For 
lineal elastic solid, with applications of Hooke’s low and linear strain-deformations, 
according to Newton’s second low, equilibrium equation will be 

 
2

2 1 1
0 0 0 2

u u u
A E A E A dx

x x t


  
 

  
 (1) 

   

 
Figure 4. Differential element of one bar 

 
For constant particle acceleration in section of differential element, equation (1) can be 
simplify   

2
2 2 1 1

2o

u u u
C dx

x x t

          (2) 
Where C0 is longitudinal wave sound speed 

o

E
C




 (3) 
where E and ρ are the bars elastic modulus and mass density, respectively. 
Next, displacement imposed on one side of the differential elements in terms of the 
displacement of the other side, with assumption that rates of displacement of the two sides 
are equal, is 

1
2 1

u
u u dx

x


 

  (4) 
  After differentiation, this equation becomes  

2
2 1 1

2

u u u
dx

x x x

  
 

    (5) 
By substituting the above term into equation(2), the equation of motion for the bar reduces 
to 

2 2
2 1 1

2 2o

u u
C

x t

 


   (6) 

3.1 Specimen stress 
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The average stress in the specimen can be expressed in terms of the forces exerted on each 
surface of the specimen. When the specimen is sandwiched between the pressure bars 
forces F1(t) and F2(t) exist on the specimen of instantaneous diameter DS. The average force 
on the specimen is given by 

1 2( ) ( )
( )

2AVG

F t F t
F t




 (7) 
and hence the average stress on the cylindrical specimen is given by 

2

( )
( )

4

AVG
AVG

s

F t
t

D





 (8) 

The forces at the ends of the pressure bars, for a specimen in dynamic equilibrium, may be 
expressed in terms of the incident and reflected pressure bar strains as 

 
2
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BAR
I R

D
F t E t t


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 (9) 
2

2 ( )
4

BAR
T

D
F t E




 (10) 
where DBAR is the diameter of the pressure bars. Substituting equations(7), (9) and (10) into 
equation (8) results in an expression for the average stress on the specimen in terms of the 
pressure bar strains 

 
2

2
( ) ( ) ( ) ( )

2
BAR

AVG I R T
s

ED
t t t t

D
     

 (11) 
For uniform deformations of specimen, the strains in the incident bar are equal to the strain 
in the transmitter bar 

( ) ( ) ( )I R Tt t t   
 (12) 

The expression for the average specimen stress can be reduced to 
2

2
( ) ( )BAR

AVG T
s

ED
t t

D
 

 (13) 

If we are go back to the equation of motion for pressured bar, we can recognize that  

  

2
1

2

u v

tt

 

  (14) 

where v is the particle velocity, and  

1u p
E

x x x

         (15) 
where p is the pressure across the cross section, so the equation of motion can be rewritten 
in terms of the pressure and velocity across the bar cross section as 

( , )p x t v

x t
 

 
   (16) 

For a positive traveling, harmonic wave have next form 
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( )( , ) i t kxp x t Pe  

 (17) 
where P is the amplitude of the pressure,   is the frequency, t is the time, k is the wave 

number and is defined as 
0

k
C


   and x is the spatial location of the wave. Taking the first 

derivative of equation (17) with respect to x 

 

( )( , ) i t kxp x t
ikPe

x
 

 
  (18) 

and multiplying right-hand side of equation (6) with heavyside operator, after equaling 
equations (16) and  (18), we can write 

( ) ( , )i t kxikPe i v x t   
 (19) 

Particle velocity is than given by equation  

( )( , ) i t kxk
v x t Pe 




 (20) 
Substituting the expression for k and p(x,t) back into the expression for the particle velocity 

1
( , ) ( , )

o

v x t p x t
C


 (21) 

where P is the pressure across the cross section and for a uniaxial state of stress, the 
pressure is equal to the stress over the pressure bar cross section, so p(x,t) can be written in 
terms of the bar strain as  

( , ) ( , )p x t x t E
 (22) 

Particle velocity in terms of the bar strain is 
( , ) ( , )ov x t C x t

 (23) 
The average strain rate at any time for specimen with L length is given as 

interface1 i nterface2sd v v

dt L

 


 (24) 
The velocity at interface1 is comprised of the incident (+ wave) and the reflected (- wave) 
as 

interface1 ( )o I o R o I Rv C C C      
 (25) 

The velocity at interface2 is 

interface2 o Tv C 
 (26) 

By substituting these interface velocities into the expression for the specimen strain rate 
(24) an expression for the specimen strain rate in terms of the pressure bar strains is 

( )s o T I Rd C

dt L

    
 

 (27) 
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Negative sign represent compression and if specimen deforms uniformly such that 

( ) ( ) ( )I R Tt t t   
 (28) 

the expression for strain rate of specimen can be write as 
2s o

R

d C

dt L


 

 (29) 
After integration, specimen strain becomes  

02
( ) ( )s R

C
t t dt

L
   

 (30) 
 

4. Numerical model 
 
Numerical simulation was done in LS-DYNA as a general-purpose explicit/implicit 
finite element code for analyzing the nonlinear dynamic response of three-
dimensional inelastic structures [4, 5]. Both, incident and transmitter bar were modeled 
with a diameter of 10 mm and a length of 3000 mm. The striker had 300 mm in length with 
the same diameter and the specimen was 6 mm in diameter and 30 mm in length.  
An assembly that contains all parts (bars, striker and specimen) was modeled using three-
dimensional solid 8-node elements. The incident velocity of the striker was varying from 6 
to 20 m/s. In all simulations, a perfect contact between the bars and specimen was assumed 
and the frictional forces were ignored. Reference points acting as gauges were placed on 
input and output bars, with the main purpose of collect incident, transmitted and reflected 
waves. Distance from specimen to reference point on both, transmitter and incident, bars 
are the same and it is 780mm.   
Values of 6, 12 and 18 m/s for impact velocities V0 were chosen. Reflected waves have been 
recorded in each case and strain rate has been calculated by differentiating in time 
according to expression (29). 

4.1 Material properties 
Isotropic elastic material MAT_001 was used to simulate the bars. MAT_003 in LS-DYNA 
is suited to model isotropic and kinematic hardening plasticity with the option of including 
rate effects and it was used to simulate specimen material response. This model implies a 
bilinear stress/strain curve.  
Characteristics of the specimen and bar materials are given in Table 1. The materials are 
Steel and Aluminum, respectively. 
 

Table 2. Material properties used for bars, striker and specimen 

Bars and striker Specimen Physical properties 
Steel Aluminum 

Density, ρ (kg/m3) 7.83E+3 2.690 E+3 
Yield Strength, σy (Pa) N/R 335 E+06 
Elastic Modulus, E (Pa) 2.07 E+11 7.308 E+10 

Poisson’s Ratio, ν 0.3 0.33 
Tangent Modulus, Et, (Pa) N/R 645.7 E+06 

Failure Strain, fs N/R 0.54 
   N/R: Not Required 
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4.2 Results and discussion 
Progression of the stress wave as a function of time was presented on Fig. 5. in 0.585 ms, 
0.593 ms and 0.605 ms of simulation for velocity of 12 m/s. LS-DYNA Post-Processor 
shows the behavior of the wave propagating in the incident bar, transmitter bar and 
specimen. When the striker moves with the initial velocity and impacts the incident bar, a 
one dimensional compressive stress wave which is in a trapezoidal shape is generated  in 
the incident bar as shown in the below Fig. 6. After the impact, the stress wave travels 
along the bar towards the specimen where same of the wave is reflected back into the 
incident bar.  

  

  

  
a) Stress propagation b)Strain propagation 

Figure 5.  Representation of wave propagation in incident bar, specimen and transmitter bar  
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Figure 6. Typical strain propagation through incident and transmitter bar 

for impact velocity of 12 m/s 

 

  
Figure 7. Strain wave in incident and transmitter bars for different impact velocity 

 

Figure 7.  presents the strain , ε, values estimated for all three impact velocities (V0) through 
the incident and transmitter bars as function of the time. It is evident in this figure the 
strong dependence that has the strain wave with the impact velocity. 

 
Figure 8. Strain rate wave for different impact velocity 

On Figure 8. distinguish strain rates was presented for the range of 100 to 400 s-1. This data 
is relevant for testing because allow knowing the suitable impact velocities that can be 
reached and the range within the user could make his selection. 
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5. Conclusion 
 
Mechanical behavior at high strain rate, e.g. explosive charges, high velocity impact or 
blast, differs from that observed at quasi-static strain rate. At high strain rates, the material 
deforms at rates between 10 [s−1] to106 [s−1]. The split Hopkinson bar is one of the most 
common experimental methods used to obtain material properties at high strain rates.  
The propagation of elastic waves through the incident and transmitted bars was described 
by one-dimensional wave theory. Using LSDYNA code, a three-dimensional split 
Hopkinson pressure bar was modeled. 
Three different striker velocities were used in the numerical simulations and the results 
show that when the velocity of the striker increases, than in same time, the amplitude of the 
compressive wave generated also increases. The results from this work will be significant 
to the next step in design on Hopkinson bar with pre-stressed incident bar.   
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Abstract. ABAQUS solver offers possibility of implementing custom material models 
which are not implemented in it. These material models are programmed in user subroutine 
UMAT. In this paper process of creating UMAT subroutine is explained on Neo-Hook 
hyperelastic material which is implemented in ABAQUS solver. Since existing and well 
known material is used, validity of UMAT subroutine can be verified. Theory of 
hyperelastic materials with emphasis on Neo-Hook material model is given. Constitutive 
equations and stress for Neo-Hook material model are implemented (using FORTRAN 
programming language) into ABAQUS subroutine UMAT. Entire subroutine code is given 
with references to the equations discussed in the theory part of the paper. Subroutine and 
material model is verified on example. At the end of the paper advantages and disadvantages 
of using UMAT subroutine in ABAQUS analysis are discussed. 

 
 
 

1. Introduction 
 

1.1. Definition of hyperelastic materials 
 
Hyperelastic or Green elastic material is a type of constitutive model for ideally elastic 
material for which the stress-strain relationship derives from a strain energy density 
function. The hyperelastic material is a special case of a Cauchy elastic material. 
For many materials, linear elastic models do not accurately describe the observed material 
behaviour. The most common example of this kind of material is rubber, whose stress-
strain relationship can be defined as non-linearly elastic, isotropic, incompressible and 
generally independent of strain rate. Hyperelasticity provides a means of modeling the 
stress-strain behavior of such materials. The behavior of unfilled, vulcanized elastomers 
often conforms closely to the hyperelastic ideal. Filled elastomers and biological tissues are 
also often modeled via the hyperelastic idealization. 
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Ronald Rivlin and Melvin Mooney developed the first hyperelastic models, the Neo-Hook 
and Mooney–Rivlin solids. Many other hyperelastic models have since been developed. 
Other widely used hyperelastic material models include the Ogden model and the Arruda–
Boyce model. 
 

1.2. Neo-Hook material model 
 
Neo-Hook solid is a hyperelastic material model that is used for describing the stress-strain 
behavior of materials undergoing large deformations. The model was proposed by Ronald 
Rivlin in 1948. In contrast to linear elastic materials, the stress-strain curve of a Neo-Hook 
material is not linear. Instead, the relationship between applied stress and strain is initially 
linear, but at a certain point the stress-strain curve will lose its steepness due to the release 
of energy as heat while straining the material. The Neo-Hook model does not account for 
the dissipative release of energy as heat while straining the material and perfect elasticity is 
assumed at all stages of deformation. In Neo-Hook hyperelastic material model strain 
energy density function W is a function of first invariant of the left Cauchy-Green 
deformation tensor B. This strain energy density function is used for expression of Cauchy 
stress and for derivation of constitutive matrix for Neo-Hook material model.  
 

1.3. Cauchy stress expression and constitutive matrix 
 
For Neo-Hook compressible material strain energy density function is 

   2
1

11 1J
D

1
3ICW       (1) 

where 1C  and 1D  are empirically derived constants while 1I  represent strain invariant 

expressed in terms of the modified left Cauchy-Green tensor ijB . 

 2
3

2
2

2
11 λλλI   ;   mm1 BI  Btr   (2) 

32
1

_

1 J

I
I   ;   mm1 BI  Btr    (3) 

In term (2) 1   1,2,3kλk   represents principal stretches of B while Jacobian J  in (1) 

and (3) 1  is determinant of deformation gradient F . 

 FdetJ        (4) 

Left Cauchy-Green tensor is given with 
TFFB   ; jkikij FFB      (5) 

While modified Left Cauchy-Green tensor is 

32

ij
ij J

B
B          (6) 

or in terms of modified deformation gradient 
TFFB   ; jkikij FFB      (7) 
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Modified deformation gradient tensor in equation (7) can be calculated as 

31J

F
F   ; 

31
ik

ik J

F
F      (8) 

Cauchy true stress σ  relation with first Piola-Kirchhoff stress P  is given with equation 

T

J

1
PFσ         (9) 

First Piola-Kirchhoff stress in terms of strain energy density function is given by  

kj
kj F

W
P




        (10) 

Substituting (10) in (9) and calculating partial differentiation
kjF

W




, final expression for 

Cauchy true stress is 

   11BBσ 1J
D

2

3

1
C

J

2

1
1 






  tr     (9) 

or in more convenient index notation 

  ij
1

mmijij1ij δ1J
D

2
Bδ

3

1
BC

J

2
σ 






     (10) 

 Kirchhoff stress is  

στ J   ; ijij Jστ      (11) 

Constitutive matrix ijklC is calculated by partial differentiation of Kirchhoff stress [4] 

lm
km

ij
ijkl F

F

τ




C        (12) 

Substituting Kirchhoff stress with Cauchy stress in (12) while using (11) 2 and equality 

1-
mk

km

JF
F

J





 we get 

lm
km

ij
klijijkl F

F

σ
JJσ



C      (13) 

Calculating partial differentiation 
km

ij

F

σ




 using (10) we get constitutive matrix for 

compressible Neo-Hook material model  

 
  klij

1
mmklijklijklij

jkiljkiljlikjlik

1ijkl δδ12J
D

2

Bδδ
9

2
B

3

2
Bδ

3

2

δBBδδBBδ
2

1

C
J

2























C  (14)  
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2. Programming 
 

2.1. UMAT subroutine  
Programming of UMAT subroutine is done in Microsoft Visual Studio 2005 with Intel 
Visual Fortran compiler installed. Entire subroutine code is given in appendix. 

3. Verification of UMAT Neo-Hook subroutine 
 

3.1. Example: rubber strip stretching 
 

In this example a 2mm 2020  rubber strip is clamped and stretched as shown in Figure 

1. Strip is mm 1  thick. Because of the symmetry only a quarter of the problem is actually 
modeled using 100 hybrid formulation hex elements C3D8H. Material is defined as user 

material with constants 4225.01C  ; 4.01D  Displacement of nodes for one quarter 

of a model simulates strip stretching to three times its original length. 

 
Figure 1. Geometry of rubber strip model 

 

Results of analysis are shown in Figures 2 and 3. 
Deformed rubber strip with displacement in x direction is shown in Figure 2.  

 

 
Figure 2. Deformed rubber strip with displacement 

 

Von Misses Stress is shown on figure 3 
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Figure 3. Deformed rubber strip with Von Mises Stress 

 

4. Conclusion 
 

4.1. Advantages and disadvantages of using UMAT subroutine in ABAQUS analysis  
 

Using UMAT subroutine enables testing of new material models on existing FEA software 
so researchers can focus only on material model. Creation of UMAT requires derivation of 
Cauchy stress equation and constitutive matrix which is used to formulate relation between 
stress and deformation. Results of analysis using this UMAT subroutine are identical to 
results of analysis using built in material model in ABAQUS solver but analysis with 
subroutine lasted significantly longer. Another disadvantage of using UMAT is that when 
using beam and shell elements, transverse shear stiffness must be specified, which is 
automatically calculated by ABAQUS if built-in material model is used. UMAT is a 
powerful tool for testing and verification of new material models but if material model 
already exist as an option in ABAQUS, using built-in solution has all advantages. The aim 
of this paper was to establish methodology of development and testing new material models 
using well known Neo-Hook material model. Comparison of results from UMAT and built-
in material model verify validity of subroutine programming.        
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      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 
     1 RPL,DDSDDT,DRPLDE,DRPLDT,STRAN,DSTRAN, 
     2 TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,MATERL,NDI,NSHR,NTENS, 
     3 NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,CELENT, 
     4 DFGRD0,DFGRD1,NOEL,NPT,KSLAY,KSPT,KSTEP,KINC) 
C 
      INCLUDE 'ABA_PARAM.INC' 
C 
      CHARACTER*8 MATERL 
      DIMENSION STRESS(NTENS),STATEV(NSTATV), 
     1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS), 
     2 STRAN(NTENS),DSTRAN(NTENS),DFGRD0(3,3),DFGRD1(3,3), 
     3 TIME(2),PREDEF(1),DPRED(1),PROPS(NPROPS),COORDS(3),DROT(3,3) 
C 
C    LOCAL ARRAYS 
C ---------------------------------------------------------------- 
C    BBAR   - MODIFIED LEFT CAUCHY-GREEN TENSOR : EQUATION (7) 
C    DISTGR - MODIFIED DEFORMATION GRADIENT : EQUATION (8) 
C ---------------------------------------------------------------- 
C 
      DIMENSION BBAR(6),DISTGR(3,3) 
C 
      PARAMETER(ZERO=0.D0, ONE=1.D0, TWO=2.D0, THREE=3.D0, FOUR=4.D0) 
C 
C ---------------------------------------------------------------- 
C    UMAT FOR COMPRESSIBLE NEO-HOOK HYPERELASTICITY 
C    CANNOT BE USED FOR PLANE STRESS 
C ---------------------------------------------------------------- 
C    PROPS(1) - C1 
C    PROPS(2) - D1 
C ---------------------------------------------------------------- 
C 
C    ELASTIC PROPERTIES 
C 
      C1=PROPS(1) 
      D1 =PROPS(2) 
C 
C    JACOBIAN DETERMINANT OF DEFORMATION GRADIENT  
C    TENSOR : EQUATION (4) 
C 
      DET=DFGRD1(1, 1)*DFGRD1(2, 2)*DFGRD1(3, 3) 
     1   -DFGRD1(1, 2)*DFGRD1(2, 1)*DFGRD1(3, 3) 
      IF(NSHR.EQ.3) THEN 
        DET=DET+DFGRD1(1, 2)*DFGRD1(2, 3)*DFGRD1(3, 1) 
     1         +DFGRD1(1, 3)*DFGRD1(3, 2)*DFGRD1(2, 1) 
     2         -DFGRD1(1, 3)*DFGRD1(3,1)*DFGRD1(2, 2) 
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     3         -DFGRD1(2, 3)*DFGRD1(3, 2)*DFGRD1(1, 1) 
      END IF 
C     
C    MODIFIED DEFORMATION GRADIENT : EQUATION (8) 
C 
      SCALE=DET**(-ONE/THREE) 
      DO K1=1, 3 
        DO K2=1, 3 
          DISTGR(K2, K1)=SCALE*DFGRD1(K2, K1) 
        END DO 
      END DO 
C 
C    CALCULATE MODIFIED LEFT CAUCHY-GREEN TENSOR : EQUATION (7) 
C 
      BBAR(1)=DISTGR(1, 1)**2+DISTGR(1, 2)**2+DISTGR(1, 3)**2 
      BBAR(2)=DISTGR(2, 1)**2+DISTGR(2, 2)**2+DISTGR(2, 3)**2 
      BBAR(3)=DISTGR(3, 3)**2+DISTGR(3, 1)**2+DISTGR(3, 2)**2 
      BBAR(4)=DISTGR(1, 1)*DISTGR(2, 1)+DISTGR(1, 2)*DISTGR(2, 2) 
     1       +DISTGR(1, 3)*DISTGR(2, 3) 
      IF(NSHR.EQ.3) THEN 
        BBAR(5)=DISTGR(1, 1)*DISTGR(3, 1)+DISTGR(1, 2)*DISTGR(3, 2) 
     1         +DISTGR(1, 3)*DISTGR(3, 3) 
        BBAR(6)=DISTGR(2, 1)*DISTGR(3, 1)+DISTGR(2, 2)*DISTGR(3, 2) 
     1         +DISTGR(2, 3)*DISTGR(3, 3) 
      END IF       
C 
C    CALCULATE THE STRESS : EQUATION (10) 
C 
      TRBBAR=(BBAR(1)+BBAR(2)+BBAR(3))/THREE 
      EG=TWO*C1/DET 
      PR=TWO/D1*(DET-ONE) 
      DO K1=1,NDI 
        STRESS(K1)=EG*(BBAR(K1)-TRBBAR)+PR 
      END DO 
      DO K1=NDI+1,NDI+NSHR 
        STRESS(K1)=EG*BBAR(K1) 
      END DO 
C 
C    CALCULATE THE STIFFNESS MATRIX : EQUATION (14) 
C 
      EG23=EG*TWO/THREE 
      EK=TWO/D1*(TWO*DET-ONE) 
      DDSDDE(1, 1)= EG23*(BBAR(1)+TRBBAR)+EK 
      DDSDDE(2, 2)= EG23*(BBAR(2)+TRBBAR)+EK 
      DDSDDE(3, 3)= EG23*(BBAR(3)+TRBBAR)+EK 
      DDSDDE(1, 2)=-EG23*(BBAR(1)+BBAR(2)-TRBBAR)+EK 
      DDSDDE(1, 3)=-EG23*(BBAR(1)+BBAR(3)-TRBBAR)+EK 
      DDSDDE(2, 3)=-EG23*(BBAR(2)+BBAR(3)-TRBBAR)+EK 
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      DDSDDE(1, 4)= EG23*BBAR(4)/TWO 
      DDSDDE(2, 4)= EG23*BBAR(4)/TWO 
      DDSDDE(3, 4)=-EG23*BBAR(4) 
      DDSDDE(4, 4)= EG*(BBAR(1)+BBAR(2))/TWO 
      IF(NSHR.EQ.3) THEN 
        DDSDDE(1, 5)= EG23*BBAR(5)/TWO 
        DDSDDE(2, 5)=-EG23*BBAR(5) 
        DDSDDE(3, 5)= EG23*BBAR(5)/TWO 
        DDSDDE(1, 6)=-EG23*BBAR(6) 
        DDSDDE(2, 6)= EG23*BBAR(6)/TWO 
        DDSDDE(3, 6)= EG23*BBAR(6)/TWO 
        DDSDDE(5, 5)= EG*(BBAR(1)+BBAR(3))/TWO 
        DDSDDE(6, 6)= EG*(BBAR(2)+BBAR(3))/TWO 
        DDSDDE(4,5)= EG*BBAR(6)/TWO 
        DDSDDE(4,6)= EG*BBAR(5)/TWO 
        DDSDDE(5,6)= EG*BBAR(4)/TWO 
      END IF 
      DO K1=1, NTENS 
        DO K2=1, K1-1 
          DDSDDE(K1, K2)=DDSDDE(K2, K1) 
        END DO 
      END DO 
C 
C     END OF USER SUBROUTINE 
C 
      RETURN 
      END 
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Abstract: The weakest parts of a composite laminate structure are often the joints. Hence 
the need to design reliable and efficient load-carrying joints has become increasingly 
important. This study deals with the bearing strength, failure mode and failure load in 
laminated composite plate with circular hole subjected to a traction force by a rigid pin. The 
investigation is focused on developing reliable computation procedure to analyze initial 
failure load for pin-loaded holes at the layered composite structures. Finite element method 
(FEM) is used to determine stress distribution around the fastener hole.  Combining Chang-
Scott-Springer characteristic curve model and Tsai-Wu initial failure criterion is used to 
determine initial failure load of mechanically fastened joint.  Special attention in this work 
is focused on pin-load distributions and it’s the effects on load level of failure and its 
location. The local contact between the mechanical fastener and the composite laminate may 
induce large strains, high stress concentration and delamination failure near the contact edge 
of a hole and eventually failure of the laminate. Initial failure analysis were carried out 
using cosine distribution and contact finite element pin/lug models between pin/lug 
mechanically fastened joint. The computation results are compared with own and available 
experimental results. Good correlations were obtained. 

 
1. Introduction 
 
It is well known that mechanically fastened joints play important role in structures that have 
to be detached or easily replaced. Since structural failure can be coursed by failure of joint 
it is obvious that strength of a joint is an important characteristic of every structure. 
Because joints represent potential weak points in the structure, the design of the joint can 
have a large influence over the structural integrity and load-carrying capacity of the overall 
structure. Methods for analysis of composite joints include analytical methods and finite 
element methods [6-23]. 
Some of the earlier studies [15-17, 24]. In later studies, explicit modeling of contact 
between the bolt and hole has been used. [19-21, 23]. In these cases, nonlinear finite 
element codes were needed to solve for the continuously changing boundary conditions 
brought about by changes in contact between the bolt and laminate. Some authors modeled 
the bolt as a rigid cylindrical contact surface [20, 21], while others considered it as elastic 
and modeled it with three-dimensional finite elements [19, 23]. 
To evaluate the strength of the mechanically fastened joints, several prediction methods 
have been proposed [1–17]. One of the main prediction methods is Chang`s model. In this 
model the joint is taken to have failed when certain combined stresses have exceeded a 
prescribed value in any of the plies along the characteristic curve. The combined stress limit 
is evaluated using Yamada–Sun failure criterion [1–6]. Other main prediction method is 
progressive damage model. In this model, the logical methodology for modeling the joint 
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problem is composed of three important steps: stress analysis, failure criteria and property 
degradation rules. Stress distributions in the plate are calculated and then a failure criterion 
is tested. If there is no failure, the load is increased. In the case of failure, material 
properties of failure nodes are reduced to an appropriate property degradation rules. 
Stresses are then redistributed at the same load and re-examined for any additional failures. 
The procedure continues until a point where excessive damage is reached [7–17]. In earlier 
works, Icten et al. [14] established the behavior of mechanically fastened joints in woven 
glass-epoxy composites with [(0/90)3]s and [(±45)3]s material configurations. The failure 
analysis based on Hashin and Hoffman criteria was performed and compared with 
experimental results. Okutan and Karakuzu [15] studied on the response of pin loaded 
laminated E/glass-epoxy composites for two different ply orientations such as [0/ ± 45]s and 
[90/ ± 45]s. The objective of this work is to study the behavior of graphite-epoxy pin loaded 
joints both numerically and experimentally, with particular attention given to the sensitivity 
of the model to different geometric dimensions. The two-dimensional finite element 
method was used to obtain stress distribution of the material. To determine the failure load 
and failure mode progressive damage prediction model was selected with Tsai-Wu Criteria. 
The mechanical properties of the composite material are obtained from standard tests [9, 
10, 20, 21]. 
 
2. Problem description 
 
In this analysis, based on the Chang et al. strength prediction model [1], the point stress 
failure criterion will be used to evaluate the characteristic lengths in tension and 
compression and a two-dimensional finite element analysis used to evaluate the stress 
distribution in the vicinity of the joint. 
A practical method considered to predict the failure load of composite joints with the least 
amount of testing is the characteristic length method. This method was proposed by 
Whitney and Nuismer [24, 25], and has been developed by Chang et al. [3–8]. It is still used 
for the failure analysis of composite joints [26]. In the characteristic length method, two 
parameters, i.e. compressive and tensile characteristic length should be determined by the 
stress analysis associated with the results of bearing and tensile tests on the laminates with 
and without hole. Once the characteristic lengths are determined, an artificial curve 
connecting the compressive and tensile characteristic lengths named characteristic curve is 
assumed [1]. Failure of a joint is evaluated on the characteristic curve, not on the edge of 
the fastener hole. In this method the joint is taken to have failed when certain combined 
stresses have exceeded a prescribed in any of the plies along the characteristic curve. 
In order to evaluate the strength of composite pinned joints, Fig. 1, the stress distribution 
along a characteristic dimension around the hole must first be evaluated. The conditions for 
failure can then be predicted with the aid of an appropriate failure criterion. The Tsai-Wu 
and Yamada-Sun failure criterions were used for analysis. 
Failure envelope in the general case can be written as: 

1, , 1,2,...,6F F i ji i ij i j      

where  are longitudinal and transverse tensile/compressive strengths, ,F Fi ij  1,2,3ii   are 

normal stress komponents with respect to material principal axes and  4,5,6ii   are shear 

stress components. 
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In case of orthotropic ply subjected in-plane loads Tsai-Wu initial failure criteria can be 
written as: 

2 2 2
( . ) 21 1 2 2 6 6 11 1 22 2 66 6 12 1 2F I F F F F F F F                 (1)  

1 1
1

1
11

 

 

F
X Xt

F

c

X Xt c

  

1 1
2

1
-22

 



F
Y Yt c

F
Y Yt c

  

1 1
2

1
22

 

 

F
Y Yt c

F
Y Yt c

 012F    

where F.I is failure index, , ,,t c t cX Y  are longitudinal and transverse tensile/compressive 

strengths of unidirectional lamina and S is the ply shear strength. 
Yamada-Sun failure criterion can be written as: 

 
2 2

1 6. .
       

  
F I

X St

 
       (2) 

In this model, failure is expected to occur when the value of F.I is greater than or equal to 
unity. 
Two geometry types of mechanical joints (metal/composite) 

 composite plate (shown in Figure 1) 
 composite tube (shown in Figure 2). 

 

 
 

Fig. 1. Composite plate geometry 
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Fig. 2. Composite tube geometry 

 
Basic difference in behavior of composite joints in regard to joints made of isotropic 
materials is failure location. While failure of joints made of isotropic materials occurs at the 
point of contact, for composite joints failure is located at certain distance from the contact 
point and is defined by characteristic curve. 
The characteristic curve is an artificial curve made of compressive and tensile characteristic 
lengths. Since the characteristic lengths are determined just for pure compression and 
tension, other combined failure modes are evaluated on the characteristic curve. 
A popular method to construct the characteristic curve is proposed by Chang and Scott [1]. 
The characteristic curve is expressed as follows: 
   cos   r R R R Rc t c t         (3) 

where Roc and Rot are compressive and tensile characteristic lengths, respectively. The angle 
θ is measured counterclockwise or clockwise from the loaded direction toward the sides of 
the fastener hole as shown in Fig. 3. 

DRot

Roc

Caracteristic y

x

curve
 

Fig. 3. Characteristic curve schematic diagram 
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3. Numerical verification 

 
3.1 Numerical validation of mechanically fastened joints at composite plates 
 
To determine failure load of mechanical fastened joint the procedure is composed of stress 
analysis and failure analysis using adequate initial failure criteria along characteristic curve. 
The strategy for the finite element modeling of the joints is the same as in the finite element 
model of the laminate for bearing tests shown in Fig. 4. Nonlinear finite element analysis 
for the joints is conducted by MSC/NASTRAN [27]. Interface between fasteners and 
laminates is modeled by the slide line contact element provided by the software. The slide 
line element in MSC/NASTRAN was adopted to simulate the contact between the pins and 
the laminates. For this case, one-half of plate was modeled. The pin and the laminate were 
modeled using CQUAD4 shell elements. 
Force was applied to the pin as uniformly distributed load. A typical finite element model 
of the mechanically fastened joint is shown in Fig. 4. 

Karakteristicna kriva

 
Fig. 4. Finite element model of mechanically fastened joint (plate) 

 
In this paper the problem of mechanically fastened joints of a laminated composite plate 
with frictional contact conditions are analyzed. Coulomb friction law is used and the 
contact constraints are handled by extended interior penalty methods. The perturbed 
variation principle is adopted to treat the non-differential term due to the coulomb friction. 
The computed results by our formulations are compared with experiment results.  
To validate computation procedure of mechanical fastened joints numerical examples are 
included. Geometry properties of mechanical fastened joint at composite structure are 
shown in Fig. 1 and in Table 3. Finite element model of contact problem of pin-loaded joint 
is shown in Fig. 4. Lug and pin are made from CFC composite and steel materials, 
respectively. Mechanical properties of these materials are given in Tables 1 and 2. 
 
 
 
 
 
 
 
 

Kontaktni element

Osovinica
Viseslojni kompozit

Ravan simetrijeSymmetry plane 

Contact element 

Characteristic curve Pin 
Composite specimen 
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Table 1:  Mechanical properties of CFC material 

Longitudinal Young’s 
Modulus 

daN
E 1468611 2mm

  

Transverse Young’s 
Modulus 

daN
E 117222 2mm

  

Shear Modulus 
daN

G 61812 2mm
  

Pooission’s Ratio 0.3  

Longitudinal Tensile 
Strength 

daNT
F 136.211 2mm

 

Longitudinal 
Compressive Strength 

daNC
F 13311 2mm

  

Transverse Tensile 
Strength 

daNT
F 4.222 2mm

  

Transverse  
Compressive Strength 

daNC
F 17.222 2mm

  

Rail Shear Strength 
daN

F 4.912 2mm


t 0.13mm

 

One Layer Thickness   

 

Table 2: Mechanical properties of pin 

Young’s 
Modulus 

daN
E 2100012 2mm

  

Shear Moduluss 
daN

G 814012 2mm


0.29

 

Pooission’s Ratio   

Ultimate Tensile 
Strength  

daN
125doz 2mm
  

Ultimate Shear 
Strength 

daN
80doz 2mm


0.25

 

Static Friction 
Coefficient 

  

 
 

 

Table 3. Geometrical characteristics of mechanically fastened joint 

Width of specimen w 56mm  

Distance between holes w 24mm1   

Diameter of holes d 8mm  

Height of specimen L 100mm  

Distance from edge of specimen 
to center of hole 

e 24mm  

Specimen thickness t 3.9mm  

 

Comparison of numerical and experimental results is shown in Table 4. Distribution of 
Failure Index for experimentally and numerically calculated failure load are shown on Fig. 
5-8. 
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Table 4. Comparisons computation with experimental results 

Stacking sequence 
45 / 0 / 45 / 0 /3

90 / 0 / 45 / 02 2 S

      
 

     
 

Tensile characteristic length  R 0.437 mmot  

Compressive characteristic length R 2.949mmoc  

Experimental failure load expF 2300daN  

Failure Index for experimental load 
exp

F.I. 0.98  

Numerical failure load 
num

F 2320daN  

Failure Index for numerical load 
num

F.I. 1  

Difference between  and   expF numF 0.9 % 

Failure mode tension 

 
 

1.936

1.815

1.695

1.574

1.453

1.333

1.212

1.091

0.971

0.85

0.729

0.608

0.488

0.367

0.246

0.126

0.00496  

0.98
0.88
0.69
0.59

0.59
0.64

0.67
0.65

0.61
0.55

0.52 0.56
0.62

0.65
0.65

0.63
0.57

0.56
0.65
0.85

0.95

 
Fig 5. Distribution of F.I. at composite lug for 
experimental failure load ( F=2300 daN) 

Fig 6. Distribution of F.I. along 
characteristic curve for experimental 
failure load (F=2300 daN) 
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1.941

1.82

1.699

1.578

1.457

1.336

1.215

1.094

0.973

0.852

0.731

0.61

0.489

0.368

0.247

0.126

0.00485  

1
0.9
0.7
0.61

0.61
0.67

0.69
0.67

0.64
0.56

0.51 0.55
0.62

0.64
0.65

0.62
0.56
0.56
0.65

0.85
0.95

 
Fig 7. Distribution of F.I. at composite lug for 
numerical failure load ( F=2320 daN) 

Fig 8. Distribution of F.I. along 
characteristic curve for numerical failure 
load ( F=2320 daN) 

 
 
3.2 Numerical validation of mechanically fastened joints at composite tubes 

 
Composite tube/steel pin configuration of the mechanical joints was considered. 
Strength analysis was performed in MSC/NASTRAN software. Material of the 
tube is aramid/epoxy. Composite tubes were modeled using CQUAD4 plate 
elements. The cosine load distribution was used to simulate the contact between the 
pins and composite tubes. Finite element mesh  for composite tube with 4 and 12 
holes is shown in Figure 9. 
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Fig. 9. Finite element model of mechanically fastened joint (tubes) 

 
Mechanical properties of aramid composite material is given in Table 5. Geometrical 
properties of composite tubes with 4 and 12 pins are given in Table 6. 
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Table 5. Mechanical properties of aramid/epoxy 
material 

Table 6. Geometric characteristic of 
composite tubes 
 

Longitudinal Young’s Modulus 2
11E 2390daN / mm

Transverse Young’s Modulus 2
22E 0.231daN / mm

Shear Modulus 2
12G 7.95daN / mm

Poisson’s Ratio 0.3 
Longitudinal Tensile Strength t 2

11F 75.91daN / mm
Longitudinal Compressive Strength c 2

11F 13.82daN / mm
Transverse Tensile Strength t 2

22F 1.105daN / mm
Transverse Compressive Strength c 2

22F 4.63daN / mm
Rail Shear Strength 2

12F 1.26daN / mm
One Layer Thickness (angle 90o) 090

t 0.4mm
One Layer Thickness (angle 61o) 061

t 1.1mm



Tensile Characteristic Length 

tR 0.459 mm
Compressive Characteristic Length 

cR 2.469mm

  

Number 
of pins 

Stacking 
sequence 

Inner 
diameter

(mm) 

Outer 
diameter 

(mm) 

Length 
 

(mm) 

Pin 
diameter 

(mm) 

4 (4P)  90 / 61/ 90 64.2 70.2 250 5 

12 (12P)  90 / 61/ 90 64.2 70.2 250 5 

  

 
Distribution of Failure Index for numerically calculated failure load are shown on Fig. 10-
11. 

X Y

Z

 
1.691

1.586

1.481

1.376

1.271

1.166

1.061

0.956

0.851

0.747

0.642

0.537

0.432

0.327

0.222

0.117

0.0123

V1
L14
C1

Output Set: sila270
Contour: Laminate Max FailureIndex  

1

1.01
0.86

0.84

0.83

0.71
0.53

0.39
0.36

0.38

0.95

1

0.86

0.75

0.74

0.67
0.49

 
Fig. 10. Distribution of F.I. at composite tube 4P and along characteristic curve for 

numerical failure load (F=270daN) 

X Y

Z

1.581

1.482

1.383

1.284

1.186

1.087

0.988

0.889

0.79

0.692

0.593

0.494

0.395

0.297

0.198

0.0991

0.000319

V1
L7
C1

Output Set: sila660
Contour: Laminate Max FailureIndex  

0.97
1

0.88
0.8
0.86
0.84

0.71
0.54

0.37
0.29

0.25
0.23

0.25
0.28

0.34
0.51

0.66
0.78
0.8
0.75
0.81
0.95

0.94

 
Fig. 11. Distribution of F.I. at composite tube 12P and along characteristic curve for 

numerical failure load (F=660daN) 
 

 
Experimental results for 4P and 12P type tubes are shown in Fig. 12-13. 
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Fig. 12. Experimental load for 4P tubes Fig. 13. Experimental load for 12P tubes 
 

  

 
Fig. 14. Picture of specimens with 12 and 4 pins 

 
In Table 7. is given comparison between numerical and experimental failure load for composite tubes. 
 
Table 7. Comparisons computation initial failure load at the composite tube with experiments  

Specimen Experimental 
failure load 

(daN) 

Computation 
failure load 

(daN) 

Difference between 
experimental and 
computation failure load 

4 pins 346 270 22 % 
12 pins 796 660 17 % 

    
 
4. Conclusions 
 
In this paper, a numerical and experimental study on the failure load and failure mode of 
pin loaded composite joints at the composite plates and the composite tubes is presented. In 
numerical study, a Tsai-Wu failure criterion is used to predict the initial failure load and 
failure mode.  Computation analysis was performed to evaluate failure of pin loaded 
composite joints based on the Chang Scott–Springer characteristic curve model using the 
Tsai-Wu failure criterion and finite element stress analysis. In this investigation initial 
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failure analysis were carried out using cosine distribution and contact finite element pin/lug 
models between pin/lug mechanically fastened joint. The computation results are compared 
with own and available experimental results. Good correlations were obtained. 
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