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Abstract. In this paper experimental and numerical investigations of the fluid flow around a 
smooth sphere placed in a quadratic cross section duct are represented. Experimental 
measurements are carried out using a Laser-Doppler Anemometer (LDA), and numerical 
simulation results are obtained by solving RANS equations using different turbulence 
models (k-ε, k-ω, BSL and BSL transition gamma theta model) of the fluid flow around a 
smooth sphere. In order to provide information on turbulent flow structures and spectral 
distribution Detached Eddy Simulation Model is used. Experimental and numerical results 
of flow velocity fields were compared for the case of the turbulent subcritical flow regime 
around a smooth sphere (Re<3105). The objective of this investigation was to determine an 
influence of duct cross-section range on the flow characteristics around the smooth sphere, 
particularly on the boundary layer separation point. 

 
 
 

1. Introduction 
 
Numbering investigation of flow around bluff bodies (in which the body length in the flow 
direction is close to or equal to the length perpendicular to the flow direction) have been 
carried out, due to its huge practical interest. Firstly, it started mostly as experimental 
investigation, in conjunction with theoretical consideration. Nowadays, with increased 
application of CFD codes, numerical simulations have become equally important tool for 
engineering and scientific work and substitute for multiple repeat of experiments. 
The location of the onset and extent of transition are of major importance in the design and 
performance of many devices where the wall-shear-stress or wall heat transfer is of interest. 
The transition process can also have a strong influence on the separation behavior of 
boundary layers. As a result, transition can have a large effect on the performance of 
airfoils and bluff bodies. There are a number of different transition mechanisms depending 
on the turbulence level of the external flow, the pressure gradient along the laminar 
boundary layer, the geometrical details, the surface roughness, etc. 
In this study has been investigated the class of separated bluff body flow – flow around a 
smooth sphere, which represents a complex case characterized by large-scale vortex 
shedding, transitional shear layers, and a turbulent wake with random and periodic 
Reynolds stresses of comparable magnitudes. Significant research effort has been made into 
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studying the flow past a stationary sphere over a wide range of Reynolds numbers both 
experimentally (Achenbach [1], Taneda [2,3], Bakic [4]) and numerically (Constantinescu 
and Squires [5], Johnson and Patel [6], Mittal [7], Tomboulides and Orszag [8], Ploumhans 
et. al. [9], Yun et. al. [10] and others). 
The main interest was the investigation of the fluid flow around a smooth sphere in 
subcritical turbulent regime, experimentally and using numerical simulations. Experimental 
measurements of fluid flow velocity field around the smooth sphere were performed using a 
Laser-Doppler Anemometry (LDA), in the Fluid Mechanics Laboratory at the Faculty of 
Mechanical Engineering in Nis. For numerical simulations Ansys CFD code is used, which 
is considered as one of the most reliable commercial software.      
After the validation of numerical model and determination of the most appropriate 
turbulence model for the case of fluid flow around a smooth sphere, it was also made an 
effort to numerically investigate different duct cross-section size, in order to examine its 
influence on the flow around the smooth sphere.     
 

2. Experimental setup 
 
Laser-Doppler Anemometry is a contemporary method of measuring flow velocity, using 
the Doppler effect of frequency changing of the light scattered from the moving particle in 
the fluid flow, which does not disturb the flow in the measuring area. Therefore this method 
is non-intrusive (contactless), based on optical technique. In addition, it is absolute 
measurement technique and no calibration is required, provided very high accuracy. LDA 
measurements require traces particles seeded in the fluid flow, and for the water from 
public water supply (containing enough amount of small particles) this condition is already 
satisfied. 
The special properties of the gas laser, which provides monochromatic, coherent, linearly 
polarized light wave of low-divergence beam (Gaussian distribution), make the LDA 
appropriate and highly accurate method for flow velocity measurements [11,12]. 
Experimental test set used for laboratory measurements is with open water circulation, and 
it is chematicly shown in Fig.1.  

    
 Figure 1. Setup of the LDA test set.    Figure 2. Measuring section of LDA test set. 

 
For the measurements of water velocity around the smooth sphere at the designed test set 
was used one component backscatter DANTEC laser-Doppler system, (Flowlite LDA), 
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consists of laser He-Ne probe (power of 10 mW and wave length of =632,8 nm), optical 
cable, laser unit and BSA F60 signal processor in coincidence mode. Basic operating 
parameters of LDA system are: the measuring volume is 0,05x0,05x0,43mm 
(x=y=0,05mm, z=0,43mm), the distance between the laser beams at the transmitting lens 
is 38,4 mm, Gaussian beam diameter do=2,2 mm (beam ''waist'') and the focal length of the 
laser beam is 160mm.  LDA system is directly connected to the signal processor, which 
transmits information to the computer, where special software processes compute data in 
real time. Measured velocity values at any point of flow domain are obtained either by 
direct software process of the signal or as a product of Doppler frequency (fd) and 
calibration constant of LDA system (c). 
In addition to the centrifugal pump, which operates at the best efficiency point (pump flow 
rate Q=90 l/s and pump head H=35m), experimental test set includes pressure gauges and 
ultrasonic flow meter. 
Owing to the existed (and modified) pump examination test set, especially owing to pump 
characteristics, the LDA measurements were carried out for fluid flow around the sphere of 
the diameter 40mm, placed in the quadratic duct dimensions 75x75mm.  
Reynolds number of the free stream was Re3104, and the Reynolds numbers related to the 
sphere diameter is 1,5104 (local Reynolds number for the sphere is 2104, where the 
characteristic velocity is mean velocity in the cross section from the sphere to the duct 
wall). 
 

3. Numerical simulation of the fluid flow around a smooth sphere 
 
Two numerical approaches are used in this study: solving RANS equations (Reynolds-
averaged Navier–Stokes equations, averaged in time) and solving Detached Eddy 
Simulation model (DES model, which are transient simulations dependent on time 
changes).  
Regarding the first approach, four turbulence models are used in RANS simulations: k-ε,  
k-, BSL and BSL transition gamma theta model. First two models are used only in order 
to compare the velocity profiles with velocities obtained with LDA measurement.  
The BSL, BSL transition and DES model are used for determination of boundary layer 
separation point. The BSL model is designed to give results similar to those of the original 
k-omega model of Wilcox, but without its strong dependency on arbitrary free stream 
values. The BSL model is identical to the Wilcox model in the inner 50 percent of the 
boundary-layer but changes gradually to the high Reynolds number Jones-Launder k-
epsilon model (in a k- formulation) towards the boundary-layer edge.  
Engineering transition predictions are based mainly on two modeling concepts. The first is 
the use of low-Reynolds number turbulence models, where the wall damping functions of 
the underlying turbulence model trigger the transition onset. This concept is attractive, as it 
is based on transport equations and can therefore be implemented without much effort. 
However, experience has shown that this approach is not capable of reliably capturing the 
influence of the many different factors that affect transition, such as free-stream turbulence, 
pressure gradients and separation. The second approach is the use of experimental 
correlations. The correlations usually relate the turbulence intensity, in the free-stream to 
the momentum-thickness Reynolds number at transition onset. Langrty and Menter [13] 
developed a locally formulated transport equation for intermittency, which can be used to 
trigger transition. The full model is based on two transport equations, one for the 
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intermittency and one for the transition onset criteria in terms of momentum thickness 
Reynolds number. It is called the BSL “Gamma Theta Model” and is the recommended 
transition model for general-purpose applications. It uses a new empirical correlation that 
has been developed to cover standard bypass transition as well as flows in low free-stream 
turbulence environments. This built-in correlation has been extensively validated for a wide 
range of transitional flows.  
In an attempt to improve the predictive capabilities of turbulence models in highly 
separated regions, Spalart [14] proposed a hybrid approach, which combines features of 
classical RANS formulations with elements of Large Eddy Simulations (LES) methods. 
The concept has been termed Detached Eddy Simulation (DES) and is based on the idea of 
covering the boundary layer by a RANS model and switching the model to a LES mode in 
detached regions. The present version of the DES model is based on the SST formulation. 
The advantage of this combination is that the accurate prediction of turbulent boundary 
layers up to separation and in mildly separated regions carries over from the SST model. In 
addition, the SST model supports the formulation of a zonal DES formulation, which is less 
sensitive to grid resolution restrictions than the standard DES formulation. Compared to 
classical LES methods, DES saves orders of magnitude of computing power for high 
Reynolds number flows. Though this is due to the moderate costs of the RANS model in 
the boundary layer region, DES still offers some of the advantages of an LES method in 
separated regions. 
 

3.1. Numerical model 
 
The first step in numerical simulation is creating geometry models for different sizes of the 
quadratic measuring section, consist of simple geometry shapes (quadratic duct and smooth 
sphere in the middle). The smooth sphere was placed in the middle of the domain (i.e. 
measuring section) in all duct models.  
Further, the mesh is created, taking into account the structure of the mesh, especially in the 
area around the sphere. According to the mesh elements number, all meshes differ, 
however, the mesh created around the sphere is very similar for all different cases. The 
behavior of the meshes near the sphere is illustrated in Fig. 3. The meshes are made fine 
nearer the sphere and the walls and made coarse in the free stream. A pentahedron (prism 
meshes) is created for the surfaces of the walls and the sphere, taking the boundary layer 
into consideration. The number of mesh elements varies between 500000 and 2800000 
elements (tetrahedron and prisms, whereat prismatic mesh elements are generated around 
all solid boundaries of the fluid flow domain).  

  
Figure 3. Unstructured discretization mesh for different duct cross-section sizes: 75 mm and 150 mm. 
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Once the fluid domain has been meshed, the governing equations (in integral form) are 
applied to each discrete control volume and used to construct a set of non-linear algebraic 
equations for the discrete dependent variables. Calculation procedure stores discrete values 
of the variables at the cell centers, however values of the variables are required at the cell 
faces for the convection terms in the equations and these must be interpolated from the cell 
centre values. This is accomplished using an high resolution scheme, where the advective 
flux is evaluated using the values from the upwind node, based on the boundedness 
principles used by Barth and Jesperson [15]. Numerical simulations convergence criteria 
were that root mean square values of the equation residuals are lower than 10-5. 
 

3.2 Mathematical formulation of turbulence models 
 

In this study are used four turbulence models for solving RANS simulations: k-ε, k-, BSL 
and SST model.   
In the standard k- turbulence model, values of turbulence kinetic energy (k), and 
turbulence eddy dissipation () are obtained by using following differential equations: 

 
    t
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U , (2) 

where t  is the turbulent viscosity 2 /t C k   , C , 1 2, , kC C    and   are model 

constants ( 0,09C  , 1 1,44C  , 2 1,92C  , 1k  , 1,3  ) and Pk is the turbulence 

production due to viscous and buoyancy forces, which is modeled using: 
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The k- turbulence model’s assumptions is that the turbulent viscosity is linked to the 
turbulence kinetic energy (k) and turbulent frequency () via the relation µt=k/ ,  
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where constants are: '=0,09; =5/9; =0,075; k=2; =2. 
 
The Wilcox k- model shows a strong sensitivity for the free-stream condition, and 
depending on the value specified for  at the inlet, there can be detected a significant 
variation in results [16]. On the other hand the k- turbulence model shows poor accuracy 
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for the near-wall region. Therefore, Menter [17] was developed a new turbulence model – 
BSL turbulence model, blending between the k- model near the surface and the k- model 
in the outer region. This requires the transformation of the k- model to the k- formulation 
and a subsequent addition of the corresponding equations. The Wilcox model is thereby 
multiplied by a blending function F1, and the transformed k- model by a function 1-F1, 
where F1 is equal to one near the surface and switches over to zero inside the boundary 
layer. The corresponding k- and  - equations are added to give the BSL model: 

    
3

t
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k
k k P k
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The coefficients of the new model are a linear combination of the corresponding 
coefficients of the underlying models:  3 1 1 1 21F F     , where 1  represents constant 

in the original Wilcox k- model and 2  constant in its transformed k- model. 

The SST model, used for DES formulation, accounts for the transport of the turbulent shear 
stress and gives highly accurate predictions of the onset and the amount of flow separation 
under adverse pressure gradients. The proper transport behavior can be obtained using the 
limiter to the formulation of the eddy-viscosity: 
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where t t   , constant 1 0,3a  ,  S is an invariant measure of the strain rate and 2F  is 

blending function similar to 1F , which restricts the limiter to the wall boundary layer, as the 

underlying assumptions are not correct for free shear flows: 
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The blending functions are critical to the success of the method. Their formulation is based 
on the distance to the nearest surface and on the flow variables. 
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where y is the distance to the nearest wall and  is the kinematic viscosity 

and: 10

2

1
max(2 ,1 10 )kCD k



 
 

    .  

The full transition model is based on two transport equations, one for the intermittency and 
one for the transition onset criteria in terms of momentum thickness Reynolds number. The 
transport equation for the intermittency,  , reads: 
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The transition sources are defined as follows:   3
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where S  is the strain rate magnitude, lenghtF  is an empirical correlation that controls the 

length of the transition region. The destruction/relaminarization sources are defined as 
follows: 
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where  is the magnitude of vorticity rate. The transition onset is controlled by the 
following functions: 
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cRe  is the critical Reynolds number where the intermittency first starts to increase in the 

boundary layer. This occurs upstream of the transition Reynolds number, tRe , and the 

difference between the two must be obtained from an empirical correlation. Both the lenghtF   

and cRe  correlations are functions of tRe . 
The constants for the intermittency equation are: 1 2 30.03; 50; 0.5; 1.0yc c c       . 
The modification for separation-induced transition is: 
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The transport equation for the transition momentum thickness Reynolds number, tRe , 

reads: 
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The source term is defined as follows: 
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The model constants for the tRe  equation are: 0.03; 2.0t tc   . 

The boundary condition for tRe at a wall is zero flux. The boundary condition for tRe at 

an inlet should be calculated from the empirical correlation based on the inlet turbulence 
intensity. The model contains three empirical correlations and the tRe  is the transition 

onset as observed in experiments.  
The transition model interacts with the SST turbulence model, as follows: 
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where kP  and kD  are the original production and destruction terms for the SST model and 

1origF is the original SST blending function. The production term in the -equation is not 

modified. 
Detached Eddy Simulation method (DES) is hybrid method, which combines characteristics 
of RANS simulations with elements of Large Eddy Simulation (LES), in order to predict 
turbulent fluid flow in highly separated regions, such existed around the bluff bodies.  
The formulation of the DES-limiter function for the model, that prevent the model from 
switching to the LES model where the RANS model should be active (especially in the near 
wall domains, is: 

 

 

1

1 1 max 1 ,0
DES

d DES

F

F C
k




 
    

 

, (14) 

where, 
 

2 2
, ,

8
tanh t

d

i j i j

F
U U k d

   
 
 

 and 0,61DESC  .  

DES simulation model uses a turbulence length scale obtained from the Menter's SST 
model's equations and compares it with the grid length scale to switch between LES and 
RANS. DES also demands complete simulation domain (due to not symmetric turbulent 
structures) and for DES initialization is used a converged RANS solution (here BSL 
solution). 
 

3. The comparison of numerical and experimental results 
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The comparisons between the models serve to evaluate the capability of these models to 
resolve features of the flow accurately. According to Achenbach [1], this is the case of the 
turbulent flow with subcritical region (Re<3×105). The comparisons of numerical and 
experimental results are shown in Fig.4, in the form of velocity distribution diagram, for 
several cross-section of quadratic duct. 
By comparing experimental measurements and numerical simulation results it was obtained 
a validation of numerical method. It was clearly noticeable that the best velocity profile 
prediction was made by using BSL turbulence model [18]. The k- turbulence model shows 
the largest deviation of velocity, giving much smaller velocity values especially in the area 
of vortex shedding. Hence the k- turbulence model is proven to be unsuitable for flows 
with boundary layer separation and flows over curved surfaces. Both k- and k- 
turbulence models obtain lack of prediction in the area of vortex shedding. The SST 
turbulence model showed better velocity field prediction than k- and k- models, but 
slightly coarser than BSL model. 
In further numerical analysis, the BSL turbulence model results were used as initial results 
for transient DES model. 

a) b) c)  
 

d)  e) f)  
 
Figure 4. Comparison of velocity profiles: a) 6,5 cm in front of the sphere axis; b) 3 cm in front of the sphere axis; 

c) right in front of the sphere; d) in the sphere axis; e) right behind the sphere; f) 3 cm behind the sphere axis; 

 

4. Results of numerical simulation for different duct cross-section range 
 
After validation of numerical results, it was possible to investigate different duct cross-
section cases, in order to determine the influence of the duct size to the flow characteristics 
around the smooth sphere. The main aim was to determine the critical ratio of the sphere 
diameter and cross section size, which could be considered as a limit up to which there is 
no substantial effect of the channel walls to the flow characteristics around the sphere. Also 
was determined the pressure coefficient (cp) around the smooth sphere, and compared to the 
already known data. Finally, it was determined the separation point, which was also 
compared to the previously published data.| 
Using RANS simulations it was investigated 6 different duct cross-section sizes (50mm, 
75mm, 100mm, 150mm and 300mm), where the duct length was 300mm. Therefore a/d 
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ratio is: 1,25; 1,875; 2,5; 3,75 and 7,5, where: a – length of quadratic duct side and d – 
sphere diameter. 
In the Fig. 5 is showed a graph of pressure coefficient cp. The duct cross-section influence 
is obviously very strong for small sizes duct cross-sections, i.e. small a/d ratio. For duct 
cross-section size equal and larger than 150x150mm, there is not significant difference of 
pressure coefficient. Therefore for a/d 3,75 , there is inconsiderable duct cross-section 
influence on the flow around a smooth sphere. 
 

 

 
Figure 5. Comparison of coefficient cp for different quadratic duct sizes obtained using RANS simulation. 

 

In Fig.6 are shown shear stress diagram for different duct cross-sections, indicates the 
different value of separation point for different cross-section sizes. Using RANS 
simulations it is obtained that the separation angle slightly differs between observed cases, 
from 88,2 degrees for the duct cross-section 300x300 mm up to 89,7 degrees for the duct 
cross-section size 50x50 mm. For duct sizes 150x150 mm and 300x300 mm it is noticable 
that flow sepatation occures at almost the same sphere angle. 
 

 

 
Figure 6. Comparison of shear stress graphs for different quadratic duct sizes (RANS). 

 
For all cases, Reynolds number differs form 3104 (50 mm cross-section) to 1,5104. 
The average y+ values at near-wall nodes in the area of separation point are y+<1, for all 
discretization meshes, which provides sufficient number of prismatic elements in boundary 
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layer around the smooth sphere. In order to obtain satisfactory numerical results this 
requirement must be satisfied [19]. 
Velocity vector field, for three different cross section ducts (75 mm, 150 mm and 300 mm) 
is shown in fig.7 and pressure gradient in Fig.8. 

     
 

Figure 7. Velocity vector field for quadratic duct cross-sections: 75 mm, 150 mm and 300 mm. 

   
 

Figure 8. Pressure gradient around the sphere in quadratic duct cross-sections: 75 mm, 150 mm and 300 mm. 
 

Pressure gradient increases along the sphere in the boundary layer and just before the 
separation point became positive (unfavorable), as it is represented in Fig.8. 

     

Figure 9. Pressure gradient in the area of flow separation for duct cross-section size:75 mm, 150 mm and 300 mm. 
 

Detached Eddy Simulation requires the entire model geometry. Mesh elements around the 
sphere are the same size as for RANS simulations, and elements in the quadratic ducts are 
slightly larger, due to computational resource limitation. The initial results are obtained by 
using BSL turbulence model. A DES simulation requires much larger computational time 
for obtaining transient results.  
In Fig.10 and Fig.11 are represented diagrams of pressure coefficient and wall shear 
diagram for all investigated cases, obtained by DES simulations. 
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Figure 10. Comparison of coefficient cp for different quadratic duct sizes obtained using DES simulation. 
 

 
 

Figure 11. Comparison of shear stress graphs for different quadratic duct sizes (DES). 
 

Using DES simulations it is obtained that the separation angle which varies from 84 
degrees for the duct cross-section 300x300 mm up to 88,1 degrees for the duct cross-section 
size 50x50mm. DES simulation results always derive smaller sepatation angles than it is 
obtained using RANS simulations. 
Detailed numerical simulations analysis of water flow around the smooth sphere in 
different quadratic cross-sections ducts indicate that separation flow occurs as it is 
represented in table I. 
  

Duct size  [mm]     50 75 100 150 300 

 Re lok 31367 20088 17842 16523 15821 

RANS фs 89,9 89,7 88,6 88,3 88,2 

DES фs 88,1 87,2 87 84,1 84 

 
Obtained separation angles using DES simulations are in good agreement with those 
obtained by Constantinescu (841), for Reynolds number 1104 [5]. Using FLUENT code 
and streamlines over the surface of the sphere from two different viewpoints, Jones and 
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Clarke [19] obtained slightly larger separation angle (881) and Achenbach [1] 
experimentally obtained slightly smaller separation angle (821).  
By increasing local Reynolds number up to the Reynolds number 3104 (i.e. increasing local 
velocity around the sphere) the separation angle also increases.  

 

5. Conclusion 
 
LDA measurement and RANS and DES simulations have been performed of the flow 
around a sphere at Re~104. The most favorable agreement with experimental measurements 
is obtained in DES cases computed using upwind discretizations for the convective terms, 
which resolve reasonably well the shedding mechanisms in the detached shear layers. The 
influence of the channel is expressed as long as ratio between the height of the channel and 
the sphere diameter do not come up to the value of 3,75 when this influence became 
negligible. This effect is particularly prominent in the pressure coefficient, while the 
boundary layer separation delay is very small (about 1 to 2 degrees). Based on these results 
it is concluded that it is possible to perform experimental research in small dimension 
domains and then perform a comparison of the obtained results with the actual flow 
problems without error because the effect of channel walls is not transferred to the flowed 
body. 
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Abstract. The paper discusses the unsteady temperature two-dimensional laminar 
magnetohydrodynamic (MHD) boundary layer of incompressible fluid. Outer electric filed 
is neglected, magnetic Reynolds number is significantly lower then one i.e. considered 
problem is in induction-less approximation. Characteristic properties of fluid are constant 
and trough the body surface the same fluid as the fluid in primary flow has been injected 
(sucked). The boundary-layer equations are generalized such that the equations and the 
boundary conditions are independent of the particular conditions of the problem, and this 
form is considered as universal. Obtained universal equations are numerically solved using 
progonka method. Numerical results for the dimensionless velocity, temperature and friction 
factor in function of introduced sets of parameters are obtained, displayed graphically and 
used to carry out general conclusions about development of temperature MHD boundary 
layer. 

 
 
 

1. Introduction  
 
Idea of boundary layer control appear when Prandtl form the theory, and this idea came 
from Prandtl [1] himself. Boundary-layer control usually means either attempts to change 
the overall flow field to reduce pressure drag and/or to increase lift or attempts to control 
the position of boundary layer separation point. Since then, many passive and active 
techniques have been developed for the prevention or delay of flow separation: admit the 
body motion in streamwise direction, increasing the boundary layer velocity, boundary 
layer suction, second gas injection, profile laminarization, body cooling. 
Interest in effect of outer magnetic filed on heat-physical processes appear fifty years ago 
[2]. A large number of theoretical investigations dealing with magnetohydrodynamic 
(MHD) flows of viscous fluids have been performed during the last decades due to their 
rapidly increasing applications in many fields of technology and engineering, such as MHD 
power generation, MHD flow meters, MHD pumps, magneto-biological and medical 
processes [3]. 
Many mathematic models have been proposed to explain the behaviors of the viscous MHD 
flow under different conditions. Generally, the fundamental equations governing the flow 
of a viscous electrically conducting fluid are very complicated in the form. Solutions of 
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mentioned models were followed with rapid increase of analytical papers and experimental 
procedures about heat transfer in MHD boundary layer [4-8].  
In this paper for the sake of mentioned research richness, unsteady temperature two 
dimensional laminar MHD boundary layer of incompressible fluid on the porous surface 
body is considered. Externally applied magnetic field is still in relation to the fluid in outer 
flow and perpendicular to the body. Further on it is assumed there is no outer electric filed 
and magnetic Reynolds number is significantly lower then one i.e. considered problem is in 
induction-less approximation. Velocity of flow is considered much lower then speed of 
light and usual assumption in temperature boundary layer calculation that temperature 
difference is small (under 50oC) is used, accordingly characteristic properties of fluid are 
constant (viscosity, thermal conductivity, electrical conductivity, magnetic permeability, 
mass heat capacity). Introduced assumptions simplify considered problem, however 
obtained physical model is interesting from practical point of view, because its relation with 
large number of MHD flows significant for technical practice. In described flow problem 
porous contour and externally applied magnetic field are used to control the flow in 
boundary layer. Partial differential equations, which mathematically describe considered 
problem, can be solved in every particular case using modern numerical methods. 
In this paper quite different approach is showed based on ideas given in papers [9-11], 
which are extended in papers [12-14]. Essence of this approach is in introducing adequate 
transformations and sets of parameters in starting equations of laminar two-dimensional 
unsteady temperature MHD boundary layer of incompressible fluid on porous contour, 
which transform the equations system and corresponding boundary conditions into form 
unique for all particular problems and this form is considered as universal. Solution of 
universal equations obtained using modern numerical methods, can be on convenient wave 
saved and used for general conclusions derivation about developing of described 
temperature MHD boundary layer and for boundary layer calculation of observed problem 
special cases. Integration of obtained universal equations is performed once for all. In order 
to solve particular problems it is necessary to determine impulse equation using obtained 
universal solutions. 
 

2. Mathematical analysis  
 
Described two-dimensional problem of MHD unsteady temperature boundary layer in 
inductioneless approximation is mathematically presented with equation system: 

  
2 2

2
;

u u u U U u B
u v U u U

t x y t x y




     
      

     
 (1) 

  
22 2

2

2
;

p p p

T T T T u B
u v u U

t x y c c y cy

  
  
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           

 (2) 

 0;
u v

x y

 
 

 
 (3) 

and corresponding boundary and initial conditions: 
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  0, , , for 0;w wu v v x t T T y     (4) 

  , , for ;u U x t T T y    (5) 

  0 0 0( , ), , for ;u u x y T T x y t t    (6) 

  1 1 0( , ), , for .u u t y T T t y x x    (7) 

For further consideration velocity difference   1 , ,v x y t   and stream function   , ,x y t   

are introduced with following relations: 

 1 1, , ;wv v v v u
x y

  
    

 
 (8) 

which transform equations (1) and (2) into system: 
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 (10) 

Boundary and initial conditions are transformed into conditions: 

 0, 0;  for 0;wT T y
y
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
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
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
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  


 (13) 

  1 1 0( , ), , for .u t y T T t y x x
y


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
 (14) 

First equation of system (9) does not depend from second equation (10) and it can be solved 
independently. For solving of system second equation, solution of first equation is used. 
For further consideration of described problem, new variables are introduced: 
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where  D   is normalizing constant, and   ,h x t   is characteristic linear scale of transversal 

coordinate in boundary layer. According to introduced variables, system of equations (9-10) 
is transformed in new form: 
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where for the sake of shorter expression, the notations are introduced: 
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Now we introduce sets of parameters: 
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and constant parameter: 

 .;
z

g const
t


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

 (20) 

which can have different values. It can be noticed that first parameters are given in the 
terms (18). Introduced sets of parameters reflect the nature of velocity change on outer edge 
of boundary layer, nature of injection (ejection) velocity, alteration characteristic of 
variable  N   and temperature change on body surface, and a part from that, in the integral 
form (by means of z  and /z t   ) pre-history of flow in boundary layer. 

Using, introduced sets of parameters (19) like new independent variables instead of  x   and  
t , and differentiating operators for  x   and  t : 
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where  ,x t  ; and parameter derivates along coordinate  x   and time t   are obtained by 

differentiation of equations (19): 
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g
k f g k n Fg g K

x Uz Uz


     

  

 
    ,

0,1 , , , 1 ,
1 1

1 ,
k n

k n k n k n k n

g
k f g k n gg g L

t z z


     

  

 
,

1,0 , , 1, ,
1 1 1

,
2

k n
k n k n k n k nkf k n F R

x Uz Uz


   

             

 ,
0,1 , , , 1 ,

1 1 1
;

2
k n

k n k n k n k nkf k n g S
t z z


   

           
 (22) 

where  , , , , , ,; ; ; ; ;k n k n k n k n k n k nQ E K L R S   are terms in curly brackets in obtained equations. It 

is important to notice that  , , ,; ;k n k n k nQ K R   beside the parameters depend on value  

/U z x F    .  Using parameters (19), operators (21) and terms (22) system of equations 
(16-17) is transformed into equations: 
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 

 

 

2

1 , , ,
,, 0

0

2

, , ,
,1

0

2

, , ,
,, 0

;

;

; ,

k n k n k n
k nk n

k n

k n k n k n
k nk

n

k n k n k n
k nk n

E Q X f
f

L K X g
g

S R X

 


 


  
 




 










 
    

   

 
   

   

 
  

   







 (23) 

 

 

 

 

2 , , ,
,, 0

0

, , ,
,1

0

, , ,
,, 0

;

;

; ;

k n k n k n
k nk n

k n

k n k n k n
k nk

n

k n k n k n
k nk n

E Q Y f
f

L K Y g
g

S R Y

 

 

  





 










 
    

  

 
   

  

 
  

  







 (24) 

where the following markings have been used for shorter statement:  1  -left side of first 

equation of system (16),  2  - left side of second system of equation (17). 

In order to make Eqs. (23-24) universal it is necessary to show that value  F   can be 
expressed by means of introduced parameters. In order to prove mentioned we start from 
impulse equation of described problem: 

    2 0;w
w

U
U U U N v U

t x x


  


              

 (25) 

where: 

  
0

, 1
u

x t dy
U




    
  -displacement thickness; (26) 

  
0

, 1
u u

x t dy
U U




    
  -momentum thickness; (27) 

  
0

, -friction stress on the body.w
y

u
x t

y
 



 
   

 (28) 

Introducing dimensionless characteristic functions: 
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      , , , , , ;wh
H x t H x t x t

h h U

  


 
     (29) 

which, according to Eqs. (15), (26), (27) and (28), can be expressed in the following form: 

    
0 0

1 1
, 1 ,   , 1 ,H x t d H x t d

D D

   
  

 
      

               

  
2

2
02

, | .x t D 

 





  (30) 

After transition to new independent variables (introduced parameters) in terms (30) values 

H  ,  H  ,     become functions only from parameters  ,k nf ,  ,k ng ,  ,k n   and  g . Now, 

using parameters from impulse Eq. (25) after simple transformation next equation is 
obtained: 

 ;
P

F
Q

  (31) 

where, for the sake of shorter expression following marks are used: 

 

 

 

 

1,0 0,1 1,0 0,0

, 1,0 , 1,
, ,, 0

0

, 1,0 , 1,
, ,1

, 1,0 ,
,, 0

1
2

2

1

1

k n k n k n
k n k nk n

k n

k n k n k n
k n k nk

k n k
k nk n

P f H H f g g H

H H
E k f f f

f f

H H
L k f g g

g g

H
S kf

 




  

  




 

  




 



         
 

            

             


 







 1,
,

,n k n
k n

H

g






        

 (32) 

 

 

 

,
,, 0

0

, ,
, ,1 , 0

0

1

2

1
.

2

k n
k nk n

k n

k n k n
k n k nk k n

n

H
Q H k n f

f

H H
k n g k n

g




 



 

  

 



   



         



 
 (33) 

Last two equations define function  F   in terms of values, which depends only from 
introduced parameters. Equation system (23-24) is now universal system of equations of 
described problem. Boundary conditions, also universal, are given with terms: 
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 0, 0, 0 for 0;
  



   


 1, 1 for ,      

    

 

 

 

,

,
0 0

,

0 , 0,1,2,..., 0

0 , 0,1, 2,..., 0
,  for ;

0 , 0,1,2,...

0

k n

k n

k n

f k n k n

g k n k

k n

g

     


    
 
       
  
 
  

 (34) 

where   0   -Blasius solution for stationary boundary layer on the plate and   0    is 

solution of following equation: 

 

22 22
20 0 0 0

02 2
0.c

r

d d dD
D E

P dd d H

   


  

 
    

 
 (35) 

Universal system of equations (23-24) with boundary conditions (34) are strictly for wide 
class of problems in which   z At C x   , where  A   is arbitrary constant and   C x   

some function of longitudinal coordinate. For other problems this equations are 
approximated universal equations. 
Equation system (23-24) can be integrated in m-parametric approximation once for good 
and all. Obtained characteristic values can be used to yield general conclusions about 
development of described boundary layer and to solve any particular problem. 
Before integration for scale of transversal coordinate in boundary layer   ,h x t   some 

characteristic value is chosen. In this case  h    and accordingly to Eq. (30)  1H   ,  

/H H      , and equality (31) now have form: 

 

 1,0 0,1 1,0 0,0

, , ,
, , ,, 0 1 , 0

0 0

1
2 2

2

.k n k n k n
k n k n k nk n k k n

k n n

F f H f g g H

H H H
E L S

f g

 



  

  
  

           
 


  

   
   



  
 (36) 

Taking parameters  , 0k nf  ,  , 0k ng  ,  , 0, 0k n g     first equation of system (13) is 

simplified into form: 

 
3 2

0 0 0
03 2 2

0;
d d

d D d

  


 
   (37) 

and if  2
0D    then previous equation became well-known Blasius equation. According 

to previous statement for normalizing constant  D   value 0,47 must be chosen. For selected 
value  h   equation (35) for determining variable  0   became: 
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22 2
0 0 0

02 2

1
0.c

r

d d d
E

P dd d

  


 

 
    

 
 (38) 

In this paper adequate approximations of system (23-24) is given in which influence of 
parameters  1,0f ,  0,1f ,  1,0g ,  0,0   and  g   are detained and influence of parameter  0,1f  

derivatives are disregarded. System (23-24) is simplified into following form: 

    
2 2

1 1,0 1,0 1,0 1,0 1,0 1,0
1,0 1,0

; ;Ff X f gf Fg X g gg
f g

  
 
 

    
   

 (39) 

    2 1,0 1,0 1,0 1,0 1,0 1,0
1,0 1,0

; ; ;Ff Y f gf Fg Y g gg
f g

   
    

 
 (40) 

where function F   in same approximation obtained from equation (36) have form: 

 

 1,0 0,1 1,0 0,0 1,0 1,0
1,0 1,0

1
2 2

2

H H
F f H f g g H gf gg

f g
 

                   
 (41) 

Boundary conditions, which coincide to equation system (39-40) are: 

 0, 0, 0 for 0;
  



   


  1, 1 for ,      

     1,0 0,1 1,0
0 0

0,0

0, 0, 0
, for ;

0, 0

f f g

g
     


          

 (42) 

which is obtained from condition (34), using same simplifications like for system of 
equations. Equations (39) and (40) are five-parametric once localized approximations of 
equations (23) and (24). 
 

3. Results and discussion  
 
In this section part of results obtained with numerical integration of universal equations 
(51) and (53) are given. All results are given for Prandtl number 6 99Pr . , initial Eckert 
number 0 0005Ec . and constant parameter 0 05g . .  

Integration domain of the treated system is divided in two parts – first one from 1 0 0,f   

towards the stagnation point ( 1 0 0,f  ), and second one from 1 0 0,f   towards the 

separation point ( 1 0 0,f  ). Discretisation of the equations was done applying implicit 

scheme, central for dimensionless transversal coordinate   and backward for 1 0,f . As a 

result of such procedure, tridiagonal system of algebraic equations was obtained.  
In both integration domains unsteadiness parameter 0 1,f  takes positive or negative values 

corresponding to the accelerated or decelerated free stream, respectively. Magnetic 
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parameter 1 0,g  starts from zero, corresponding to the absence of applied magnetic field, 

while parameter 0 0,  reflects the suction (positive values) or blowing (negative values). 

Figures 1 and 2 presents the variations of variables F , H and dimensionless shear stress  

in function of dynamic parameter 1 0,f  for different values of unsteadiness parameter 0 1,f .  

It may be noted that accelerated free stream decrease the boundary layer thickness and 
increase the velocity gradient near the wall. Positive or unfavourable pressure gradients that 
decelerate the free stream ( 0 1 0,f  ), increases boundary layer thickness and decrease the 

velocity gradient at the wall. Unfavourable pressure gradients can cause boundary layer 
separation, which often results in drastically altered flow patterns and losses. The shear 
stress at the wall is less downstream (to the separation point) than upstream, indicating that 
the wall shear stress decrease along the body. Obtained results indeed show that accelerated 
free stream ( 0 1 0 06,f . ) moves boundary layer separation point ( 0  ) downstream as 

expected, while deceleration have negative influence.  
 

 
Figure 1. Function F  and Dimensionless shear stress 
  for different values of unsteadiness parameter 0 1,f  

 
Figure 2. Function H  for different values of 

unsteadiness parameter 0 1,f  

 
Figure 3 presents the variations of dimensionless temperature gradient t  in function of 

dynamic parameter 1 0,f  for different values of unsteadiness parameter 0 1,f .  Decelerated 

free stream cause the increase in heat transfer near the separation point while towards the 
stagnation point accelerated stream have same effect.  
Figure 4 to 6 presents the influence of applied magnetic field on boundary layer 
characteristic functions.  The effect of magnetic parameter 1 0,g  on functions F , H  and 

dimensionless shear stress   is shown in Figures 4 and 5.  Figures present the case of 

decelerated outer flow ( 0 1 0 03,f .  ). It is interesting to note decreasing of functions 

F and H  with increase of magnetic parameter and also with increase of dynamic 
parameter 1 0,f . These results confirm the delay of the boundary-layer separation and greater 

postponement is achieved with increasing of magnetic parameter. Figures also show that 
increasing the magnetic filed decreases the velocity boundary layer thickness due to its 
damping effect.  
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Figure 3. Dimensionless temperature gradient t  in 

function of dynamic parameter for different values of 
unsteadiness parameter 0 1,f  

 
Figure 4. Function F  and dimensionless shear stress   

for different values of magnetic parameter 1 0,g  

 

From figure 4 also may be noted that with increase of magnetic parameter   also increase. 

This remark lead to conclusion that magnetic field postpone the boundary-layer separation 
and greater postponement is achieved with increasing of magnetic parameter 1 0,g . Figure 4 

is given for the case of decelerated outer flow ( 0 1 0 03,f .  ), however the same conclusion 

is obtained for the case of accelerated outer flow ( 0 1 0,f  ). 

The effect of magnetic parameter 1 0,g  on dimensionless temperature gradient t  in 

function of dynamic parameter 1 0,f  is shown in the Figure 6. It is obvious that in the 

absence of the magnetic filed ( 1 0 0,g  ) heat transfer increase forward to the separation 

point.  In the vicinity of stagnation point magnetic filed increase the heat transfer. 
 

Figure 5. Function H  for different values of magnetic 
parameter 1 0,g  

 
Figure 6. Dimensionless temperature gradient t  in 

function of dynamic parameter for different values of 
magnetic parameter 1 0,g  
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The effects of the suction or the blowing parameter 0 0,  on the behaviors of the MHD 

boundary layer fluid flow are presented in Figs. 7 to 9. It is noticed that the blowing 
increases the boundary layer thickness and decreases the velocity gradient of flow. 
Nevertheless, the suction has the opposite effect on the boundary layer flow. All these 
results act in accord with the physical situations. Figure 9 shows that suction cause the 
increase in heat transfer while the blowing have the opposite effect.  
 

Figure 7. Function F  and dimensionless shear stress   
for different values of suction (blowing) parameter 0 0,  

 
Figure 8. Function H  for different values of suction 

(blowing) parameter 0 0,  
. 

Dimensionless stream function   (dimensionless velocity) is given on Figure 10 for 
different values of unsteadiness parameter. It may be noted that velocity in boundary layer 
faster tends to the free stream velocity for the case of accelerated free stream  and slower 
for the case of decelerated flow compared with steady outer flow ( 0 1 0,f  ). Same 

conclusion is valid for other cross-sections of boundary-layer and for all values of dynamic 
and magnetic parameter.  
 

Figure 9. Dimensionless temperature gradient t  in 

function of dynamic parameter for different values of 
suction (blowing) parameter 0 0,  

 
Figure 10. Effect of unsteadiness parameter 0 1,f  on 

dimensionless velocity 
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Figure 11 shows the dimensionless stream function   in  function of dimensionless 
transversal coordinate   for different values of magnetic parameter. From Figure 11, we 

observe that with increase of magnetic parameter this ratio also increase and the minimal 
value is obtained for the case of non-conducting fluid or for the case of magnetic field 
absence. This analysis indicates the significant influence of magnetic field on increasing 
velocity in boundary-layer. The results clearly show that the magnetic field tends to delay 
or prevent separation.  
 

Figure 11. Effect of magnetic parameter 1 0,g on 

dimensionless velocity 

 
Figure 12. Effect of unsteadiness parameter 0 1,f  on 

dimensionless temperature 
 

It is interesting to note that the decelerated free stream increase the dimensionless boundary 
layer temperature, while the positive values of the same parameter have opposite effect as 
shown in the figure 12. 
 

 
Figure 13. Effect of magnetic parameter 1 0,g on 

dimensionless temperatue 

 
Figure 14. Effect of suction (blowing) parameter 0 0, on 

dimensionless velocity 
 
In Figure 13, the effects of the magnetic parameter on the temperature profiles are shown. 
From this figure, it can be seen that the dimensionless temperature decreases 
(thermodynamic temperature increase) with the increase of magnetic parameter. It is 
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important to mention that obtained temperature function is not completely universal, since 
it depends on Prandtl number Pr . 
 

 
Figure 15. Effect of suction (blowing) parameter 0 0, on dimensionless temperature  

 

The effects of the suction or the blowing parameter 0 0,  on the dimensionless velocity and 

temperature in the MHD boundary layer are presented in Figures 14 and 15. It is noticed 
that the blowing decreases the velocity in the boundary layer while suction increase 
velocity and decrease the boundary layer thickness. As expected the suction tends to delay 
the boundary layer separation and have positive effects on the flow.  All these results act in 
accord with the physical situations. The temperature distribution in function of 
dimensionless transversal coordinate   for different values of suction (blowing) parameter 

0 0,   is shown in Figure 15. Middle line presents the case of absence of suction or blowing. 

From this figure, it can be seen that the dimensionless temperature decreases 
(thermodynamic temperature increase) with the increase of blowing parameter.  

4.  Conclusion 
 
The generalized similarity solution to the problem of the temperature two-dimensional 
MHD boundary layer flow on the porous body has been presented in this paper to exhibit 
the combined effects of the dynamic, magnetic and suction (blowing) parameters. This 
problem can be analyzed for every particular case i.e. for given function of free stream 
velocity and body temperature. Here is used quite different approach in order to use 
benefits of multi-parametric method and universal equations of observed problem are 
derived. These equations are solved numerically in some approximation and integration 
results are given in the form of diagrams and conclusions. The obtained results can be used 
in drawing about general conclusions of boundary-layer development and in calculation of 
particular problems as shown in the paper. 
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Abstract. Turbulent swirl flow occurs in various technical systems and nature. Here are 
presented experimental results obtained in circular pipe behind axial fan as swirl generator 
for Reynolds number 2.36·105. Various experimental techniques were employed such as 
Laser Doppler Anemometry (LDA), Particle Image Velocimetry (PIV), original classical 
probes and smoke flow visualization with Nd:Yag laser. Each of techniques discovers 
turbulent swirl flow field characteristics in its own “point of view”. LDA offers better 
insight into flow turbulence, but just for one velocity component and in one point. PIV 
offers good spatial overview (around 100mmx120mm) and averaged velocity field based on 
300 pictures. Classical probes provided pressure distribution along the pipe diameter. 
Performed visualization gave better insight into fluid flow dynamics. Four characteristic 
flow regions in a cross section are obvious. Radial velocity distribution, documented by 
LDA and PIV, has shown that turbulent swirl flow must be accepted as three dimensional in 
the core region, what was neglected by classical probes. Flow integral characteristics 
calculated on the basis of all these methods have shown good agreement. Distinctions are 
the result of difference in velocity distribution in, especially, vortex core region. 

Keywords: turbulence, swirl flow, LDA, PIV, classical probes, visualization. 

 
 
 

1. Introduction 
 
Study of swirl flows is of great significance in technical practice, as well as medicine and 
nature flows. Here are presented some results of study of turbulent swirl flow behind axial 
fan. Physical understanding of this phenomenon would enlighten many unsolved problems 
and help developing new turbulent numerical models for CFD analysis as their prediction 
requires rather sophisticated modeling. Turbulent swirl flow has been studied by various 
experimental techniques [1-9].  
Velocity field was calculated from distribution of total and static pressures along a diameter 
obtain by classical probes, [5]. Correlation functions, probability distributions and statistical 
moments of the higher order, which are determined experimentally by the use of hot-wire 
anemometry, together with Particle Image Velocimetry (PIV) results, point out, very 
specific phenomena and transport processes in the core region and turbulent shear flow in 
pipe swirl flow [3,4,6-8]. 
In this test fan rotation speed was n=1500rpm and Reynolds number calculated on the basis 
of axial averaged velocity was 2.36·105. Two velocity component distributions, axial and 
circumferential are presented and compared for Laser Doppler Anemometry (LDA) and 
classical probe measurements. Distribution of time-averaged values obtained across the 
pipe section by these two techniques has shown very good agreement. On the basis of these 
results are calculated volume flow rate (Q), averaged axial velocity (Um), average 
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circulation (Γ), swirl number (Ω), Reynolds number (Re), and other integral statistical 
characteristics of the turbulent swirl flow. 
LDA measurements offer possibility to study turbulent statistical characteristics. In this 
way moments up to the fourth order have been calculated. 
Flow visualization with Nd:Yag laser and smoke generator with paraffin oil was done in the 
cross and meridian pipe section. 
The combination of these two techniques in two various pipe cross sections offer a 
possibility to prove swirl decay process, to achieve energy characteristics of the fans, as 
well as energy loss coefficient and etc. Turbulence interpretation and flow visualization 
investigated vortex core dynamics in generated turbulent swirl flow. 
The presented results point out extraordinary complexity of the structure of generated three 
dimensional turbulent velocity fields. 
 

2. Experimental Test Rig 

 
Turbulent swirl flow in pipe was studied in the test rig presented in Fig. 1 on the fan’s 
pressure side. Swirl generator is positioned at the pipe inlet, after the aerodynamically 
profiled free bell-mouth inlet for providing uniform flow at the fan inlet. Pipe inner 
diameter is D=0.4m, made of four sections of which two are transparent, one at the inlet 
1.5m long and the second one at the outlet 1.38m long. Two nontransparent sections are 4m 
each long. Installation total length is L=27.35·D, with around 5mm wall thickness. LDA 
measurements were performed in transparent sections x=2.96·D and x=25.92·D from the 
test rig inlet. PIV measurements and flow visualization were performed in the same 
measuring section x=25.92·D. Measurements with classical probes were performed in 
section x=21.1·D.  

 
 

Figure 1. Experimental test rig: 1- DC motor with 5kW, 2- profiled free bell-mouth inlet, 3- axial fan (swirl 
generator), 4- LDA-1 measuring section, 5- smoke generator probe position, 6- classical probes position, 7- LDA-

3 and PIV measuring section, flow visualization section, 8- Nd:Yag laser, 9- digital camera. 

 
Fan rotation speed was regulated by a fully automated thyristor bridge with error up to 
±0.5rpm. Axial fan has specific geometry (Fig. 2a.). External diameter of an axial rotor is 
0.398m, while dimensionless ratio of hub and external diameter is 0.5. Impeller has nine 
blades with variable angle. In Fig. 2b is presented pipe coordinate system for cylindrical 
coordinates, used during tests. 
Originally designed and manufactured axial fan (Fig. 2a.), has complex geometry and it 
was designed after the law of constant circulation Г=2πrW=const. It is proved [5] that each 
produced swirl fluid flow decays, or transform itself, after some length in a pipe, into 
Rankine vortex. That is a reason why modeled axial fan with distribution of circumferential 
velocity component beyond the impeller is like in Rankine vortex. This was of great 
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importance for turbulent swirl flow studying, as the swirl type is known at the beginning of 
the test rig.  
 

a)   b)  
Figure 2. a) Modeled axial fan impeller geometry and b) used pipe coordinate system. 

 

3. Experimental Investigation 
 

3.1. PIV measurements 
 
Stereo PIV measurements for other fan type and test rig configuration were earlier reported 
[1,2,4]. PIV measurements were performed in the section L=25.92·D in the middle of the 
pipe cross section, with region size 100x120mm (Fig. 1 and 3).  
 

a)    b)  
Figure 3. a) Stereo PIV configuration for calibration: 1- Nd:Yag laser power supply, 2- laser head, 3- chamber, 4- 

left camera, 5- right camera, 6- П-shaped camera carrier with computer controlled linear guide, 7- target and b) 
and b) PIV seeding: 1- atomizer, 2- axial fan, 3- pipe, 4- measuring chamber. 

 
Commercial stereo PIV system, made by TSI, was used. System consists of a dual head 
Nd:Yag laser (max power: 30mJ/pulse, wavelength 532nm, 15Hz), synchronization unit, 
adequate optics for the formation of the planar light sheet, two 12-bit CCD cameras with 
resolution of 1660x1200 pixels, 32fps. On the Nd:Yag laser was mounted cylindrical lens 
with focal length of -15mm and one spherical lens with focal length 500mm. 
Stereo PIV measurements were conducted in pipe’s cross-section, X-Y plane (Fig. 3a). In 
Fig. 3a is presented a stereo PIV configuration with two CCD cameras adjusted according 
to the Scheimpflug principle. 

253



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 B-03 

 
Laser sheet is approximately 1mm in width. The fluid flow is seeded with olive oil drops 
with average diameter 0.6m and a reflection coefficient 1.47, generated by six-jet 
atomizer positioned at the axial fan free inlet (Fig. 3b).  
Image processing has been performed by use of central difference image correction (CDIC) 
deformation algorithm in combination with FFT correlator (Fig. 4) [11,12]. This four-pass 
method employed an interrogation region of 32x32px2. The vector fields were validated 
using standard velocity range criteria and a 3x3 local median filter. Any missing vectors 
were interpolated using a 3x3 local mean technique. The number of interpolated vectors 
was, in average, around 6%.  
 

a)     b)  
Figure 4. Data processing: a) left camera and b) right camera. 

 

3.2. LDA measurements 
 
LDA measurements have been carried out using one-component laser Doppler system in 
sections LDA-1 and LDA-3 (Fig. 1) along the vertical diameter on distance 10mm each. 
LDA system was model Flow Explorer Mini LDA, Dantec, with BSA F30 signal processor 
model. Measurement distance is at 285mm, power 35mW, measurement volume diameter 
0.1mm, measurement volume length 1mm and maximum velocity 27m/s. It works in 
backscattered mode. Velocity was measured with uncertainty lower than 0.1%. 
Instantaneous velocities in the axial and radial directions have been measured at the same 
point by rotating the LDA optics for 90 degrees (Fig. 5a). Circumferential velocity 
component was measured from up and down side of the pipe (Fig. 5b). 
Fog generator Hurricane 1700, Chauvet, and system of plastic pipes for accumulation and 
fog distribution were employed for flow seeding (Fig. 5c). HI TECH, JBSYSTEMS, liquid 
with eucalyptus extract, on water basis, was used. In this way enough seeding was obtained, 
which resulted with signal frequency in some positions more than 15 kHz. Seeding was 
naturally sucked in the test rig by the fan. 
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a)  b)  c)  
Figure 5. LDA measurements: a) circumferential velocity component, b) axial and radial velocity component and 

c) LDA seeding. 

3.3. Measurements with original classical probes 
 
Measurement method with original classical probes is previously described in details [13]. 
It is assumed for application of this measuring method that the flow is two-dimensional. 
Fig. 6a shows set-up for determination of time-averaged velocity vector. Afterwards in this 
position is placed a combined Prandtl probe to first determine total and later static pressure 
in the same point (Fig. 6b).  
  

a)   b)  

Figure 6. Measurements with classical probes: a) Determination of the averaged flow angle: 1- angle probe, 2- 
differential pressure transmitter (Δp=100Pa), 3- data logger, 4- U-pipe, b) Determination of the dynamic pressure: 
1- modified Prandtl probe, 2- Betz micromanometer, 3- data logger, 4- lap top for data processing, 5- differential 

pressure transmitter (Δp=100Pa), 6-differential pressure transmitter (Δp=10hPa). 
 
In order to define flow angle, two silicone hoses are connected, parallel, to the precise 
differential inclined U-type micro-manometer with alcohol and pressure transmitter for 
small pressures (Δp=100Pa, Testo model 0638.1347) with data logger Testo 400. Angle is 
investigated by rotating probe around its axis. The reading of this differential manometer 
equals zero, when the probe top is positioned in such a way that the probe is collinear with 
the averaged velocity vector.  
Afterwards the combined Prandtl probe is positioned in this angle and the dynamic pressure 
is determined in two steps [13]. The probe is connected to the Betz micro-manometer, with 
an accuracy of 5 Pa, and parallel to one of differential pressure transmitters, Testo 
0638.1347 (Δp=100Pa, accuracy ±0.3Pa±0.5% of reading, resolution 0.1Pa), Testo 
0638.1447 (Δp=10hPa, accuracy ±0.03hPa, resolution 0.001hPa) or even in some cases 
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Testo 0638.1457 (Δp=100hPa, accuracy ±0.1hPa, till 20hPa, resolution 0.01hPa) depending 
on the measured pressure range. Air temperature and relative humidity were determined by 
use of  Testo 450 with 0.1 resolution.  
 

3.4. Flow visualization techniques 
 
Flow visualization was performed in the pipe cross section and in meridian plane in section 
x=25.92·D. Illumination was Nd:Yag laser, λ=532nm, 30mJ/pulse, 15Hz, with mounted 
cylindrical lens f=25mm and one spherical lens f=500mm. Smoke generator (Elven, 
Precision Limited) probe has a Pitot-tube geometry with heater on the top. It was positioned 
upstream the measuring section as defined in Fig. 1. Used digital camera was SONY, DSC-
H3, 10X Optical Zoom, F/3.5-4.4, 8.1MP with 30 fps and was positioned like in Fig. 1 or 
from a side. 

4. Results and Analysis 

4.1. Particle Image Velocimetry 
 
Averaged velocity field based on 300 couples of images made in a sequence is presented in 
Fig. 7. 

a)   b)  
Figure 7. a) Averaged velocity field and b) Averaged axial velocity component field. 

 

In this measuring section, for specified flow regime, can be concluded that even averaged 
velocity field is not axisymmetric. 
Vortex core dynamics is given in the following pictures. 

a)
−20 −10 0 10 20 30 40 50

−40

−30

−20

−10

0

10

20

30

X[mm]

Y[mm]

 b)

0 50 100 150
−20

0

20

40

60

 

 
X

c
 [mm]

0 50 100 150
−50

0

50

t [s]
 

 

Y
c
 [mm]

 
Figure 8. a) Coordinates of the vortex core center for 300 captures; b) Time dependence of the vortex core center 

coordinates during capture time. 

 
These results prove great dynamics of the turbulent swirl flow.  
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4.2. LDA  
 

Distribution of time averaged values of axial and circumferential velocity components are 
presented in Fig. 9. Indexes denote LDA measuring section. 

Here four different zones in each cross section can be distinguished. In the center is vortex 
core where fluid rotates by the solid body law W=r·const., what is obvious in Fig. 9b. In 
this zone even backflow may occur. Zone situated between the vortex core and the sound 
flow region is called shear layer. 

Here is a big influence of inner viscosity caused by velocity gradients in radial direction 
and dominant turbulence intensity. Next zone is sound flow region. Here fluid rotates by 
optional law W=f(r), of which here (Fig. 9b) is obeyed a law W=const/r, what was a design 
principle for this axial fan. In this zone axial velocity distribution is almost uniform. 
Boundary layer zone is the fourth one [3,8]. 
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Figure 9. Distribution of the time averaged: a) axial, b) circumferential and c) radial velocity component along the 
vertical diameter; d) Distribution of turbulence intensity for section LDA-1. 

 
Distribution of the radial velocity supports conclusions about non axisymmetric distribution 
presented in Figs. 7 and 8.  
Turbulence intensities for section LDA-1 are given in the Fig. 9d. Turbulence intensity has 
great values for all three components in the whole region and especially in the vortex core 
what is also related to the vortex core dynamics. 
Volume flow rate and averaged circulation are to be calculated on the basis of the following 
equations: 
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where k=r/R is dimensionless radius. Volume flow rates calculated for sections LDA-1 and 
LDA-3 are Q1=1.179m3/s and Q2=1.156m3/s, where difference is around 1.95%. Non 
axisymmteric velocity distribution results in less then 3% difference in the volume flow 
calculation for one and other half of the pipe. Averaged axial velocities in both sections are 
Um,1=9.38m/s and Um,3=9.2m/s. 
Averaged circulations are Γ1=5.49m2/s and Γ3=4.79m2/s. In this way swirl decay process is 
proved [5,9]. 
Non-dimensional swirl parameter (Ω) can be obtained in the following way: 

Ω=Q/(RΓ).    (2) 
It has values Ω1=1.1 and Ω3=1.2. 
Values of the normalized central moments for all three velocity components of the third Si, 
and the fourth order Fi, where i= u, v and w, in section LDA-1 are given in Fig. 10. 
They are defined in the following way: 

3 3 4 4, ,i i i i i iS u F u                (3) 

where i stands for all three velocity components. 
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Figure 10. Skewness and flatness coefficients for a) axial, b) circumferential and c) radial velocity fluctuations in 
section LDA-1. 

 

It is obvious that all skewness and flatness coefficients differ from adequate values for 
normal distribution 0 and 3, respectively. This is especially case in the vortex core region. It 
is obvious that in the vortex core and shear layer maximum Fu corresponds to minimum Su. 
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This emphasizes presence of great negative fluctuations of axial velocities, but above all 
very frequent appearance of small fluctuations which are generated during movement of the 
turbulent swirls in the region of small spatial changes of the velocity field [6,7]. 
Acquisition time of 10s was set as stop criteria for all measurements. Data frequency very 
along the vertical diameter and also for measured velocity component. The data validation 
during test was in average 85%. Sensitivity was adjusted to the values 1200-1400V. 

4.3. Original classical probes 
 
Distribution of the relative static and total pressure is given in the Fig. 11. It looks almost 
symmetrical. It should have in mind that this experimental procedure considers no third 
velocity component and it is also measured in the longer period of time.  
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Figure 11. Total and static pressure distribution. 
 

It should be pointed out that repeatability of the measured values is poor in the vortex 
region, like in the case of LDA measurements in this region.  

4.4. Flow visualization 
 
Various visualization methods have been used, like ones with filaments, stroboscope, speed 
camera with 1200 fps, ordinary digital camera, fog generators, and finally with Nd:Yag 
laser and fog generator with paraffin oil.  
Images for these two planes are given in Fig. 12. 
 

a) b)  
Figure 12. Flow visualization in a) meridian plane and b) cross-section. . 
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Very dynamic process is obvious.  

 

5. Conclusions 

 

Obtained measurements and visualization give closer insight into physics of complex flow 
processes in the swirl flow.  

PIV measurements started revealing dynamics of the turbulent swirl flow. It was shown 
that, at least for this regime and with the help of used equipment, vortex center is out of the 
pipe center, even for the averaged value. However, this difference is not great. This pointed 
out nonaxisymmetric flow, what was also proved with radial component distribution.  

This was also reason for differences in calculation of integral values in the case of LDA and 
classical probes use. 

Statistical description of turbulence needs moments of the higher order as the values of 
skewness and flatness coefficients, especially for vortex and viscous region, differ from 
values for normal distribution. 

These investigations offer much greater opportunities in investigation of turbulent swirl 
flow behind the axial fans and relating them to the axial fan characteristics. 

More regimes and tested fans need to be processed in order to make definite conclusions 
about behaving of the turbulent swirl flows behind axial fans. Also PIV measurements in 
meridian section should be performed. 

Better insight into these turbulent processes would give Time-resolved PIV as well as three-
component LDA or Hot-wire anemometry measurements. 

Performed and planned investigations will make possible, not just testing, but also 
development of new theoretical and numerical models for this class of very complex 
turbulent fluid flows.  
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Abstract.  

Theoretical and computational motion models of the classic axis-symmetrical projectile, 
through standard atmosphere, are presented in this paper. Physical and mathematical model of 
aerodynamic force and moment acting on classic symmetrical projectile is defined. Theoretical 
model of aerodynamic coefficients determination is described. Aerodynamic coefficients and 
derivatives of projectile model are calculated with adopted models of calculation. Aerodynamic 
coefficients as function of Mach numbers and angle of attack of projectile model are 
determined experimentally. The comparative analysis of experimental and calculated values of 
aerodynamic coefficients of projectile model is done. Those values are compared with 
appropriate values of aerodynamic coefficients of similar types of projectiles. Qualitative 
evaluation of calculated and experimental values of aerodynamic coefficients is created, and its 
results are used for the flight model of projectile with six degrees of freedom. Calculation of 
projectile path is used for the analysis of trajectory and motion stability of projectile model in 
the real atmosphere. Computational exterior ballistics program is used for determination of 
numerical and graphic comparison of path elements, stability parameters, and evaluation of 
precision measurement of classic axis-symmetrical projectile. Empirical evaluation and 
verification of aerodynamic coefficients calculations, in regard to experimental values, are done 
with six degrees of freedom calculation program model. 

 
 
 

1. Introduction 
 
The accuracy and precision of any mechanical system depend on a proper model and 
experimental results. The projectile as a mechanical system with its geometric and dynamic 
characteristics has to save energy during a flight through the atmosphere. The optimal – 
aerodynamic shape of the projectile provides stable flight, decreasing drag and preserving 
velocity.  
A modern classic projectile is symmetric solid with front part – nose (shape of ogive or 
paraboloid), main cylindrical part (with rotating band) and rear part - boat tail (shape of 
truncated cone). The aerodynamic shape of a projectile is very well known. The precise 
dimensions and construction of the projectile determine the specific physical effects of air 
flow. The determination of effects of air flow on the projectile with adequate aerodynamic 
flow model and the verification of calculated values in relation to the test values are of 
significance. 
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The importance of an accurate estimate is obvious because the classic symmetric projectile 
with muzzle velocity as the main energy resource flies to target, without any other influence 
but drag or aerodynamic force. 
Aerodynamic coefficients and derivatives of projectile model are calculated with adopted 
models of calculation (aerodynamic prediction) and determined experimentally as function of 
Mach numbers and angle of attack of projectile model. The comparative analysis of 
experimental and calculated values of aerodynamic coefficients of projectile model is done. 
 

2. Model of classic axis-symmetrical projectile 
 
Presented model is projectile 40 mm Bofors (projectile type M), figure 1. Stability of this 
unmanned projectile is described by parameters of stability (angle of attack, amplitude 
absorber coefficients and factors of dynamic stability and gyroscopic stability). These 
parameters are calculated on the basis of values of aerodynamic coefficients (determined by 
semi-empirical calculation - calc. and experimentally - exp. in three-sonic wind tunnel). 
 
The object of the research is the model of the classic symmetric projectile with following 
characteristics: 

- Reference diameter (caliber) : 40 mm, 
- Total length :   206,8 mm, 
- Nose length :   122,5 mm, 
- Boat tail length :   18 mm, 
- Center of mass :   151,8 mm, 
- Mass:    0,985 kg. 

 

 
  Figure 1. Model of classic axis-symmetrical projectile (type M). 

 
The projectile is assumed to be either a body of revolution whose spin axis coincides with a 
principal axis of inertia, or a finned missile with three or more identical fins spaced 
symmetrically around the circumference of a body of revolution. In addition to the 
requirements of configuration and mass symmetry, the projectile is also restricted to small 
yaw flight along its trajectory. In conventional aircraft aerodynamics, the terms “pitch” or 
“angle of attack” refer to the aircraft’s nose pointing above or below its flight path; the terms 
“yaw” or “angle of sideslip” refer to the nose pointing to the left or right of the flight path, [2]. 
The aerodynamic drag force opposes the forward velocity of the projectile and that is the 
classical aerodynamic force of exterior ballistics known as the “air resistance”. 
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3. Aerodynamic coefficients of classic axis-symmetrical projectile 
 
Aerodynamic forces and moments acting on the model are calculated with two semi-empirical 
methods (aerodynamic prediction): ADK0 and ADK1, [6]. Calculated values of aerodynamic 
coefficients are compared with experimental values for all components of force and moment 
[4]. 
 
The aerodynamic force acting on projectile in the centre of pressure is given by, [1]: 

 
X

Y

Z

X C

R Y q S C

Z C


 

   
   
   
      

. (1) 

and aerodynamic moment acting on projectile, 

 
L

M

N

R

L C

M M q S d C

N C


 

   
   
   
      

. (2) 

2

2

V
q





   - dynamic pressure, 

2

4

d
S


   - projectile referent area, 

d    - referent diameter - caliber, 

, ,
X Y Z

C C C   - aerodynamic coefficients of aerodynamic forces, 

, ,
L M N

C C C  - aerodynamic coefficients of aerodynamic moments, 

    - air density, 

V


   - the vector velocity. 

These aerodynamic coefficients representing aerodynamic forces , ,
X Y Z

C C C  and aerodynamic 

moments , ,
L M N

C C C  depend on: 

- airflow characteristics (Mach number, Reynolds number), 
- aerodynamic velocity, 
- the angle of attack -  , 

- the angular velocity vector 


 of the body frame with respect to the I


 frame. 
The components of aerodynamic force and moment are: 
X  - Axial aerodynamic force, 

Y  - Side aerodynamic force, 

Z  - Normal aerodynamic force, 
L  - Aerodynamic Rolling moment, 

M  - Aerodynamic Pitching moment, 

N  - Aerodynamic Yawing moment. 
 
This paper considers numerical calculation of these aerodynamic coefficients of forces and 
moments. To calculate any of these coefficients it is necessary to know the influence of 
aerodynamic parameters and their interaction. 
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The axial aerodynamic force coefficient is given by equation (3) and depends on Mach 
number and the angle of attack , [1]. That force represents the main component of the total 
aerodynamic force (Drag), 

    2

2

0X X X
C C Ma C Ma


   . (3) 

 
0X

C MaAerodynamic axial coefficient depends on Mach number and the shape of the 

rojectile, [1]. 

pends on 
 [1], 

p
 
The normal force coefficient de the angle of attack, Mach number and Reynolds 
number, given by

    3

3

Z Z Z
C C Ma C Ma 

    . (4) 

The pitching moment coefficient also depends on the angle of attack, Mach number and 
eynolds number, [1] described by equation (5). 

caused by normal force and dynamic derivative caused by the change of the angle of attack 
R It consists of static derivative which is 

  and pitching velocity q .  

 
3

3 * *

M M M MqM
C C C C C q 

     
 . (5) 

The side aerodynamic force and the yawing aerodynamic moment are also called Magnus 
ffect. They depend on the projectile shape, Mach numb

velocity 
e er, Reynolds number, yawing angular 

r  and the angle of attack, [1]. The coefficients of the force and the moment consist 
of the derivatives. Magnus force coefficient represents the derivative of angle of attack and 
rolling angular velocity p  

    2

* 2 *,
Y Yp Yp

C p C C p 
    . (6) 

Magnus moment coefficient represents the act of the side force at the attack point i.e. the 
erivative of the angle of attack and rolling angular vd elocity, as  

    2
0

* 2 *

N Np Np
C p C C p 

    . (7) 

The Magnus force and moment are of lower values than the normal force and the pitching 
oment, i.e. they point at the stability of flight and t

 
m he precision of the weapon‘s system. 

The rolling aerodynamic moment coefficient depends on the rolling angular velocity p , Mach 

number, Reynolds number and the angle of attack , [1]. The most influential parameter, the 

(8) 

1. Aerodynamic prediction 

This paper deals with mathematical interpretation of presented aerodynamic coefficients. 
s are given on the basis of theoretical research presented with 

artial differential equation and solved by finite elements method [1, 2]. Also, some 

rolling angular velocity, defines the derivative of aerodynamic coefficient of rolling moment 
which is also called the spin dumping moment coefficient and is given by (8). 
 

 *
L Lp

C C p . 

3.
 

These mathematical equation
p
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derivatives are improved in relation of measurements and results of the experiments. The 
results of the numerical calculation of the derivatives and aerodynamic coefficients are 
presented in this chapter. 
 
On the basis of these geometric and dynamic characteristics, according to the calculation by 
aerodynamic prediction [1, 2, and 7], the aerodynamic coefficients and its derivatives are 
alculated. Mach number best represents the characteristics of airflow, i.e. the velocity of the 

oefficients 

he T-38 wind tunnel facility. The T-38 test facility of Military Technical Institute in Belgrade 
.5m x 1.5m square test section [7]. For 

bsonic and supersonic tests, the test section is with solid walls, while for transonic tests, a 

flaps in the tunnel diffuser. In the supersonic configuration, Mach number is set by 

g measurements. 

 from 
10 to +10 (21 different values of angle of attack) and roll angle was 0.  

c
projectile in relation to the sonic velocity. 
 
 
3.2. Experimental results of aerodynamic c
 
T
is a blow down type pressurized wind tunnel with a 1
su
section with porous walls is inserted in the tunnel configuration. The porosity of walls can be 
varied between 1.5% and 8%, depending on Mach number, so as to achieve the best flow 
quality. 
Mach number in the range 0.2 to 4.0 can be achieved in the test section, with Reynolds 
numbers up to 110 million per meter. In the subsonic configuration, Mach number is set by 
sidewall 
the flexible nozzle contour, while in transonic configuration, Mach number is both set by 
sidewall flaps and the flexible nozzle, and actively regulated by blow-off system. Mach 
number can be set and regulated to within 0.5% of the nominal value. 
Stagnation pressure in the test section can be maintained between 1.1 bar and 15 bar, 
depending on Mach number, and regulated to 0.3 % of nominal value. Run times are in the 
range 6s to 60s, depending on Mach number and stagnation pressure. 
Model is supported in the test section by a tail sting mounted on a pitch-and-roll mechanism 
by which desired aerodynamic angles can be achieved. The facility supports both step-by-step 
model movement and continuous movement of model (“sweep”) durin
 
Range of test. Tests of the model were performed in the Mach number range from 0.2 to 3.0 
(14 different values of Mach number). The complex angles of attack were in the interval
–
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internal 6-component
strain gauge balance

internal 6-component
strain gauge balance

placed into model

 
  Figure 2. Model of classic axis-symmetrical projectile in wind tunnel. 

 
Aerodynamic forces and moments acting on the model were measured by ABLE 1.00 
MKXXIIIA internal six-component strain gauge balance. Nominal load range of the balance 
was 2800 N for normal, 620 N for side forces, 134 N for axial force, 145 Nm for pitching, 26 
Nm for yawing moment and 17 Nm for rolling moment; the accuracy was approximately 
0.25% F.S. for each component. 
 
Instrumentation and data recording. Data reduction was performed after each run, using the 
standard T38-APS software package in use with the wind-tunnel facility. It was done in 
several stages, i.e.: 
 Data acquisition system interfacing and signals normalization; 
 Determination of flow parameters in the test section of the wind tunnel; 
 Determination of model position (orientation) relative to test section and airflow; 
 Determination of non-dimensional aerodynamic coefficients of forces and moments. 
Each stage has been performed by a different software module. 
The stagnation pressure P0 in the test section was measured by a Mensor quartz bourdon tube 
absolute pressure transducer pneumatically connected to a Pitot probe in the settling chamber 
of the wind tunnel. Range of the transducer used was 7 bar. 
The difference (Pst -P0) between the stagnation and static pressure in the test section was 
measured in subsonic/transonic speed range by a Mensor quartz bourdon tube differential 
pressure transducer, pneumatically connected to the P0 Pitot probe and to an orifice on the test 
section sidewall. In transonic and supersonic speed ranges an absolute pressure transducer of 
same type and range was used. Range of these transducers was 1.75 bar; 
Atmospheric pressure Patm was measured by a Mensor quartz bourdon tube absolute pressure 
transducer pneumatically connected to a pressure port in the wind tunnel exhaust. Range of 
these transducers was 1.75 bar. 
The stagnation temperature T0 was measured by a custom-made RTD probe in the settling 
chamber of the wind tunnel. 

267



 
 
 
 
 
 
 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 20                                                                                                                                B-05 

The pitching and rolling angle of the model support measured by NPL resolvers integrated in 
the model support mechanism. The accuracy of the pitching angle reading was 0.05 and of 
the rolling angle reading was 0.25. 
Aerodynamic forces and moments acting on the model were measured by ABLE 1.00 
MKXXIIIA internal six-component strain gauge balance. Nominal load range of the balance 
was 2800 N for normal, 620 N for side forces, 134 N for axial force, 145 Nm for pitching, 26 
Nm for yawing moment and 17 Nm for rolling moment; the accuracy was approximately 
0.25% F.S. for each component. 
The data acquisition system consisted of a Teledyne 64 channels “front end” controlled by a 
PC computer. The front-end channels for flow parameters transducers (i.e. transducers for P0, 
Pst -P0 and T0) were set with 30 Hz, fourth-order low pass Butterworth filters and appropriate 
amplification. The data from all analog channels were digitized by a 16-bit resolution A/D 
converter with the overall accuracy of the acquisition system being about 0.05% to 0.1% F.S. 
of the channel signal range. All channels were sampled with the same 200 samples/s rate. 
 
3.3. Comparison of calculated values and test results 
 
Calculated values of aerodynamic coefficients are compared with experimental values for all 
components of force and moment. The most important components of aerodynamic 
coefficients of axis-symmetrical projectile: axial force for zero angle of attack and pitching 
moment are presented in Fig. 3. 
 

 
a) axial force    b) pitching moment 

  Figure 4. Calculated and experimental values of aerodynamic coefficient. 

 
The characteristic function of aerodynamic coefficients in relation to angle of attack is 
presented in the following figure 4. 

 
a) axial force    b) pitching moment 

  Figure 4. Aerodynamic coefficient for different values of angle of attack. 
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4. Model of flight stability 
 
The evaluation of projectile dynamic stability is defined by Lapunov criterion. Quantitative 
disturbances are: maximum amplitude of disturbed value in regard to nominal value, period of 
transitional process (dumping), periodic or aperiodic behavior. The aim of the research is to 
achieve dynamic stability of projectile, i.e. to make the maximal amplitude of disturbed value 
to converge to nominal value, such as the angle of attack.  
The general solution of complex inhomogeneous differential equation is sum of solution of 
homogeneous differential equation and one particular solution of inhomogeneous differential 

equation ph  ~~~
 . The homogeneous solution is caused by initial trajectory disturbances 

and particular solution is caused by acceleration of gravitation and aerodynamic asymmetry. 
The coefficients of homogeneous part of complex differential equation do not depend upon 
flight velocity. The variables depend on the change of aerodynamic coefficient with the 
change of Mach number.  
The prediction of stability of axis-symmetrical projectile is determined by observing the value 
variations of damping coefficients 1  and 2 , and evaluating the relationship factors of 

dynamic  and gyroscopic   flight stability. gS dS

 
4.1. Gyroscopic and dynamic stability of symmetrical projectile 
 

Frequency equation 

  2,1,4
2
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The criterion of gyroscopic stability for full linearized solution is: 

  042  MP   (2) 

According to classic exterior ballistics, gyroscopic stability factor is defined by: 
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M

P
S g 4

2

   (3) 

By eliminating 2P  in equations (2) and (3): 
  014 gSM  (4) 

In case of gyroscopic stabilized projectile, where Murphy's coefficient 0 , equation 
(3) is simplified and criterion of gyroscopic stability is given by: 

 is M

1gS  or 1
1


gS

. 

The main condition for dynamic stability is that both damping coefficients are less 
than zero ( 1 0   and 2 0  ) during all flight period. During the real flight, it is possible 

that damping coefficient becomes positive, for a short time period, and then reestablishes 
negative values, without significant influence on flight. If the positive trend of damping 
coefficients remains during the flight, the projectile becomes instable on the trajectory.  

Static stable projectile without spin (or with small axial rotation) has values of 
Murphy's coefficient , and spin velocity 0M  p  is equal to zero or small enough that might 

be neglected.    
Dumping coefficients equation, represented by: 
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shows that, in this particular case, only condition for dynamic stability is that Murphy's 
coefficient . In case of wing stabilized projectile, the sum of dynamic derivative of 
aerodynamic coefficients is usually negative,

0H 

  0mq mC C   . 

The aerodynamic coefficient of normal force is usually negative, . In this 

way, the dynamic stability is provided, because the Murphy's coefficient is positive, i.e. 
. 
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Regarding to the equation (5), it is concluded that dumping coefficients j  will be 

negative, respectively to the following condition 
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The dynamic factor of stability  is defined by Murphy's coefficients  dS

2
d

T
S

H
  (8)

270



 
 
 
 
 
 
 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 20                                                                                                                                B-05 

 
The insertion of equation (8) in equation (7) leads to following inequalities, where both 

inequalities have to be fulfilled to achieve dynamic stability, 
0H  (9) 
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The solution of inequality (10) gives 
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The insertion of equation (3) in inequality (11) gives following inequality: 

 dd
g

SS
S

 2
1  (12) 

Equations (9) and (12) describe general criteria of dynamic stability for any axis-symmetrical 
projectile with or without wing stabilizer. Most types of projectiles can be classified in two groups: 
static stable type of projectiles without axial rotation or slow-spin projectiles and static instable type of 
projectiles which have to be gyroscopically stabilized. 
 

5. Analysis of parameters of stability 
 
Motion of projectile is simulated through six-degrees of freedom model (6-DOF). Comparative 
analysis of calculated and experimental parameters of stability is presented in figures as dependencies 
of angles of attack, dumping coefficients and factors of dynamic and gyroscopic stability on time and 
path. 
Preliminary qualitative evaluation of projectile flight stability is determined through analysis of 
components of total angle of attack. At initial part of trajectory, disturbances cause deviation of 
velocity vector from longitudinal axis of projectile. Values of angle of attack   and side-slip angle   

should decrease during the flight. This would provide initial qualitative condition of stable flight. The 
angle of attack   and side-slip angle   versus time flight and distance in initial part of trajectory is 

presented in the Fig. 5. Results of flight simulation are presented in regard to two different groups of 
initial data: experimental values (exp) and calculated prediction (calc) of aerodynamic coefficients for 
model of axis-symmetrical projectile. 
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Figure 5. Components of angle of attack in initial part of trajectory. 
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The analysis of flight stability is performed according to six-degrees of freedom simulation using 
experimental and calculated values of aerodynamic coefficients for same flight conditions. Qualitative 
stability analysis is performed with regard to stability equations and inequalities of dumping 
coefficients and stability factors. Stability parameters determined by 6-DOF flight simulation of model 
of projectile are presented in figure 6. Trajectory simulation is performed according to experimental 
(exp) and calculated (calc) values of aerodynamic coefficients. In the figure 5 a) preliminary conditions 
of stable flight as negative values of dumping coefficients during the flight ( 0j  ) are presented. In 

the figure 5 b) final and sufficient condition of stable flight, as relation of gyroscopic and dynamic 
factors of stability, is presented and given by inequality (E12). 
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a) dumping coefficients    b) dynamic and gyroscopic factors of stability 

Figure 6. Stability parameters. 

 
Presented results of stability research for model of axis-symmetrical projectile, Fig. 1, describe a type 
of static instable projectile stabilized with longitudinal rotation. 
 

5. Effects of aerodynamic coefficients on projectile stability 
 
The investigation of stability properties is performed according to stability equations using 6-DOF 
flight simulation. The stability of flight depends of aerodynamic properties, represented by components 
of aerodynamic force and aerodynamic moment. Relative differences between calculated and 
experimental values of aerodynamic coefficients are 5 % to 15 %, depending on flow regime. 
Therefore, the determination of effects of aerodynamic coefficients on stability parameters is 
performed for value range of all aerodynamic coefficients and their derivatives. 
Values of aerodynamic coefficients and derivatives are changed from -15 % up to +15 %. According to 
this value range as input parameters of 6-DOF flight simulation, the values of parameters of stability of 
projectile and their characteristics are analyzed. 
 
Aerodynamic coefficient of axial force  has the most significant impact on trajectory 

characteristics and stability parameters. The increase of values of axial aerodynamic coefficient of 5 to 
15% shows the boost of most of stability parameters and the decrease of the spin velocity of 3 down to 
8%. Dumping coefficient 

0XC

2  and gyroscopic stability expression  1 Sg  are increased up to 20%, and 

dynamic stability expression  is increased up to 5%. In case of decrease of axial 

coefficient, above mentioned parameters are decreased in the same manner. 

 2Sd Sd 

The derivative of aerodynamic coefficient of normal force ZC   influences mostly on dumping 

coefficient 2  and on dynamic stability expression   2Sd S d

2

. The decrease of the normal force 

derivative of 5 to 15% shows decreasing dumping coefficient   down to 20%, and decreasing 
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dynamic stability expression  2Sd Sd  down to 6%. The increasing of normal force derivative up 

to 15 % leads to increase in the similar manner: dumping coefficient 2  up to 20%  and dynamic 

stability expression  up to 5%. 2Sd   Sd

 
The influence of aerodynamic coefficient of pitching moment is analyzed through separate analyses of 
static derivative MC   and dynamic derivatives of pitching moment (dynamic derivatives of 

stability) M MqCC   . The increase of static pitching derivative shows proportional rise of gyroscopic 

stability expression  1 Sg  up to 15% and the decrease of static derivative leads to proportional 

depletion of gyroscopic stability down to 15%.  
Dynamic derivatives of pitching moment M MqC C   show larger influence on stability parameters, 

especially on dumping coefficient 1 , which values are decreased down to 30% in regard to increasing 

of dynamic derivatives up to 15%. Also, dynamic stability expression   2dS s decreased 2.5 % 

down to 7%. The depletion of dynamic derivatives causes the rise of dumping coefficient 

Sd  i

1  up to 

30% and dynamic stability expression up to 8%. 
 
The rise of derivative of aerodynamic coefficient of rolling moment of 15% causes the increase of 
gyroscopic stability factor expression  1 Sg  up to 25% and the decreasing spin velocity down to 

12%. The decrease of derivative of aerodynamic coefficient of rolling moment causes the decrease of 
gyroscopic stability factor expression  1 Sg  down to 25% and the increasing spin velocity up to 

14%. 
 
The effects of derivatives of aerodynamic coefficient of side force and yawing moment (Magnus force 
and moment) show the decrease of stability parameters. The rise and decrease of these derivatives of 5 
to 15% cause only the rise of stability parameters. The derivative of aerodynamic coefficient of side 
force YpC   causes the increase of dumping coefficients 1 2,   of 20% and dynamic stability factor 

expression of only 2%. The derivative of aerodynamic coefficient of yawing moment NpC   causes the 

rise of dumping coefficients 1 2,   of 30% and dynamic stability factor expression of 25%. 

These three coefficients, axial force, normal force and pitching moment are the most influential forces 
and moments on the projectile flight. Using the experimental results, as in theory, side force and 
yawing moment are less significant for flight trajectory. 
 

6. Conclusion 
 
The stability of classic axis-symmetrical projectile is affected by aerodynamic coefficients through a 
steady influence of the axial aerodynamic coefficient on most of the stability parameters and through 
the strongest influence of dynamic derivative of aerodynamic coefficient of pitching moment and 
derivative of aerodynamic coefficient of yawing moment on dumping coefficients and factor of 
dynamic stability. 
 
During the test the real model was used and the measures obtained are not transformed, thus the results 
are correct. 
The trait of the change of the calculated values of aerodynamic coefficients coincides with the 
experimental results of aerodynamic coefficients. 
The values of axial aerodynamic force coefficient are higher than the calculated values and particularly 
in the transonic field. The increase of the values in transonic field is due to the influence of the 
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supporter which diameter is similar to the projectile base diameter. However, in subsonic field the 
values of experimental axial aerodynamic force coefficient are lower than calculated values of that 
coefficient.  This is due to the projectile base which is covered with the supporter and there is no 
whirlpool. The aerodynamic resistance caused by the whirlpool behind the projectile in subsonic field 
is the main part of the total aerodynamic resistance.  
In transonic field the main part of the aerodynamic resistance is in the sound wave resistance.  
 
The experimental results confirmed the correctness of the numerical calculation to a great extent. The 
accurate numerical calculation enables the exact determination of the aerodynamic characteristics. The 
exact aerodynamic coefficients show the real acting of forces and moments on the projectile during the 
flight. The values of the obtained coefficients are easily used in the equations   that describe a model of 
the projectile flight – model 6 degrees of freedom and model of modified point mass. 
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Abstract. The flow between two coaxial rotating cylinders can be represened as Couette 
fluid flow if the ration between the radius (R2-R1)/R2 <<1. In this paper the case of the flow 
with streamwise favorable (dp/dx>0) has been considered. The flowfield has been simulated 
in direct numerical fashion, without any averages not in spatial and nor in temporal sense. 
We have used our numerical code for full 2D Navier-Stokes equations using Fourier series 
in homogeneous direction, and Chebyshev polynomials in nonhomogeneous direction. For 
time discretiztion discretization we have used Adams-Bashwort semi implicit two-step 
method. We have solved momentum equation in vorticity-streamfunction form, and since 
we had two boundary conditions for streamfunction and none for vorticity, we resolved this 
problem by using influence matrix method. The evolution of flow field for velocity has been 
shown for the intial nondimensional  time period 0 t 9. 

. 

 
 
 

1. Introduction  
 
In this paper we consider two-dimensional direct numerical simulation of Navier-Stokes 
equations in vorticity-streamfunction formulation. We have chosen the Couette-Poiseuille 
flow configuration which is equivalent to fluid flow between two coxial cylinder in 
circumferential direction when the ratio (R2-R1)/R2 <<1, where R2 is  outer and R1 is inner 
radius of cylinder. The inner cylinder rotates in counter-clockwise direction and outer 
cylinder rotates in clockwise direction where it is valid 1R12R2. The exact solution for 
Couette- Poiseuille flow is perturbed by optimized linear combination of eigenvectors 
obtained as solution of Orr-Sommerfeld perturbation eqation for the case of Couette-
Poiseuille flow. 
 

2. Combined plane Couette and plane Poiseuille flow 
 
The Couette-Poiseuille flow is described as a flow between two parallel plates, where the 
plates move in oposite direction with the same velocity (Couette flow) and where the 
constant pressure gradient is imposed in streamwise direction (Poiseuille flow). This flow 
can be described in the following manner: 
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    21 1U( y ) A y By, y ,     1  (1) 

Where 0A1 and 0B1. The choice of a characteristic velocity is still at our disposal. 
If we require that max U(y)=1, then A and B must be related by 

 
 

   1 2

1 0

2 1 1 2 1





A
B

1 2

A A A

  
     ,

 (2) 

And we thus have a one-parameter family of velocity profiles. For A=0 and B=1 we have 
Couette flow,and for A=1 and B=0 we obtain plane Poiseuille flow. In the case A0 and 
B0 we get combined plane Couette-Poiseuille flow. 
In the prevous papers [1] and [2] we have used pseudo specral method [3] to describe 
vorticity evolution in 2D channel flow. In this paper we have numerically solved 
pertubation equation in the way similar to those that is described in literature [5] [6] and 
[7]..  
. 
 

3. Finite amplitude stability problem-nonlinear stability 
 
For linear stability analysis we concern to find critical values for infinitesimal peruturbation 
to veloctiy profile, but in the case of nonliear stability our mayor task is to find how the 
finite amplitude disturbances influence the fluid flow stability trought the viscous fluid flow 
evolution, which can be carried out by full Navier-Stokes equation numerical simulation, 
see [8] and [9]. 
The theoretical investigations are based on the assumption that laminar flows are affected 
by small disturbances; for channel flow, these disturbances originate at the inlet whereas for 
the boundary layer over a flat plate placed in a stream they are due to roughness on the 
solid surface or irregularities in the external flow. The stability theory is to follow up in 
time the behavior of such disturbances, then they are imposed on the main flow and 
whether the disturbances increase or die out with time.  
If the disturbances decay with time, the main flow is considered stable; in contrast, if the 
disturbances amplify with time the main flow is unstable and the possibility of transition to 
turbulence exists. Stability theory predicts the value of the critical Reynolds number, 
beyond which instability will exist for a prescribed main flow. For plane incompressible 
viscous Couette flow, the flow is unconditionally stable at all Reynolds numbers. The 
viscosity is known to have a stabilizing effect on the flow. In case of the plane Poiseuille 
flow, the flow is stable at low Reynolds numbers Re<5772. 
The mathematical problem is the determination of the eigenvalues of the stability equation 
obtained from the governing conservation equations of mass and momentum. It is the aim 
of the stability analysis to compute the phase velocity, rate of amplification and the wave 
number of all possible disturbances, in a given flow as a function of the relevant flow 
properties such as Reynolds number. 
 In our case of plane Couette–Poiseuille flow the 2D Navier Stokes equations are 
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   

2 2

2 2

2 2

2 2

1

1

0 1 1 0 2

u u u p u u
u v

t x y x x y

v v v p v v
u v

t x y y x y

u v
, y , x .

x y

      
             

      
            

 
       

 

,

,  (3) 

u-streamwise velocity, v-normal velocity, p-pressure and -kinematic viscosity. To study its 
stability we put  

 

     
   
   0

u r ,t U y i u r ,t ,

v r ,t v r ,t ,

p r ,t P p r ,t .

 



 

  

  

 
 (4) 

and substitute this expressions into equations (3), and neglect quadratic terms in the small 
primed quantities to derive the linearized equations for the disturbance. We take normal 
modes of the form 

  (5) 

     

     

     

i x ct

i x ct

i x ct

ˆu r ,t u y e

ˆv r ,t v y e

ˆp r ,t p y e

 

 

 

 

 

 







and supstitute them in the equations (3). Here -stream-wise wavenumber and c-phase 

velocity of perturbation, whereas  û y   v̂ y  and  ŵ y  are comlex numbers. Thus the 

first equation in (3)  when nonlinear terms are neglected gives 

 

   

     2
2 2

2

ˆi U y c u y

û yi
ˆ ˆp y i u y ,

y

    
 

         

  (6) 

And the second one is 

 

   
     2

2 2
2

1

ˆi U y c v y

p̂ y v y
ˆi v y

y y

    


          

ˆ
,
  (7) 

The conitnuity equations is 

    
0

v̂ y
ˆi u y ,

y


  


 (8) 
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One may eliminate from (6) and (7) if we differentiate (6) with regard to y and 

multiply (7) with i, and than substract from each other.  In that case we have 

 p̂ y

 

         

     3
2 2

3

ˆ ˆu y U y u y
ˆi c i u y U y

y y y

ˆ ˆ ˆp y u y u yi
i ,

y y y

   
         

   
           

 (9) 

 
 
And and also 

 

         
       

2 2

2
2

2

ˆ ˆi cv y i U y v y

p̂ y v yi
ˆi i v y

y y

    


           

ˆ
,
  (10) 

 
If we now substitute the second equation in the first one, then we get 

 

         

         

     

   

2 2

2
2

2

3
2 2

3

ˆ ˆu y U y u y
ˆi c i u y U y

y y y

ˆ ˆi cv y i U y v y

v̂ y
ˆi i v y

y

ˆ ˆu y u y
i ,

y y

   
         

     

 
       

  
      

 (11) 

Which together with equation (8) and the following boundary conditions 

 
       
1 1

0 1 0 0 1
ˆ ˆv v

ˆ; v ; ; v .
y y

  
   

 
0ˆ   (12) 

form the system of differential equatins to be solved. The equation (12) is fourth order 
differential equation in , which we get after substitution of the continuty equation (8) 

in it. The described equation is solved by Chebyshev collocation method, and the results of 
this numerical solution are substituted in (4). So obtained results are incorporated in our 
numerical code for force term in two dimensional Navier Stokes equation in vorticity-
stream function formulation, and the simulation has been carried out in sense of nonlinear 
stability analysis. 

 v̂ y
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4. Numerical method 
 
Direct numerical simualtion has been carried out for Reynolds number Re1000, for 
number of modes N64 and streamwise wavenumber 1.5 optimized to the phase 
velocity c0.9362 and for time step t200. Adams-Bashfort semi-implicit time 
discretization has been used for advancement in time. Time step is suficient small that the 
phase error and dispersion error are in acceptable limits, in our case ph_error=5.806 104.  

Navier-Stokes equations for incompressible isothermal flow in vorticity-stream function 
formulation for two-dimensional flow in nondimensional form read 

 

 
2 2

2 2

y x
f f

t y x x y x y x y

        
              


      

  (13) 

 
2 2

2 2
0,

x y

 
  
 
 

  (14) 

        ,1, , , ,1, , ,x t g x t x t h x t
y


 




   (15) 

       , 1, , , , 1, , x t g x t x t h x t
y


   




   (16) 

    0, ,0 , .x y x y on    (18) 

Here   - is dimensionless vorticity of fluid,  -dimension-less stream function, -
dimensionless kinematic viscosity,  fx and fy are component of dimensionless body force in  
co-ordinate x and y axes directions respectively. 
The domain  is defined as  = { (x,y)2   0 x2  1y1 }. We have designated the 

upper domain boundary u = {(x,y)2  0x2  y1 } and the lower domain boundary l 

= { (x,y)2  0  x  2  y  1}. The time domain is defined as T={ t  0 tTe }, 

where Te is the end of the simulation. We have anticipated the periodic boundary conditions 
in streamwise direction (x-axe), which are in accordance with the periodic perturbations 
obtained by the solution of (12),(8) and (13) the perturbation equation of hydrodynamic 
stability. 
For the problem stated in the previous section, for the basis functions in x-direction we have 
taken trigonometric polynomials, and for y-direction we have taken Chebyshev 
polynomials. The domain in x-direction is equally descretized x = 2/N, and domain in y-
direction is descretized by Gauss-Lobatto-Chebyshev points defined as yj = cos(j/N) for 
0jN, where is N-number of discretization points in x- and y-direction. For streamwise 
direction we have used Fourier-Galerkin method, and for stream normal direction 
Chebyshev-collocation method. The truncated Fourier series for streamfunction and 
vorticity read 
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ˆ, , , ,
k N

I k x
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k N

x y t y t e



    (17) 
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2

ˆ, , , .
k N

I k x
N k

k N

x y t y t e



    (18) 

In the above expressions 1I   is imaginary unit, k-wave number, ˆ ,k j y t and 

are Fourier coefficients for vorticity and streamfunction respectively.. In order to 

have 2-periodicity in the flow domain, we have chosen that wave number must be from 
the set of integers, k. We apply Fourier-Galerkin method in x-direction and then 

Chebyshev collocation method in y-direction to the system of equation (1) and (2), with 
boundary (3) and (4) and initial conditions (5). 

ˆ ,k jy t 

We have introduced the following expression for the curl of body force 

  
/ 2

/ 2

ˆ , , ,
N

y I k xx
k

k N

f f
x y t e

x y 

 
  

     (19) 

and we approximate nonlinear convective terms on left hand side, in the following manner 
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Substituting (18),(19),(20),(21) and (22) in (14) and (15) we obtain the following residuals 
equations 

 

 


 


   

 

/ 2 / 2

/ 2 / 2

/ 2 / 2

/ 2 / 2

/ 22 2

2 2
/ 2

ˆ , ,

ˆ,

ˆ , 0,



N N
I k x I k x

k
k N k N k

N N
I k x I k x

k
k N k Nk

N
I k x

k
k N

y t e y t e
t y

y t e y t e
x y

y t e
x y

 

 



         

       

        

 

 



 

 

 

,

x

 (22) 

And for definition of vorticity 
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  (23) 
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If we apply Galerkin method to the equations (23) and (24), i.e. we take for the weight 
functions the same as basis functions , we obtain 
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 (25) 

Applying now the Chebyshev-collocation method in inhomogenuous direction (y-axe) to 
the above system of equations, we get the  
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 (26) 

  (27) 
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 
    
 

  


 

 

Here  2
,j ld are elements of second order Chebyshev differentiation matrix [2]. This sistem of 

eqations is discretized in time by using Adams-Bashworht semi-implicit finite difference 
scheme with second order accu-racy. 

This system of equations (27) and (28) together with boundary conditions (16) and (17) 
should be solved numerically. The system is represented by 2(N+1)2(N+1) three time 
levels matrix equation. The nonlinear advective terms have been computed by 
pseudospectral technique [3], so that full Navier-Stokes equation in vorticity-
streamfunction formulation can be simulated for the case of 2D-plane channel flow. The 
problem of two boundary conditions for streamfunction and none for vorticity has been 
succesfully resolved by applying the influence matrix method [4]. 
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                               

         

 (28) 

The initial condition for our simulation is the solution of the problem for laminar plane 
Couette-Poiseuille 2D-flow is given by the equation (1) where we have chose A=0.5 and 
B=1.Our goal is to simulate the velocity evolution for the value of Reynolds number 
Re=1000 which is beneath the critical value Rec=5772, to simulate the transient growth of 
kinetic energy. 
 We have carried out this simulation  by imposing the  perturbations obtained by solution 
(8) , (12) and (13) to the  laminar velocity profile given by (1). The simulations are driven 
by forcing term which is determined by perturbed Navier-Stokes equation, 
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                 

  

    
 (29) 

Here  and  are the values determined from (1)and (4). 

  (30) V rot , rotV  
   

The results of simulation of nonlinear perturbation evolution are presented in the figures 1, 
2 and 3. 
 
 

4. Optimization of initial perturbation  
 
 We have carried out this simulation  by imposing the  perturbations obtained by solution of 
Orr-Sommerfeld equation on laminar velocity profile, in the case of stream function it reads  

  (31) 
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y e







 



  











  

  Re I m

where ˆn ’s are eigenvectors and cn’s are eigenvalues of generalized eigenvalue problem of 

Orr-Sommerfeld equation for the case of plane Poiseuille flow, and n are coeffiecient 
which should be determined by appropriate optimization procedure. Here  is perturbation 
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spectrum obtained by using the matrix , whose columns are eigenvectors  ˆn y , in the 

following way. 

   (26)  1 0y, .   

Functional to be minimized is  

     .f A
                      (27) 

In other words,the fuctional is the dot product of perturbation vector of stream function and 
its complex conjugate. If we put the condition that the i-th mode is of unit magnitude, then 
the variational problem can be reduced to the following function 

  1 ,if A       e  (28) 

where we have designated with ei – the unit vector, i.e. the column vector whose the only 
element different from null is the i-th element. Let find the derivative with respect to , e.i. 
let find the first variation of the above function f and equal it with zero, so that we have 

  1i
d f d

iA A
d d

       0    
 

e .e   (29) 

And after rearrengments 

 ,iA   e  (30) 

so that after multiplication both side with inverse matrice A1 from the left, we have 

  (31) 1 .iA  e

The optimizated spectrum can be normalized by appropriate calculation of coefficient , so 
that the value i1 can be obtained. The value of  has been determined by this expression 

 
1 1

1 .i

ii iia a 

  


  (32) 

In the fig.1 and fig.2 are shown the vorticity fields for ten different times, for dimensionless 
time tn, n1,...,10. The perturbation is optimized to the least stable eigenvalue 
c0.9362i 0.06138 and for Re1000. This optimization of perturbation is capable of 
expressing the initial transient energy growth [8] [9],[10] [11]. 
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Figure 1. Eigenvalues obtained as Orr-Sommerfeld spectrum of plane Coette-Poiseuille flow for Re=1000 and 

wave number 1.5 and 0. The least stable value for S branch is c0.0.9362i 0.06138  
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Figure 2. Velocity evolution in perturbed Poiseuille-Couette flow 
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Figure 3. Velocity evolution in perturbed Poiseuille-Couette flow 
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  Figure 4. Velocity evolution in perturbed Poiseuille-Couette flow 
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5. Results of simulation  
 
In the nonlinear evolution of perturbations shown in the figures 2 , 3 and 4 we can notice 
that the kinetic energy of perturbations has initial optimized perturbation which steadily 
decreases  in the time interval 0<t<5. It can be seen from colorbars at the right-hand side, 
where maximal values of velocity goes to umax(x=1,y=0.6)=2.07 at t= and 
umax(x3,y0.6) =1.8 at t2. It can also be noticed that the maximal posistive and 
negative velocity perturbations are concentrated in the region of y=0.6 and y=-0.6. for 
t=2. In the instant of time t=3 we can see that in the middle of the channel (y=0) where 
the velocity for Couette flow should be zero and for our plane Couette-Poiseuille flow is 
u=0.5 for unperturbed flow, for this perturbed flow we have that velocity is almost 
uperturbed, and that the perturbations are restricted only to the critical layer where the 
velocity of fluid and velocity of perturbed wave have the same speed.  
After the kinetics energy has attained its maximum in the initial stage and decreases 
steadily afterwards, we can see on right-hand side on colorbars that the maximal velocities 
have less values that it has in the privious instatn of time.  We have almost the whole  time 
interval 0t9 where the kinetic energy of perturbations dies out, and decreases steadily. 
The middle of the channel remain from the instant of time t=3 practicaly uperturbed along 
the x-direction, since we see the straight yellow line all the time. In this period of time two 
mayor perturbations are simetrical with respect to y=0  and travel at the same speed.  For 
the instant of time t=9 we can see that the veloctity profile is almost uperturbed and is 
very close to the laminar flow described by the exact analytical solution of Navier Stokes 
equation given by expression (1) for A=1/2 and B=1.  
 
 

6. Conclusions 
 
We can see that for Re=1000 which is beneath the critical values for Poiseuille flow 
(Rec=5722), and having in mind that the Couette flow is stable for all values of Reynolds 
numbers, we have shown the results of simulation which does not exhibit in some interval 
of time significant growth of fluid flow kinetic energy, so that the flow is  stable in this time 
interval. Since we have simulated 2D Navier Stokes equation, very significat term which 
describes vortex streching is absent (it exist in 3D Navier-Stokes equations). If this term  
were included in the simulation, we believe that this achieved transienth growth would be 
sufficient to trigger further develoment to full turbulent flow. So we have shown for this 
case that the limit time interval can exist where perturbations grow but 2D Navier-Stokes 
equations are not capable of transfering energy from big to small scales, but only the 
inverse cascade, only from small to big scales 
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