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Abstract. Dynamical systems admitting Morse functions that do not increase along
trajectories with time are considered. The main relations between the indices of inertia of
these functions and the instability degrees of the equilibria are indicated, and these results
are supplemented with several new statements. The results are applied to two classes of
mechanical systems.

1. Introduction and some general results

Consider the dynamical system

x=f(x), xeR", @)
for which Xx=0 is an equilibrium point, i. e. f(0)=0. Let the system possess a Morse
functionV : R" — R with critical point x =0 such that V = (8V /dx, f) <0 (weak Lyapunov
function). In the neighborhood of X=0 the vector field f and the function V may be

written as
of
f(x)=Ax+o(x[),A=—| , (2)
OX|,o
and
V:V(0)+%(BX,X)+O(\X|2), B=B", detB=0, 3)

respectively. Assume that det A= 0; in particular, X=0 is an isolated equilibrium point.
Obviously, the derivative of the quadratic form in (3) according to the linearized system

X = Ax “)
is also non-positive, i.e.
BA+AB=-S,S>0. O]

The degree of instability,u, of the equilibrium X=0 1is defined as the number of
eigenvalues of A with positive real part, counting multiplicities. This definition is a natural
generalization of the definition of the degree of instability for equilibrium of natural
mechanical systems, proposed by Poincare [1,2]. According to classical Lyapunov’s
instability theorem based on the first approximation, if u >1, then the equilibrium x=0 of
system (1) is unstable.
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The degree of instability u can be related to the negative inertia index, i, of the quadratic
form (Bx, Xx) .

First, we recall one result of Ostrowski and Schneider [3].

(A)If S>0,thenu=i".
In the more general case S >0, the numbers U and i~ do not generally coincide with each
other. However, the following important assertions have been formulated

(B) u=i(mod2), Kozlov [2];

(C) u<i, Kozlov [4];

(D) If the matrix A has no eigenvalues on the imaginary axis, then u=i", Carlson and
Schneider [5];
(E) If the pierced cone
{xeR":(Sx,x) =0}\{0} 6)
contains no closed trajectories of system (4), then the matrix A has no pure imaginary
eigenvalues, and consequently u =i, Kozlov [4].

The last condition resembles the Barbashin-Krasovski condition in well-known stability
theorems.
On the other hand, the absence of pure imaginary eigenvalues of A can be established by

means of the controllability matrix of A" and S . The controllability matrix C(A",S) of
A" and S is defined as the nxn* matrix

C(A',S)=(S,A’S,..,A™S). @)
Let be rankC(A",S)=r. It is clear that if rankS=n, then r=n. The converse is,
however, generally not true. If r=n, the pair (A’,S) is said to be controllable in the

control theory [6].
The following assertion is due to Chen [7] (see, also, Wimmer [8]).

(F) If the pair (A",S) is controllable, then A has no pure imaginary eigenvalues, and,
according to result (D), u=i".
It is natural to ask what happens if the pair (A’,S) is not controllable. Several partial
answers on this question we give in the next section.

2. The instability degree in the case rankC(A",S)<n

Let rankC(A’,S)=r<n, and let A denotes the restriction of A to KerC'(A',S) - the
kernel of C'(A,S). Note that the subspace KerC'(A",S) is A -invariant and
dim(KerC'(A",S))=n-r..

Lemma 1. The purely imaginary eigenvalues of the operator A coincide with the purely
imaginary eigenvalues of the restriction A.
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Proof. Let A =i®w be a purely imaginary eigenvalue of A with corresponding eigenvector
X . By the definition of C"(A",S), it follows that
SX SX
SAX ASX

C'(A,S)X=| =~ |=| = | (3

SA™X A'SX
On the other hand, from (5) we have

—(SX,X)=((BA+AB)X,X)=iw(BX,X)-io(BX,X)=0, ©)
which yields SX =0 because S is semi-definite. Now (8) implies X € KerC'(A",S). o
The following theorem is an immediate consequence of the result (D) and Lemma 1.

Theorem 1. If the restriction A has no pure imaginary eigenvalues, then u=i".

Corollary 1. If r=n—1,then u=i".

It is follows from the fact that A is a real matrix.

(1 2] [—1 OJ
A= and B= . (10)
0 -1 0 1

Obviously, the eigenvalues of Aare 1 and -1, i. e., U=1. On the other hand, we have

Example 1. Let

X 2 2
S:—(BA+AB):(2 ijo, (11)
and
C(A‘,S):(2 22 2}. (12)
2 2 2 2
Sincer =rankC(A",S)=1, n=2, and i =1, according Corollary 1, we conclude that
u=1.

Let T denotes the nxn matrix whose columns are an orthonormal basis so that the first
n—r columns of T are a basis of the subspace KerC"(A’,S) and its last r columns are a

basis of KerC"(A",S)". Since KerC'(A",S) is A -invariant,

T*AT:(A' A‘ZJ, (13)
0 A

where the (N—r)x(n—r) matrix A, is the representation of the restriction A relative to
the basis of KerC"(A",S). Also we have
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. 0 0 . B, B,
T°ST = and T'BT =| | , (14)
0 SZZ BIZ BZZ
where S,, and B,, are rxr matrices. It is easy to see that rankC(A",S)=rankC(A,,,S,,)
=r,1i. e, the pair (A,,,S,,) is controllable.
Let v and (i7,i.) denote the restriction of the form (BX, X) to the subspace KerC'(A’,S)

v v

and its signature, respectively.

Theorem 2. Let the quadratic formv be non-degenerate. Then, the following is true:
(i) (n—=r) isevenand max(0,i +r—-n)<u<i-;
(ii) if v is positive definite, then u=i";
(iii) if v is negative definite, then u=i"+r—n;
(iv)if i, (i) isequal to unity, then u=i" (u=i"+r—-n+2).

Proof. Without loss of generality we can assume that A,S and B have the forms (13) and
(14). Note that B, is the representation of the matrix associated with the quadratic form v
relative to the basis determined by columns of T, and non-degeneracy of v implies
det B, # 0. The matrix

R:(I _BlllBIZJ (15)

0 I
transforms B into block-diagonal form
. B, O
R'BR = ~ |, (16)
O 22
where B,, =B, —B,B;'B,,. Also we have
. 0 0
R SR = , (17)
0 S,
and
R'AR:(A‘ AZJ. (18)
0 A,

From (5) we have

R'(BA+ A'B)R=(R'BR)(R'AR)+(R'AR) (R'BR)=-R'SR, (19)
which yields

B,A, +A B, =0, (20)

B,A,+A,B,=-S,,5,>0. 21)
Equation (20) implies that B,A, is a skew-symmetric matrix. Since det(B,,A,)#0, it
follows that n — r is even. In (21) the condition of result (F) is satisfied, therefore
u(A,) = i’(§22) . Obviously, max(0,i"+r—n)< i’(gzz) <u. Also, according to the
estimation (C), u <i~ , which finishes the proof of part (i).
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In (20) the definiteness of v implies A, is similar to a skew-symmetric matrix, hence all
eigenvalues of A, are purely imaginary, and, consequently, u=u(A,)= i’(gzz). If v is
positive (negative) definite, then i’(§22)= i (i’(§22):i’ +r—n).We have thus proved
parts (ii) and (iii).

Under the condition of the part (iv) it follows from the congruence (B) that u(A,)=1. On
the other hand, u(A,)=i"(B,), i (B,)=i"—1 if ii=1,and i (B,)=i —n+r+1 if
i, =1, which proves part (iv). O

Example 2. Let

-1 1 1 1
A I -1 1 1 ”
-1 -1 1 -] 22)
-1 -1 -1 1
If we choose
2V =-2XX, — X —X;, (23)
then the derivative of this function, by virtue of system (4), (22), is
V=—(x,—X)* = (X, = X,)* <0. (24)
The matrix S associated with quadratic form (24) is
1 -1 0 0
1 1 0 O
S= , (25)
0 0 1 -1
0 0 -1 1

and the controllability matrix C(A",S) can be written in the partitioned form

. 0 F 0 2F 0 4F 0 8F
C(A.S)= ; (26)

F 0O —2F 0 4F 0 -8F 0

S 27
=l 1) (27)

Obviously r=rankC(A",S)=2. Also, it is easy to see that i- =3, and

KerC (A',S)={xeR*:x,=X,X, =X} . (28)
The restriction v=—x —x; is negative definite and, according to part (iii) of Theorem 2,
u=1.

where

By a review of the proof of result (C) given in [4], we see that i” > U > max{0,i” —S} where

S is the number of purely imaginary eigenvalues of A . If those eiganvalues are simple, then
s<n-r, since the subspace spanned by their eigenvectors, according to proof of Lemma

1, belongs to KerC'(A",S). Consequently , U>max{0,i” +r—n}. Further, this inequality

is also valid in the general case of multiple eigenvalues of A, as follows from a
generalization of the inertia theorem [9]. Now we can formulate the following assertion.
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Theorem 3.
max(0,i" +r—-n)<u<i. (29)

Remark 1. If we drop the assumptions det A= 0 and detB # 0, the left inequality in (29)
remains true. It follows from [9].

3. The instability degree of mechanical systems

In this section the above results will be applied to two classes of mechanical systems with
finite numbers of degrees of freedom.

3.1 Non-conservative systems

The equations of motion of a mechanical system with m degrees of freedom subjected to
potential and non-conservative positional (circulatory) forces may be reduced in a
neighborhood of the equilibrium position g =0 to the form

4+Kaq+Pq=N(q,q),qeR", (30)
where K =K" and P=-P", and N(q,q) is a collection of terms of no lower than second
order in g,q [10]. The real matrices K and P are related to potential and circulatory

forces, respectively.
Equation (30) is equivalent to the first order equation (1), (2) with x e R"{q} xR"{q} and

O 31
“(—(k+P) 0) (1)

where | is the identity matrix of order m. The eigenvalues of A are the roots of the
polynomial

A(A) =det(Xl +K +P). (32)
It is clear that 0 <u<m,since A(1)=A(-A1).
We put V =-2(Pq,q), i. e.,

B= 0 P (33)
=P 0)
Then i~ =rankP and
BA+AB=-S (34)
with
D o ,
S = o ol D=KP-PK-2P?. (35)

Note that P*> <0, since P is a skew-symmetric matrix. On the other hand, it is easy to see
that rankC(A",S)=2rankC(K —P,D). Applying Theorem 3 to (34) we obtain the
following result.

1127



Third Serbian (28" Yu) Congress on Theoretical and Applied Mechanics
Vlasina lake, Serbia, 5-8 July 2011 M2-02

Theorem 4. If the matrix

D =KP-PK -2P? (36)
is positive semi-definite, then
u>max{0, 2rankC(K — P, D) + rankP —2m} . (37)

Corollary 1. If D>0, then u=m, i. e. the equilibrium state q=¢q=0 is completely
unstable.

Proof. D > 0 requires det P = 0. Also, in this case rankC(K —P,D)=m. o

Theorem 5. Suppose that K <0 . Then
m > u > max{rankC(P, K),rank(K + P)} . (38)

Proof. We assume that V =—(q,q). Then i =m and V =(Kq,q)—(4.,q), i. e.
s=[7% %50 (39)
Lo o)

Further we have r=rank(A",S)>m+max{rankC(P,K),rank(K + P)}, because of the
given block structure of matrices (31) and (39). Hence, (38) follows from Theorem 3. o

Corollary 2. If K <0, then u=m.

Theorem 6. Suppose that det(K + P)=0and K >0. If the matrix

F=K*+P’ (40)
is negative semi-definite, then
m > u > rankF + max {rankK, rankF} —m. 41)

Proof. Assume that V =—((K + P)d,q) . Then i~ =m, since det(K +P) 0. The derivative

of V according to the linearized system of (30) is V = (Fg,q) —(Kq,q), because KP + PK
is skew-symmetric. Consequently, the matrix S has the block diagonal form

3 (42)
Lo K
and, by assumptions K >0 and F <0, its is positive semi definite. It is easy to see that

r =rankC(A’",S) > rankF + max {rankF, rankK} . It remains to use inequality (29). o
The following corollary supplements one instability result in [11].

Corollary 3. If matrix (40) is negative definite, then u=m.
3.2 Conservative gyroscopic systems

The equations of motion of a system with gyroscopic and potential forces linearized in a
neighborhood of the equilibrium position may be reduced to the form
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G+G4+Kg=0,q0eR", (43)

where G=-G" and K =K". The skew-symmetric matrix G is related to gyroscopic
forces.

The equations of motion have a first integral, namely, the energy integral 2V =(d,q)+
(Kg,q) . If detK #0, then V is non-degenerate quadratic form and =0 is an isolated
equilibrium position of the system. The instability degree of Poincare, i, , is negative
inertia index of quadratic form (Kq,q), and, obviously, it is identical with the inertia index
of V . It follows from congruence (B) that if i, is odd, then gyroscopic stabilization is

impossible (Kelvin’s theorem, [1]).

Theorem 7. If the matrix

H=G*-4K (44)
is positive semi-definite, then
u>rankC(G,H). (45)
Proof. Equation (43) is equivalent to the first order equation (4) with
a-[7C K (46)
L0 )
The substitution X =Ry, with
R I -G/2 a7
o1 )
transform equation (4), (46) to the form y = Ky , where
~ -G/2 G’/4-K
A=R'AR= (48)
| -G/2
Now we put
g1 0 ! (49)
210 )
Then i =m and
~ o~ | 0
S=—(BA+AB)= >0. 50
( ) (0 G*/4- Kj (50)

One can readily see that r=rankC(A’,S)=m+rankC(G,G>—4K). It remains to use
inequality (29). O

The following corollary supplements the well-known instability condition of Hagedorn
[12].

Corollary 4. If matrix (44) is positive definite, then u=m.
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Abstract. In this paper a review on mechanical modeling of the human voice production
systems is given. The basic model of the vocal cords/vocal tracts and vocal folds is a two-
mass non-linear oscillator system which is assumed to be the basic one for mechanical
description in voice production [1]. The corresponding mathematical model is a system of
two coupled second order non-linear differential equations. Usually, this system of equations
does not have an exact closed form solution and various analytical and numerical solving
methods are applied. The solutions describe the self-excited vibrations of the mechanical
elements of voice production. The influence of air flow in glottis is additionally modeled
and included into the previously developed mechanical system. Analyzing the corresponding
mathematical models it is evident that beside the self-excited oscillations of vocal cords
some additional vibrations appear. The vibrations may be regular but also irregular like
bifurcation and chaos. The numerical simulation gives the parameter values for proper and
improper voice production. Based on the results given in review the objectives for future
investigation in the matter are given.

1. Introduction

For a long time the researchers are trying to simulate the human voice production. Various
mechanical and mathematical models are developed for describing of the human organs
which are connected with voice production but also of the process of phonation. In essence,
voice is generated by movement of two lateral opposing vocal folds located in the larynx.
Vibration of the vocal folds is produced by air flow through the trachea, generated by lung.
Vocal folds vibrate, modulating the flow of air being expelled from the lungs during
phonation. Sound is generated in the larynx by chopping up a steady flow of air into little
puffs of sound waves.

Complexity of vocal folds, their histology, shape, position, etc., give us a possibility to treat
the problem in quite different manner. Same ability is evident for modeling of the process
of phonation. It is the reason that a numerous aspects of the problem are investigated and a
great number of results are published (more than 1000).

For mechanical view of the human voice producing it is necessary to connect the dynamics
of vocal folds and the aerodynamics of the vocal tract. Coupling between vocal fold
dynamics and vocal tract acoustics attracts the interest in examining the voice quality of
various kinds of vocalization and detecting of pathology of voice production system when
there is no visual evidence for morphological laryngeal abnormalities. The studies of vocal
fold biomechanics give an insight into voice production and also provide important
information about laryngeal pathology development. In this paper some of the essential
investigation will be shown.
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2 Basic two-mass model of the vocal fold

Two-mass model, developed and analyzed by Ishizaka and Flanagan [1], evolved to a
standard for exploring the voice producing system through the years. The basic principle of
modeling is intimately related to the observed phase difference between the lower and the
upper edge of the vocal fold. This effect can be modeled by representing each fold by two
coupled oscillators (Fig.1). For normal voice, the oscillators are bilaterally symmetric.

%

Fig.1 Two-mass model of voice folds [1]  Fig.2 Air flow through glottis [2]

The displacing tissue of each cord is considered to be approximated by two stiffness-
coupled masses. The masses are permitted displacement in both the lateral (x) direction and
the longitudinal (y) direction. Motion in both directions is opposed by nonlinear restoring
stiffness s and viscous damping r, shown explicitly only for the x direction. The x and y
motions are assumed independent and uncoupled and represent the generalized coordinates
for the two-degree-of-freedom system. Lateral displacement of masses m; and m, is
conditioned by the internal coupling stiffness k. which permits realistic phase differences in
the lateral displacements. For motion in the longitudinal direction, masses m; and m, are
assumed to be locked together and move cophasically. The characteristics of all mechanical
elements are based upon dates obtained by clinical observations (see [2]-[4]) and measuring
[51.[6].

The main goal of the model was to synthesize voice by a self-oscillating mechanism. The
oscillations are driven by the lung pressure. The driving Bernoulli force which is influenced
by the subglottal pressure and the time-varying glottal geometry induces self-sustained
oscillations. The induced phase difference of the upper and the lower mass enables the
energy transfer from the airstreams to the vocal folds. For a sufficiently large subglottal
pressure the dissipative losses can be compensated and phonation sets in.

Gunter [7] believes that the oscillating vocal folds maintain their motion by deriving energy
from the flow of air through the glottis. To oscillate, the vocal folds are brought near
enough together such that air pressure builds up beneath the larynx (Fig.2). The folds are
pushed apart by this increased subglottal pressure, with the inferior part of each fold leading
the superior part. Under the correct conditions, this oscillation pattern will sustain itself.
Maximum area declination rate affects the maximum air flow declination [8]. Varying of
the area the vocal folds vibrate and generate a sound rich in harmonics [9]. The harmonics
are produced by collisions of the vocal folds with themselves, by recirculation of some of
the air back through the trachea, or both.
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Finally, it is important to be said that the air flow — mechanical structure model of the
human voice producing has an important role in acoustic integration [10],[11].

REMARK: Suggested mechanical model is convenient not only for voice folds
vibration but also for their posturing. Namely, vocal fold dynamics for phonation can be
treated in two parts [12]:

1. large and relatively slow deformation occurring when the vocal folds are
positioned for voicing, coughing and breathing by moving laryngeal cartilages
with muscle forces — this part is referred as vocal fold posturing which is
subdivided into:

a) adducting or abducting the medial surfaces of the vocal folds and
b) elongating or shortening of the vocal folds;

2. small and relatively fast deformations occurring when the tissue is driven into self-
sustained oscillation by aerodynamic and acoustic pressures — this part is referred
as fold vibration.

The posturing occurs in a nonperiodic but ultimately always cyclic fashion at frequencies 1-
10 Hz, but the vocal fold vibration occurs at 100-1000 Hz. Although vocal fold posturing
and vocal fold vibration is often thought to be separate mechanical processes, many
parameters of vibration (for example, fundamental frequency, amplitude of vibration and
voice onset time) are dependent on posturing. Analyzing the model simulating the
adduction of the medial surface of the vocal cord during posturation it is concluded that it
affects the intensity of vocal folds vibration and involves into fundamental frequency
regulation [13]. This result is previously obtained by clinical observation [14], too.

During last forty years, the two mass-model of Ishizaka & Flanagan [1] was the basic one
for the most of investigations in physical properties of human voice production. Due to its
simplicity the model was convenient for application: the authors applied it for investigation
of excitation in vocal-cord/vocal-tract speech synthesizer [15], to obtain effect of air
volume displace by the vibrating vocal cords [16], and also for analyzing of the influence of
the oral airflow in men and woman on vocal folds dynamics [17], for example. Nowadays,
the model is used for clarifying of the phenomena in voice production due to nonlinear
properties of the system but also to explain and detect the anomalies and diseases which are
not visible with apparatus for clinical observation. It requires another types of mechanical
models to be developed.

3. From one- to finite-element vocal fold models

3.1 One-mass one-degree-of-freedom model of the vocal cord

Fulcher et al. [18] assumed another type of energization of the vocal folds than the
previously mentioned one (see Sec.2). Namely, they stated that the action of the
aerodynamic forces on the vocal folds is captured by negative Coulomb damping which
causes the vibration of the vocal cords (Fig.3). Effective one-mass model with negative
Coulomb damping force is introduced. This force adds energy to the oscillator instead of
removing it. Adding a viscous damping term makes steady state motion possible. In the
long-time limit the analytical solutions approach a limit cycle and the amplitude and
velocity lose their dependence on the history of the motion. An elevated lung pressure gives
rise to a flow of air through the glottis and produces a series of alternating converging and
diverging shapes of the vertical dimensions of the vocal folds. The pressure distributions in
the glottis resulting from the series of shapes are alternately higher and lower than the
pressures in the vocal tract. These pressure variations are in phase with the motion of the
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vocal folds and add energy to the oscillator in the same way as negative Coulomb damping
does. Limit cycle of the oscillator with negative Coulomb damping provides a natural
explanation of the self-oscillation property of the model.
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Fig.3 Model with Coulomb damping [18] Fig.4 One-mass with two-degrees-of-
freedom model of the vocal cord [20]

Simple, one-degree-of-freedom vocal fold model was developed to investigate whether
kinematic features of vocal fold movement confirm increased muscle stiffness [19]. Model
simulations verified that increases in stiffness were associated with changes in kinematic
parameters, suggesting that increases in gesture rate would affect kinematic features during
phonation. This conclusion was proved experimentally in individuals with trans-nasal
endoscopy during a simple vocal fold abductory-adductory task.

3.2 One-mass vocal cord model with two-degrees-of-freedom

An acoustic tube generally yields an inductive load in the fundamental frequency bellow a
resonance peak, while the load turns out to be capacitive in the formant frequency above
the peak. The two-mass model can simulate self-excited oscillation with a capacitive
acoustic load because it can represent the phase difference between the upper and lower
parts of the vocal fold. Unfortunately, the model is not correct for the case when the
frequencies meet. Then the low frequency suddenly jumps to a value much larger than
resonance peak. Adachi and Yu [20] show that the one-mass model with two-degrees-of-
freedom (parallel and perpendicular to the airflow) can eliminate this lack. Due to the two-
dimensional motion of the vocal folds the model can successfully simulate self-excited
oscillation in a wide frequency range with no discontinuity of vibration. The model yields a
smooth transition between oscillations with an inductive load and a capacitive load of the
vocal tract with no sudden jumps in the vibration frequency. Self-excitation is possible both
below and above the first formant frequency of the vocal tract. By taking advantage of the
wider continuous frequency range, the model can successfully be applied to the sound
synthesis of a high pitched soprano singing, where the fundamental frequency sometimes
exceeds the first formant frequency. Geometry of the vocal fold is represented by a
parallelogram (Fig.4). As the mass moves the parallelogram is deformed and the vocal fold
simultaneous executes both swinging and elastic motions. The motions are coupled and
mathematically described with a complex function. Comparing the suggested model with
the usual two-mass model among other similar features, the similarities in the amplitudes of
the glottal area and the glottal volume flow velocity, the variation in the volume flow
waveform with the vocal tract shape and the dependence of the oscillation amplitude upon
the averaging opening area of the glottis, are found.
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3.3. Three-degree-of-freedom vocal cord models

Story and Titze [21] extended the previous two-mass model of the vocal fold by
introducing of the cover-body model as a three-degree-of-freedom system. Cover-body
model represents the three mass version: cover is modelled with two masses and three
springs and the body connected to the thyroid cartilage is modelled as one mass with
compressible spring. In the paper of Titze and Story [22] the modification of the cover-
body model is done: the cover is modelled with a rotating plate which substitutes the two
mass system, while the body remains as previously included mass a compressible spring

(Fig.5).

Fig.5 Three-degree-of-freedom model [22] Fig.6 Three-dimensional model [23]

The following assumptions throughout the body-cover derivations are made:

1. The two vocal folds move symmetrically with respect to the glottal midplane.

2. There is no vertical displacement of tissue.

3. The glottal area varies linearly from the bottom to top of the vocal folds.

4. For glottal aerodynamics it is assumed the Bernoulli flow from the lungs to the point of
flow separation, at which point jet flow continues and the pressure remains constant in the
jet from flow detachment to glottal exit.

Motion of the cover — body system is described with three coupled differential equations.
The case when the aerodynamic torques and forces act and also when they are omitted are
considered. For the first case the model is focused on vocal fold tissue characteristics.
When the driving forces are not zero the equations of motion are coupled by the fact that
both the driving torque and the driving force on the cover are dependent on a common
glottal flow. The oscillation regions are affected by acoustic loading of the vocal tract both
subglottal and supraglottal. The results obtained by using of the bar-plate model are
compared with three-mass lumped model.

Recently, Yang et al. [23] extended the two-dimensional model of the vocal fold into a
three-dimensional one by including the vertical vibration (in the two-dimensional model
only the lateral and longitudinal displacements of the vocal cord were discussed). Vocal
fold is assumed to consist of five horizontal layers (planes) arranged from inferior to
superior (Fig.6). The anchor forces, which connect the masses to fixed body, and the
vertical and longitudinal coupling internal forces between masses are supposed to be
nonlinear deflection functions. The collision impact force is included into the model, too.
The influence of the aerodynamic force, which causes the three-dimensional mass elements
of vocal fold to oscillate, is investigated. The driving force is of Bernoulli type produced by
the glottal flow originating from the lung and acting on the vocal folds from inferior to
superior through the whole larynx. The driving force depends not only on the subglottal
pressure but also the geometric dimensions (thickness and length of the vocal folds and on
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the rest positions). The resulting model enables visualization of the three-dimensional
dynamics of the human vocal folds during phonation for both symmetric and asymmetric
vibrations.

3.4 Finite-element model

Finite-element model of vocal fold vibration was introduced by Alipour-Haghighi et al.
[24]. Suggested model is modified into a self-oscillating finite-element one capable of
simulating vocal fold vibration and airflow [25]. Model is suitable for investigation of the
vocal fold impact. The calculated airflow pressure is applied on the vocal fold as the
driving force. The interaction between airflow and the vocal folds produces a self-
oscillating solution. Lung pressures between 0.2 and 2.5 kPa were used to drive the self-
excited model. Tissue collision during phonation produces a very large impact pressure
which correlates with the lung pressure and glottal width. Larger lung pressure and a
narrower glottal width increase the impact pressure. In the inferior-superior direction the
maximum impact pressure is related to the narrowest glottis. In the anterior-posterior
direction the greatest impact pressure appears at the midpoint of the vocal folds.

7. Conclusions and directions to future investigation

Based on the published results it is concluded that mathematical models, based on the
physical model of human voice production, give very good qualitative description of the
phenomena, but in spite of the fact that the clinically observed and measured parameters are
used for modeling, the obtained results quantitatively differ from real one. It requires the
improvement of the accuracy of models. The following is suggested:

1. Although simulation of vocal fold vibration is clearly more realistic with a model having
a large degree of freedom, a model with a small degree of freedom still has its merits.
Namely, more than ten coupled ordinary differential equations with many parameters are
necessary to solve the mechanical and the aerodynamical problem. In comparison with
more realistic models, such as those based on partial differential equations simulations, or
systems of more than two coupled oscillators, the two-mass model appears to be quite
simple. Such a minimal model highlights the self-excitation mechanism by abstracting the
essence from the actual complex vocal fold vibration. The two-mass model has actually
been devised as such a minimal model to simulate self-sustained oscillation with a
capacitive acoustic load of the vocal tract, which cannot be replicated with the one-mass
model. We suggest to apply the two-mass model as a basic one, but to include the nonlinear
properties of the system. Analytical solving procedures used for analysing two mass
systems and corresponding system of two second order nonlinear differential equations
have to be applied.

2. One of the most severe restrictions of low-dimensional models is the exclusion of
vertical movement of the tissue. Much more variability in the medial shaping of the glottis
e.g., more convergence and divergence is possible if the tissue is simultaneously driven
upward and outward, forming elliptic trajectories. But this would double the degrees of
freedom and would minimize the interpretive power that nonlinear dynamics can offer. To
investigate many aspects of vocal quality and for modelling pathology higher dimensional
models and fewer rules are necessary.

3. In the three-mass model the vocal tract simulation is not included. Vocal fold vibration
can be profoundly affected by the acoustic load of the vocal tract, but this have to be
investigated in future.
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4. Further improvement is possible by analyzing of the vocal fold as a two-mass system
where each mass has two-degrees-of-freedom. The inclusion of the degree of freedom
along the length of the vocal fold (in vertical direction) will help in more accurate
simulation of the phase difference between the upper and lower parts of the vocal folds
which is observed in actual vocal fold vibration. Vibration of a mass with two-degree-of-
freedom would be described with the complex deflection function.

5. Results obtained by modeling the vocal ligament as a beam with linear longitudinal
tension and bending stiffness (without shear) are qualitatively correct, but quantitatively
differ from real one. Existing model has to be modified by introducing the nonlinear
properties of the system and of the shear effect. Obtained partial differential equation with
nonlinearity has to be solved and discussed.

6. In the model of vocal cord the negative Coulomb damping is assumed to be a linear one.
To improve the model we suggest introducing the nonlinear damping of the integer or
noninteger order which is obtained empirically by clinical measuring. We believe that such
models would give more accurate.

7. Non-stationary vocal-fold oscillations are typical for many voice disorders. Inclusion of
the time variable parameters and the reactive force, which acts due to parameter variation in
time, gives an additional influence on the vibration of the fold. Dynamics of the system
with time-variable parameters is widely developed and we suggest its application. Besides,
the stability of non-stationary vocal folds vibration has to be more intensively analyzed.
Known stability analysis of time-variable systems may be applied.

8. Simplified asymmetric two-mass model encompasses the minimum number of degrees of
freedom and of parameters. However, Mergel and Titze (2000) show that it allows the
reconstruction of very complex laryngeal mechanisms with high accuracy. Vocal fold
oscillations are representative for the class of pathologies characterized by:

- laryngeal asymmetry without morphological changes i.e. asymmetric vocal fold tension

- increased glottal rest area

- abnormally increased subglottal pressure which are the characteristics of many forms of
laryngeal paralyses.

These diseases are accompanied by instabilities and irregular motion of the vocal folds, as it
is obtained analyzing the corresponding voice cord model. New results would be expected
by investigating of the chaotic motion and bifurcation in the model which is closer to the
real system (one-mass model with two-degrees-of-freedom).
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Abstract. In this paper we present the nonholonomic mechanical systems studied from
a geometric point of view using the Lagrange Geometry. One gives a geometrization of
nonholonomic mechanical systems using the geometry of tangent bundle and one obtains
the Lagrange equations.
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1. Introduction

In classical mechanics one naturally encounters different kinds of constraints on the motion,
mostly holonomic and linear nonholonomic constraints (integrable or non-integrable).
Nonholonomic constrained systems have a long subject of research since the first times of
Mechanics and they have received a lot of attention in recent years especially, from the
geometrical point of view.Surveys of nonholonomic systems can be found in [1], [9], and
[7]. A major thrust of present research is to give a complete description of the Hamiltonian
[81, [10], [11] and Lagrangian [2], [3] geometry of nonholonomic systems.

This work develops the geometry and dynamics of mechanical systems with
nonholonomic constraints from the perspective of Lagrangian geometry. The main idea is
to determine the canonical semispray S, whose integral curves give the evolution curves. The
geometry of the canonical semispray will determine on the phase space the geometry of the
dynamical system associated to the mechanical system.

The part 2 of this article is an overview of the geometry of the tangent bundle TM (phase
space), who furnishes the basic tools that have an important role: the Liouville vector field
C, the almost tangent structure J, the concept of semispray and the concept of non-linear
connection. The theory presented in this section has good applications for a geometric study
of the dynamical system determined by a nonholonomic mechanical Lagrangian system.

In part 3, one gives a geometrization of the non-holonomic mechanical systems using
the geometry of tangent bundle 7M and one obtains the Lagrange equations. The canonical
semispray S*, the non-linear connection N* generated by the mechanical system and the
N*—linear connection for a nonholonomic mechanical system are studied in this section.
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2. Geometric structures on tangent bundle

In this section we introduce the geometric structure that live on the total space of tangent
bundle: Liouville vector field, semispray, non-linear connection.

Let M be a smooth C* manifold of finite dimension n. One denotes by (TM,n, M) its
tangent bundle. The total space TM of the tangent bundle is a 2n—dimensional, real manifold,
and will be the phase space of the coordinate velocities of the mechanical system.

In a domain of a local chart U C E, the points (x,y) € TM have the local coordinates
(x',y"). A change of local coordinates on 7'M has the following form:

=7 x"),  det ox #0 (1)
) bR ) axf
. oF
G j
y ox 7Y
The canonical projection w : TM — M is defined by:
m(x,y) =x, V(xy)eTM. ()

The linear map 7w, : T,TM — Ty)M induced by the canonical submersion 7 is an
epimorphism of linear spaces for each u € TM. Therefore, its kernel determines a regular,
n—dimensional, integrable distribution

ViueTM — V,TM := Kerm, , € T, TM

which is called the vertical distribution.

For everyu € TM, ( ) is a basis of V,,TM.

Iy’ ay2’ "y
The natural basis of tangent space T,,(TM) at the point u = (x,y) € U C TM is given by
Jd d
7.7 = . (3)
dx'’ dy! e

The coordinates transformation (1) determines the transformations of the natural basis
as follows

N I .

ox  oxoF ax oy dy  ay 9y’

“

where
a5/ oxl  dy 9%
dyl  oxi’ Ixi oxion”
Denote by .#(TM) the ring of real-valued functions over TM and by x(TM) the
F (TM)-module of vector fields on TM.
We also consider x"(TM) the .#(TM)-module of vertical vector fields on TM. An
important vector field is

d

C=y-——
Yoy

which is called the Liouville vector field.
The mapping J : x(TM) — x(TM), given by:

P P P .
J((M) = Tyi, J(ay’) :O, 1= ],2,“‘,}1 (5)

2
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is called the tangent structure and it has the following properties:
KerJ =1ImJ = x"(TM);
rankJ = n, J2=0.
A vector field S € x(TM) is called a semispray, or a second-order vector field, if
JS=C.
In local coordinates a semispray can be represented as:

P . B
S:ylﬁ —ZGl(x,y)a—yi.

A non-linear connection in TM is an n—dimensional distribution:

N:ueTM—N,CT,TM, 6)
which is supplementary to the vertical distribution V:

T,TM=N,TM&V,TM, Yu=(x,y)€eTM. @)

6 o
The local basis adapted to the decomposition (7) is (6’" 8’) , Where
X oy
1) 0 ;
6)Cl ax, 1(xay)ay] ( )

The real functions Nij (x,y) are locally defined on TM and subject to the following
transformation rule under (1):
_ o ox/ o3/
9" 0% o OV ©)
dxi  dx™ dxi
The coordinate transformation (1) determines the transformation of the local basis
adapted to the decomposition (7) as follows:
578)21'8' 878121'8
Sxi  Ox 8% dyl  Ixi dy’

(10)

3. Nonholonomic Mechanical Systems

The term nonholonomic system was introduced in mechanics by H.Hertz [6]. It means that a
material system is subjected to such kind of constraints that restrict the velocities of particles
composed the system, but not their position (configuration of the system).

A sclerhonomic nonholonomic mechanical system is a quadruple

Z: (M)g7FaQG)a

with M the configuration space, a real n—dimensional manifold, (M,g) is a Riemannian
space, F = (F;) is the external forces vector field on M and Qs = (dasi), 6 =p+1,...n are
supplementary forces determined by the nonholonomic constraints given by the relations

Qo (x)dx = agi(x)dx' = 0. (11)
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The vector field of the forces is given by F+A°Qs , where A° :R— R, 0 =p+1,...,n
are Lagrange multipliers and A°Q¢ are the components of the so-called nonholonomic
constraint force .

Let consider the Riemannian manifold (M, g) and V its Levi-Civita connection.

A trajectory of nonholonomic mechanical system X is a differentiable curve ¢ in M,
c:tel— (x(t)) €V CM (I CR,V is a domain of a local chart of M), who verify the
following Lagrange equations:

Vee=Foc+A°Qsoc. (12)
Using the local coordinates on M, the equations (12) may be written

d* % dxdx!

T

dt dt dt
with {F{»‘j} the Christoffel symbols of the connection V of the Riemannian metric tensor g,
F¥(x) = g"(x)Fi(x),d (x) = g/ ag (x), and

= F*(x)4+A%aL (x), (13)

Qs (x)dx = agi(x)dx' =0,(c =p+1,...,n).

For the nonholonomic mechanical system ¥ one studies the Lagrange space L** =
(M,L*(x,y)), with the fundamental function
L*(x,y) = L(x.y) + A%agi(x)y, (14)
where L(x,y) is the regular Lagrangian, given by kinetic energy:
L(x,y) dx’ dx’
X,y) =gij— ——-
V)80 gy

~ Inorder to determine the multipliers A% (which, in general depend on the material points
x") we adopt the following postulate:
The Lagrangians L(x,y) and L*(x,y) are equivalent.
So, the Lagrangians L(x,y) and L*(x,y) satisfy the Euler-Lagrange equations:
doL* JL* dJL JL
dt oyl dxi  drdy ox
Using egs. (15), one obtains:

ar® dr® o [Qasi dagj -
(axz'“"f‘axf“""” <8xj “ow ) )0

and deriving with respect to y/ we obtain:

oA° oA° o [9dasi dagj

et a2 (G- 5 ) =0 (16
Let consider the 1—form, [4]

A%(x) Qo (x)dx = A% (x)agi(x)dx'. (17)
This 1—form is clossed if and only if the equations (16) hold.

Indeed, it is not difficult to see that the equations (16) are equivalent to the exterior
equations

s)

d[A°(x)Q(x)dx] = 0. (18)
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The Lagrange equations of the nonholonomic mechanical system ¥ are:
dz.xk k d.xi dx] k o k
F—i_ri/(x)ﬁﬁ = F*(x)+A°(x)ag (x); (19)

A% (X)aci(x)dx' = 0;  d [A°(x)agi(x) Adx'] =0.

3.1. Canonical semispray and canonical non-linear connection of ¥

The Lagrange space L" = (M,L(x,y)) has a canonical semispray

i i &
=Y55720 (xX,y) 5

s y
ady'

where
2Gk(x7y) = l"f-cj(x)yiyj.
Looking at the Lagrange equations (19) we remark that the system of functions
i ‘ 1, . .
G"(xy) = G'(x,y) = 5 (F/(x) + 2% (x)dg (x))

determines the coefficients of a semispray on the phase space TM.
The semispray S* on the phase space TM, [11]

9 A p)
S* = 17. - 2G*l - 20
Va5 (x,¥) oy (20)
with the coefficients given by
26" (x.y) = Ty = (F*(x) + 27 (1) x)) @

and the multipliers A (x) satisfying the equations

d (A°(x)a(x)) Adx' =0

is called the canonical semispray of the mechanical system X.
The semispray S* depend only on the nonholonomic mechanical system X.
Therefore: The geometrical theory on nonholonomic mechanical system is the Lagrange
geometry of the triple
(TM,S*,d (A°d}) ndx' =0).

The integral curves of the canonical semispray S* are given by the Lagrange equations
of the mechanical system X, eqs. (19) .

So, the non-linear connection N* determined by the canonical semispray S*, called
canonical non-linear connection of X, has the coefficients

. 9GH )
* _ T k
Ny = 52 =T @)

The canonical non-linear connection N* of nonholonomic mechanical system X does not
depend on the forces F; and Q.

A linear connection D on TM is called an N*—linear connection if:

5
1143



1.D preserves by parallelism the horizontal distribution N*;
2.J is absolute parallel with respect to D, that is DxJ = 0, VX € y (E).

5 0
In the local basis (6”8’) adapted to the decomposition (7), an N*—linear
X oy

connection can be uniquely written in the form:

5 ; 0 J i J
P& 5y = Hulogg P 5 55 =Lula)gs &
6xk 5xk
6 i 6 i 8
Dy 59 =Culed)gas D g 55 =Calen g 24
ayk ayk

The system of functions Lf?]- (x,y),Cf‘i (x,y) are called the coefficients of the N*—linear
connection D. It is important to remark that C{‘j (x,y) are the coordinates of a d—tensor field
of type (1,2).

In our case, G*(x,y) are the coefficients of the semispray S*, eq. (20), it is easily to

2 G*i
see that <W,O> are the coefficients of an N*—linear connection on TM, N* having the
yoy
) a G*i
coefficients N3 = —.
J ay J
There exists a unique N*—linear connection D on TM verifying the axioms
gijk=0;  gijlk =0
Tt=0; si=0, )

99 9

where ‘ and ”’|” are the h—covariant derivation and v— covariant derivative and

k _ 1k k k _ ok k
Tj=Lij—Lj, Sij=0Ci;—Cj.

This connection has the coefficients

i 71 im Ogmk ngj ngk
Li =728 < Sxi | Sxk Sam

ik 9o
lgim Igmk + 9gmj _ Igji
2 dyl  dyk  odym )’
The previous connection depend only on the fundamental function L*(x,y) of the
Lagrange space and will be called canonical metrical connection on the space L*".
Now, we consider, more general the case when the equations of movement for the
nonholonomic, sclerhonomic system are given by

L dOL (dA°  9A° . (dagi dagi\\ . .
M‘m<9yi+<axi doj = G doith (axf ~ox ) )Y =iy

| (26)
Cly =

j_dx
T odt

y 27)
and the multipliers A° verify eqs. (18) , where F;(x,y) is a d—tensorial field on TM.
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The equations (27) may be written in equivalent form

a>xko o dxdy 1 ‘
s + ij(x)zg =38 "(_X)Fj(xd)'i‘}tc(x)ac(x) 28)
;dx!
y=—
dt
One denotes
. S
26" (x.y) =Ty = 38V WFj(x.) 29)
and the equation (28) give us the integral curves of the semispray
. .0 o d
S - 174 — 2Gl = - 30
Yo (x,) Iy (30)

This semispray S determine the non-linear connection N with the coefficients

=i i i
N;:LG.:LG.flai., 31
dy/  dyl 40y
where F'(x,y) = g/ (x)Fj(x,y) and 2G* (x,y) = I}, (x)y'y/.
The study of the nonholonomic, sclerhonomic mechanical system will be made in
Lagrange space L' = (M,L*(x,y)), with the fundamental function L*(x,y) from eq. (14)
and the non-linear connection N with the coefficients given by eqs. (31) .

o d
Using the non-linear connection N, we can consider the adapted basis <5“i’ 8’) to
X oy
the decomposition
T.(TM)=N,®V,, VYu=(x,y)€TM,
with
0 Jd . d
o — - _N] 5 = - 32
5% o i gg (32)

We may construct the N—linear connection D, which preserves by parallelism the horizontal
distribution N and the tangent structure J is absolute parallel with respect connection D.
If DI'(N) = (Z’jk(x, ¥),Cj(x,y)) are the coefficients of D in the adapted basis, denoting
by g;j, and g; i|n the h— and v— covariant derivatives, then we have:
0gii N
8ijlh = Tl,f —Liygmj — L}j&im;

2 5
8ijln = WZ —Cingmj—Cjp8im-

(33)

In a nonholonomic Lagrange space L*" = (M,L*(x,y)) the following properties hold:
a) There exists a unique N-linear connection D on TM satisfying the axioms:

gijh=0;  &ijln=0; (34)
and
=0, S, =0. (3.34)
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b)The coefficients (L;k (x,y),éj.k (x,y)) of this connection are:

pio_ Lo Ognc  Ognj 68\ _,i 1, OF
kT8 5 Tk Sah ) T M T 4k dy/
wi Loy (dgm  9dgnj gk ;
Chi =3¢ <c9yf T " ap ) = 49

where (L,i/‘k (x,y),C ;k (x,y)) are the coefficients of the metrical connection N, from egs. (26).

In conclusion: The Lagrange space L*" endowed with the non-linear connection N gives
us a geometrical model for the nonholonomic mechanical system X.
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ABSTRACT.

DNA transcription process is well described at biochemical level. During
transcription double DNA interacts with transcription proteins, part of double DNA
is unzipped, and only one chain helix is used as a matrix for transcription.

For better understanding the DNA transcription process and its behavior
through biomechanical point of view, we consider double DNA (dDNA) as an
oscillatory system that oscillates in forced regimes. In this paper analytical
expressions of the forced oscillations of the dDNA helix chains are presented for
both introduced models, ideally elastic as well as fractional order model. On the
basis of previous results (DNA mathematical models published by N. Kovaleva, L.
Manevich in 2005 and 2007, and multipendulum models by Hedrih (Stevanovi¢) and
Hedrih) where we obtain main chain subsystems of the double DNA helix, new
results analysis of the forced vibrations is done. There are different cases of the
resonant state in one of the main chains, and there are no interactions between main
chains.

The possibilities of appearance of resonant regimes only in one of the two
main chains is proved, as well as dynamical absorption under external one
frequency forced excitations is considered.

Keywords: Double DNA helix chain, forced vibrations, eigen main chains,
resonant state, dynamical absorption, fractional order model.

1 Introduction - DNA-structure and function

DNA is a biological polymer which can exist in different forms (A, B, Z, E ...)
but only B form can be funded in live organisms. Chemically, DNA consists of two
long polymers of simple units called nucleotides, with backbones made of sugars
and phosphate groups joined by ester bonds. To each sugar is attached one of four
types of molecules called bases. (Adenine-A, thymine-T guanine-G and cytosine-C).
Two bases on opposite strands are linked via hydrogen bonds holding the two
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strands of DNA together. It is the sequence of these four bases along the backbone
that encodes information.

The basic function of DNA in the cell is to encode the genetic material. For using that
information to make proteins, DNA molecule has to interact with other molecules in the
cell. DNA molecule is moving, changing its position and shape during the interactions.
DNA molecules can be considered to be a mechanical structure on the nanolevel.

The mechanical properties of DNA are closely related to its molecular structure and
sequence, particularly the weakness of hydrogen bonds and electronic interactions that hold
strands of DNA together compared to the strength of bonds within each strand. Every
process which binds or reads DNA is able to use or modify the mechanical properties of
DNA for purposes of recognition, packaging and modification. It is important to note the
DNA found in many cells can be macroscopic in length - a few centimeters long for each
human chromosome. Consequently, cells must compact or "package" DNA to carry it
within them (Bryant et al, 2003).

Single-molecule biomechanics of DNA extension, bending and twisting; protein
domain motion, deformation and unfolding; and the generation of mechanical forces and
motions by bimolecular motors is another approach to explain the biological function of
DNA in the cell (Bao, 2002). Knowledge of the elastic properties of DNA is required to
understand the structural dynamics of cellular processes such as replication and
transcription.

There are different approaches to studding the mechanical properties of the DNA
molecule (experimental, theoretical modeling).

2 Mechanical properties of DNA achieved experimentally.

Experimental evidence suggests DNA mechanical properties, in particular intrinsic

curvature and flexibility, have a role in many relevant biological processes.
For small distortions, DNA overwinds under tension (see Ref. [13] by Jeff Gore, Zev
Bryant, Marcelo (2006)). Lowering of the temperature does increase the DNA curvature.
The DNA double helix is much more resistant to twisting deformations than bending
deformations; almost all of the supercoiling pressure is normally relieved by writhing (see
Ref. [1] by Javier Arsuaga, Robert K.-Z. Tan , Mariel Vazquez , De Witt Sumners , Stephen
C. Harvey (2002)). The twist angle of the helix has been shown to depend on sequence
when the molecule is in solution, both by the effects on supercoiling parameters when short
segments of known sequence are inserted into closed circular DNA (see Refs. [28] by
Peck, L.J. and Wang, J.C. (1981) and [31] by Chang-Shung Tungl and Stephen C.Harvey
(1984).

Under low tension, DNA behaves like an isotropic flexible rod. At higher tensions, the
behavior of over- and underwound molecules is different. In each case, DNA undergoes a
structural change before the twist density necessary for buckling is reached (see Refs. [5]
by Zev Bryant, Michael D. Stone, Jeff Gore, Steven B. Smith and Nicholas R. Cozzarelli
(2003)).

Mg2+ can induce or enhance curvature in DNA fragments and helps stabilize several types
of DNA structures (see Ref. [4] by Brukner, S. Susic, M. Dlakic, A. Savic, S. Pongor
(1994) ). DNA length varied in solution with different ionic force. It is significantly longer
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in solution with lower ionic force (see Ref. [10] by C. Frontali, E. Dore, A. Ferrauto, E.
Gratton, A. Bettini, M.R. Pozzan, E. Valdevit (1979)).

3. Mechanical models of the DNA

A number of mechanical models of the DNA double helix have been proposed till
today. Different models are focusing on different aspects of the DNA molecule (biological,
physical and chemical processes in which DNA is involved). A number of models have
been constructed to describe different kinds of movements in a DNA molecule: asymmetric
and symmetric motion; movements of long and short segments; twisting and stretching of
dsDNA, twist-opening conditions. We are going to mention some of the models that may
explain twist-opening conditions.

Bryant et al (see Ref. [5] by Bryant et al, 2003) have shown that an over- or underwound
DNA molecule behaves as a constant-torque wind-up motor capable of repeatedly
producing thousands of rotations, and that an overstretched molecule acts as a force—torque
converter. The production of continuous directed rotation by molecular devices has
potential applications in the construction of nanomechanical systems (see Ref. [2] by Bao,
2002). Polymer models are used to interpret single-molecule force-extension experiments
on ssDNA and dsDNA. They show how combining the elasticity of two single nucleic acid
strands with a description of the base-pairing interactions between them explains much of
the phenomenology and kinetics of RNA and DNA ‘unzipping’ experiments” (see Refs. [7]
by Cocco et al,2002; and [33] by Zhou and Lai, 2001). Eslami-Mossallam and Ejtehadi,
(see Ref. [9] by Eslami-Mossallam and Ejtehadi, 2009) proposed the asymmetric elastic
rod model for DNA. Their model accounts for the difference between the bending energies
of positive and negative rolls, which comes from the asymmetric structure of the DNA
molecule. The model can explain the high flexibility of DNA at small length scales, as well
as kink formation at high deformation limit. Specially type of DNA models are soliton -
existence supporting models. One of the first of this kind was Yakushevich model of
DNA and models based on it (see Ref. [11] by Gaeta, 1992). Dynamics of topological
solitons describing open states in the DNA double helix are studied in the framework of a
model that takes into account asymmetry of the helix. Yakushevich, et al (see Ref. [32] by
Yakushevich, et al, 2002) investigated interaction between the solitons, their interactions
with the chain inhomogeneities, and stability of the solitons with respect to thermal
oscillations and have shown that three types of topological solitons can occur in the DNA
double chain. Gonzalez and Martin-Landrove (see Ref. [12] by Gonzéalez and Martin-
Landrove, 1994) gave the complete qualitative analysis of soliton interaction in DNA
torsional equations. The model emphasizes the importance of the solitons for opening of the
double DNA helix. Thee region of the chain where there is a maximum opening is larger
for the general case, since the asymptotical behavior for the kink type solitons is smoother
than the one corresponding to the solutions in the particular case. There is possibility that
an enzyme take charge for the opening of the chain. The supersonic solutions, since they
represent states that are totally open, could contribute significantly to the fusion of the DNA
chain to the enzymatic activity. The presence of a propagating soliton along the chain could
contribute to its opening through the interaction among different types of open states. The
composite model for DNA is also based on Yakushevich model (Y model). The
mechanism for selecting the speed of solitons by tuning the physical parameters of the non-
linear medium and the hierarchal separation of the relevant degrees of freedom are decribed
in this model (see Refs. [8] by De Leo and Demelio, 2008; [6] by Cadoni et al, 2008). In
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the symmetric twist-opening model of DNA the small amplitude dynamics of the model
is shown to be governed by a solution of a set of coupled nonlinear Schrédinger equations.
Conditions for modulation instability occurrence are presented and attention is paid to the
impact of the backbone elastic constant K. It is shown that high values of K extend the
instability region. This model can be reduced to a set of coupled discrete nonlinear system
equations. The growth rate of instability has been evaluated and increases with the coupling
constant K. The kink-bubble soliton, made of two part of different size, has been shown to
be mobile. Authors supposed that the kink-bubble solution can be used the describe the
internal dynamics which usually consists of long-range collective bending and twisting
modes of the bases, short-range oscillations of individual bases, and the reorientation of the
spin label (see Ref. [30] by Tabi et al, 2009).

Binding of proteins and other ligands on DNA, induces a strong deformation of the
DNA structure.

The aim of our work was to model the DNA dynamics (vibrations of DNA chains) as a
biological system in a specific boundary condition that are possible to occur in a life system
during regular function of DNA molecule. We consider double DNA (dDNA) as an
oscillatory system that oscillates in forced regimes during the DNA transcription process.

For mathematical descriptions we use References by Kovaleva and Manevich (see
Refs. [26-27]), Hedrih (see Refs. [14-22]), Bacli¢ and Atanackovi¢ (see Ref. [3]), Hedrih
and Filipobski (see Ref. [23]), Hedrih and Hedrih (see Refs. [24-25]) and Raskovié¢ P.
Danilo see Ref. [29]).

4 DNA models by N. Kovaleva and L. Manevich

To model oscillation of dDNA in forced regimes we use as a basic approach
model of dDNA proposed by N.Kovaleva, L.Manevich, V.Smirnov (see Ref [26]). They
show that in a double DNA helix localized excitation (breather) can exist which
corresponds to predominant rotation of one chain and small perturbation of second chain

using coarse-grained model of DNA double helix.

@ Inner elastic core phosphatic Nucleatide acid
¥=05 oup ’ {Adenine)

.
[ Outer helix macte (Thymmin)
of stiff material
. . T (%

— 2R, —= the helix

Figure 1. a* Figure 1. b* Figure 1. c*

Figure 1. a* “Toy mechanical” model of DNA. a, DNA is modeled as an elastic rod (grey)

wrapped helically by a stiff wire (red). see Ref. [9] by Jeff Gore, Zev Bryant, Marcelo (2006)
Figurel. b* The model scheme of a double helix on six coarse-grained particles [10].
Figure 1.c* Fragment of the DNA double chain consisting of three AT base pairs.

Longitudinal pitch of the helix @ =3.4A; transverse pitch h=16.15A [11].
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Reference [26] by N.Kovaleva, L.Manevich, V.Smirnov presented 8" conference
on DSTA 2007, point out that solitons and breathers play a functional role in DNA chains.
In a model, the DNA backbone is reduced to the polymeric structure and the base is
covalently linked to the center of sugar ring group, thus a DNA molecule with N
nucleotides corresponds to 3N interaction centers. Starting from a coarse-grained off-lattice
model of DNA and using cylindrical coordinates, authors derive simplified continuum
equations corresponding to vicinities of gap frequencies in the spectrum of linearized
equations of motion. It is shown that obtained nonlinear continuum equations describing
modulations of normal modes, admit spatially localized solitons, which can be identified
with breathers. Authors formulated conditions of the breathers existence and estimate their
characteristic parameters. The relationship between derived model and more simple and
widely used models is discussed. The analytical results are compared with the data of
numerical study of discrete equations of motion. See Figure 1.b*.

Ref. [27] by N.Kovaleva, L.Manevich (2005)) presented at the 8" conference on
Dinamical systems theory and applications, presented a simplest model describing opening
of DNA double helix. Corresponding differential equations are solved analytically using
multiple-scale expansions after transition to complex variables. Obtained solution
corresponds to localized torsional nonlinear excitation — breather. Stability of breather is
also investigated.

In this Reference [27] N.Kovaleva, L.Manevich (2005)) consider B form of the
DNA molecule, the fragment of which is presented in Fig.1. b*. The lines in the figure
correspond to skeleton of the double helix, black and gray rectangles show the bases in
pairs (AT and GC). Let us focus our attention on the rotational motions of bases around the
sugarphosphate chains in the plane perpendicular to the helix axis. See Figure 1.c*

Authors deal with the planar DNA model in which the chains of the
macromolecule form two parallel straight lines placed at a distance / from each other, and
the bases can make only rotation motions around their own chain, being all the time

perpendicular to it. Authors accepted as generalized (independent) coordinates @, ; that are

the angular displacement of the k -th base of the first chain, and as generalized
(independent) coordinates ¢, , is the angular displacement of the k -th base of the second

chain. Then, by using accepted generalized coordinates ¢, ; and ¢, , for k -th bases of

both chains in the DNA model, authors derived a system of differential equations
describing DNA model vibrations in the following forms:

K
Jk,l¢k,l - % [Sin(¢k+l,l - (pk,l )_ Sin((pk,l - ¢k—l,l )]+ Kaﬂra (ra _r,/] )Sin ¢k,l -

_Kaﬂ l 1- Doy (ra _r/f)Z Sin((Pk,l _(Pk,z): 0
4 1

K,2

[Sin(§”k+1,2 _(pk,Z)_ Sin(¢k,2 4 ER) )]+ Kaﬂra (ra y; )Sin Prt

+K i(l - %J(ra _rﬂ)z Sin(("k,l ~Px ): 0

a)aﬂ 1

Jk,2¢k,2 -
(D
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Here J, , is the axial moment of mass inertia of the & -th base of the first chain;

J, , is the axial moment of mass inertia of the k -th base of the second chain, and the
point denotes differentiation in time t. For the base pair the axial moments of mass inertia

are equalto J, ; =m r? Jn = mﬂrﬂz. The value of the base mass m,, the length7,,,

a“ o’
and the corresponding axial moment of mass inertia J, , = marj for all possible base pair

authors accepted as in the Reference [19]. The fourth terms in previous system equations
describe interaction of the neighboring bases along each of the macromolecule chains.

Parameter K, ., i =1,2 characterizes the energy of interaction of the k -th base with the

(k +1)-th one along the i-th chain i =1,2. There are different estimations of rigidity.
For  the calculation that the most  appropriate  value is  close

K., =K =6x10°[kJ/mol].

5 Consideration of the basic DNA model - linearized Kovaleva-Manevich‘s DNA
model

Let us investigate an oscillatory model of DNA, considered in the Reference [27]
by N.Kovaleva, L. Manevich, (2005) and presented in the previous chapter III, by a system

of differential equations (1) expressed by generalized (independent) coordinates ¢, ; and

@, , for k -th bases of both chains in the DNA model.

For the beginning, it is necessary to consider a corresponding linearized system of
the previous system of the differential equations in the following form:

K
L _7“[((0“1,1 - (/’k,1)_ ((ok,l - ("1(71,1)]'F K 41, (Va g Pxa —

2 @)
1 Do >
—Kop 4(1 "o ](”a —rﬂ) (¢k,l _¢k,z)= M, c0sQ
afl
J P —&[( - )—( - )]+K r(r -r +
k,2¢k,2 2 ¢k+l,2 ¢k,2 ¢k,2 ¢k71,2 ap’a\'a B k,2 (3)
+ K i[l - Za/n J(”a _rﬂ)z(%m - ¢k,2): M, ,cosQ), ,t
afl
or in the following form:
2J .. 2Ka a\lla ™
= wk,l - [(¢k+l,1 - wk,l )_ ((Dk,l ~Pxia )]+ ka,l -
Kk,l Kk,l (2*)
K [ Papr | oMy
2I<k,1 {1 a)aﬂl ](ra rﬁ)2(¢k’1 wk’z)_ Kk,l COSQk’]t
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2Jk,2¢ —[((p — )—((o — )]+ 2Kaﬁra(ra *I’ﬁ)(o n
I{k’2 k.2 k+1,2 k.2 k,2 k-1,2 I{vk#2 k.2 (3 *)
K o, M
— b 22— Rp — oy, )= — 2 cosQ, ¢
+ 2K, [ O, J(Va r/x) (%,1 ¢7k,2) K, COS32; 5

For the case of homogeneous systems we can take into consideration that are

Ji=d,=Jdad K, , =K,,=K.
By using change of the generalized coordinates ¢, ; and @, , for k -th bases of

both chains in the DNA model into following new ggk and 77, by the following dependence
(see Hedrih and Hedrih [17, 24, 25]):

& = Gp1 =P, and 1 =@ @, “4)

Previous system of differential equations (3) obtains the following form:

27 - K, g1 \r, —r K , M M
?Jfk —&ks1 +2§{1 +(M_aﬂ[1 _aﬂz](”a _rﬂ)z} -G = [(;'k"] o8 1t — [0<'k'2 €08 Q4 ot

K 2K @
( ) (5)
2J .. Kopra\ro, =1 p Mo Moo
—7j, - +2m | 1+ ————— 2 | — = = cos Q. + =22 c08sQy 4 ot »
X Mk —k+1 771{ X k-1 I 0.k.1 0.k.2
k=1223,...n 6)

First series of the previous system equations are decoupled and independent with
relations of the second series of the equations. Then we can conclude that new coordinates

of fk and 1], are main coordinates of DNA chains and that we obtain two fictive
decoupled eigen single chains of the DNA liner model. This is the first fundamental

conclusion as an important property of the linear model of vibrations in a double DNA
helix.

Systems of differential equations (5)-(6) contain two separate subsystems of no
autonomous differential equations expressed by coordinates of &, and 17, which are main

coordinates of a double DNA chain helix system and separate linear DNA model of forced
vibrations into two independent chains.

6. Consideration of the forced vibrations of a basic DNA model - linearized Kovaleva-
Manevich‘s DNA model

For obtaining general solutions of the both systems (5)-(6) of no autonomous
differential equations which correspond to forced regimes of the main chains vibrations, for
beginning it is necessary to find particular solutions of this system. Taking into account
denotation

_Kynlnr,) Kyl ) %
H K= K 21K 1 waﬂl (ra rﬁ)z
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K w Kaﬂra (ra _rﬂ)
_Zap|y_Yap _ . =_Fare PJ ()
K K (1 o J(ra rﬁ)z H K
w= o2 )
K

previous systems (5)-(6) of no autonomous differential equations is possible to express in
the form:

2 .
ffk = &1 28k [1 +pu- ’f]— Skt = ho e €OSEYy 1t — Dy g 5 COSLY ot

k=123,...n (10)
2J ..

?Uk /T 2’7k(1 + ﬂ)— Nk_1 = ho €08 Q&+ hy o008 Qyots
k=1223,...n (11)

M M
where fg, | =—2L g, =—282 k=123, .....n, educed amplitude od external
o K o K

excitations..

Next, taking into account that this system is linear, for simplifications of the
calculation procedure, without loosing generality, we can solve system of no autonomous
differential equations describing main chains forced vibrations of double DNA helix chain
system under one frequency external excitation, with frequency €, and reduces amplitude

M 0,k,.1

applied A, = applied to one mass particle to the first real chain from he coupled

chains. For that reason we take for find particular solutions which correspond to forced
vibrations with frequency €, in the following form (see Figure 2):

27 - hy 1 cosQ ¢ k=1
?fk_fkﬂ*’zgk[l*”/l_’f]_gk1:{ 08’1 H E=1 he=1,23,.....,n
(12)
2J .. h cos Q¢ k=1
?”k_flk+l+277k(l+ﬂ)_77k—l_{ 08'1 b k21
k=123,..,n (13)
Particular solutions for first and second system (12)-(13), we propose in the forms:
ép()l‘l,k = Nk COS Ql,lt k = 1,2,3, ..... s n (14)
M port ke = N, cosQ k=123,...,n (15)
and introducing following denotations:
J 5 A J

Uu=—aou A% = —Q V = _Q 16

bl T e Tk k2 T k1 (16)

and introducing proposed particular solutions (14)-(16) into system (12)-(13), we obtain the
following system of algebra no homogeneous system::
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h k=1
—NkH+2Nk(1+,u—l<—vl,1)—Nk_12{00’1’1 fel k=123,...,n
17)
N N ~ v ho 1 k=1
— Ny +2N 1+ =V )= N =4 " k=123,...,n
k+1 k( H V1,1) k-1 {O k=1
(18)

~ J
Whel‘e Vll :Vll :EQ%I

Using Cramer low, for the amplitudes of the particular solutions we obtain the
following:

Nk(vlﬁl):%(g—ﬁ) k=123,....,n (19)

NG )= %%) k=123,....,n (20)

where, for example, two system determinates, A(vl’l) and Z(VH) are in the following

forms(for the coupled chains each with four degree of freedom):

2i+p-x-vy,) -1
-1 21+ p—rx—vy,) -1
Alw,)= -1 2+ p-rx—v,) -1 #0
-1 2+ p—r—v,
@1)
2l +pu-7,) -1
0 -1 2l+u-%,) -l
a6i1)- -1 Mep-5,) -1 |*°
-1 21+ u-7,
22)

For same example other determinants A, (Vl,l) and A, (\71’1), k=123,....,n,we
obtain from corresponding two system determinates, A(vl,l) and introducing into

corresponding column, column with free members from right sides of the no homogeneous
algebra equations (17)-(18):

hO,l,l ( _1 )
-1 20l+pu—x—-v -1 = -
A1("1,1): 1 N 2(1+u—1c—v1,1) 1 =y, 2t l];‘l[(vl,l _”E 3))
-1 2+ pu—x-w,
(23)
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By ( -1 )
~ -1 201 -V —1 r=3
8,6i,)- ' fl 1 v 21+ u-,) S |2t H(Vu =)
-1 2(1 +u=ny .
(24)
2(“’:”_’(—"11) by
A (V )= -1 -1 =h 24*2 ﬁ(v _u(n=2))
2 2+ p—r—v,,) -1 S A
-1 2(1+,u—1c—v1,1
(25)
2(1 TU—W 1) ho 14
~ -1 -1 r=2
AZ(;U): 2(l+y—vl 1) 1 = h0,1,124_21?!:(\71’1 —1,7r(”:2))
1 21+ p-, .
(26)
2ﬁ+ﬂ_K_WJ -1 hoq)
-1 211 —K—
A3 (vl,l)_ +,U_1K i1 . :h0~1’12<"71~1 _175}1:1))
21+ p-r-w,
(27)
2(1+/1_‘71,1) -1 ho 1.1
~ -1 211 -
Af)= +fl1 o P he 25, - ))
2(1 + U=V
(28)
2(1+,U—’<—V1,1> ( -1 ) ho.11
3 -1 2+ pu—x-v, -1
A4(V1,1)— 1 2(1+,u—l(—vl,1) =M1,
-1
(29)
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2(1+,u—§1’1) ( -1 ) By
~ (o -1 2+ =y, -1
A = ’ =h 30
4("1,1) _1 21+,U—V11) 0.1.1 (30)
-1
M\O,l,l cos €2y 4t Cro1k-102) Crk(12) Cretk+1(1,2)
e

Y VvV VV V V V V
‘4 N
é 2, 7 2 g

A A A
i

Figure 2. Double DNK Chain helix d model in the form of multipendulum system with

fixed ends

Particular solutions of the considered examples with eight degree of freedom
double DNA helix chain system containing two coupled chains each with four degree of
freedom and excaited bey one frequency external excitation are in the following forms:

s=3

hO,l,l H(Vl,l ‘”En:3))

&porta = NycosQ it = == cosQ, it
4
2H(V1,1 _”.g ))
s=1
r=3 ( )
~ ~(n=3
ho,l,l I | (Vl,l —u )
_ AT _ =1
Mpore,s = Ny cos€ if = p— cosQ 4t

s=2

ho 1 H(Vl,l ‘“Enzz))

_ _ s=1
g‘pm’z = N, cos Qlﬁlt = cos Ql,lt

Mport,p = N €Ot =
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hO,l,l(Vl,l ‘“(nZI))
Sporey = N3008Q 11 = — o ————c0s{ it (35)
8 (V1,1 —“‘gn))
s=1
_ hos (1 -7 7)
Mport21 = N, cosQl,lt = M—cosQl,lt (36)
s[T6-a")
r=1
_ _ By 11
Sport.a = NycosQ jt = ———————cos ;1 37
16 (vu —u£4))
s=1
Y _ By
Mport4 = Ng €08 |t = ————————cosQ ;¢ (38)

l6ﬁ(§u —ﬁ,(“))
r=l

Solutions of the homogeneous system for considered example are:

s=4
gﬁ’ee,k = ZCY sin k¢€ COS(Q)St + as)’ k= 1’293’4 (39)
s=1
r=4
N freek = ZD, sink9, cos(@,t + ,B,,) , k=1234 (40)

r=1
General solutions are:
s=4
& = Epuok + Epar = D Cysinkg, cos(@yt +a, )+ €y i k=1234  (41)
s=1
r=4
M =N free + Mpare e = ZD,. sink$, cos(a)rt + ﬂr)+ M part k k=1234
r=1
(42)
or in the form

s=4
& = & freek T fpm,k = Z C,sinke, cos(a)st +a )+ N, (V1,1 )cos Qt,k=1234

s=1

(43)
r=4 N
Ny = nfree,k + 77part,k = ZD) Sinklgr cos(@rt + ﬁr )+ Nk (‘71,1 )COS Ql,lt > k= 19293’4
r=1
(44)

For the system of double DNA helix chain system with 2n degrees of freedom
previous two system determinates A(vu) and Z(ﬁl) are not difficult to express in the

similar forms.
Then taking into account that determinates A(vl,l) and Z(ﬁl) are analogous as

determinates, which describe frequency equations of the free vibrations of the double DNA
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helix chain system, which is possible express in the following forms A(u)=0 and
Z(u) =0, and that we have roots of these frequency equations in the forms (21)-(22) then

we have roots of the two system determinates, A(vl’l) and Z(VH) in the forms:

() =L o) =L 2 _ g2 P _
vy =—Q =u")=—a@; =2sin“ = +(u—«), s=1273,....,n
LE = R T s > (,U )

(45)
Vl(f):iﬁl"l):ﬁr("):iﬁf:ZSin2i+,u . r=123,..,n
K K 2

(46)

By use previous characteristic numbers of the previous two system determinates,
these determinants A (V1,1 ) and A, (\711) are possible express in the forms of products:

Al )=2 T o~ 47)
s=1

A= TG, -a) 48)
r=1

By same way, it is possible to fined expressions for amplitude of the particular
solutions depending of the number of degree of freedom 2n. For example it is visible
without calculations that amplitude N, ]\71 and N,, ]Vz of the particular solutions of the
first and second normal coordinates, &, 15 Mpar1 a0d &pp 25 Mpanp Of the both main

chains are in the following forms:

s=n-1 r=n-1

o1 H (VU _ugnil)) hoi H (‘711 _’7}”_1))
Ny = po— and N, = —
2 o -ul”) 2[ 6 -a)
s=1 L -
s=n-2 -
o, H (VU _ugn_Z)) ho1 H (‘711 _Efn_z))
Ny = = and N, = r=L
o ) (R 216~
s=1 L o

Then general solutions are in the following forms:

s=1

1159



Third Serbian (28™ Yu) Congress on Theoretical and Applied Mechanics
Vlasina lake, Serbia, 5-8 July 2011 M2-06

r=1
(54)
For the case that one frequency external excitation, with reduced amplitude

M 01,2

hooy = is with frequency Q,;, applied to the other first material particle n the

other of the coupled real chains, then two subsystems of the main eigen chains are
described by following subsystems of differential equations:

27 - —hy,,c08Q, 1 k=1
?fk =Sk +2§k[1+/1_’(]_‘§k—1 :{ (())’2’1 - k=1
(55)
2J .. h cos Q, ¢t k=1
7;”h<*ﬂk+1+2ﬂk0**ﬂ)*ﬂkfl:: { mél 2! kol
(56)

Particular and general solutions of these previous equations is not difficult to
obtain analogous by previous procedure and changing corresponding indices of the kinetic
parameters of the main chains.

7. Consideration of the forced vibration regimes of a basic DNA model - linearized
Kovaleva-Manevich‘s DNA model

From expressions (21) and (22) is possible to consider possibilities of appearance
resonant regimes in eigen main chains.

For the case that determinants (21) and (22), A(v“):2"ﬁ(v“—u(")):0 and
s=1

s

r=n

Z(ﬁ,l)z 2" H(;M —5’(”)): 0 are equal to zero, then we obtain two sets of external excitation
r=1

frequencies for which in the system appear resonant regime. But taking into account that
eigen main chains have different sets of eigen circular frequencies as well as different sets
of the resonant circular frequencies of external excitation, then we can conclude that if in
one eigen main chain appear resonant regime in other no resonant regime. This is important
fact to consider in the light of the real double DNA helix chain system.

Also by use expressions for amplitudes of the particular forced solutions is
possible appearance of dynamical absorptions at corresponding main coordinate of main
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eigen chain. To obtain external excitation frequencies at which appear dynamical
absorption at first or second main coordinate of the main chains are equal to zero:

N, = S:ll A =0 or
2H(vl’1 —u, )
s=1
s=n-2
ho.1 H (Vl,l —u n—2))
N, = =L =0 or

H (Vl,l —uE”’l)): 0 or

H (vl’l —uE”_z)): 0 or

r=n-1
ho H (‘711 _’7}”_1))
Ny =——"l =0
2[ 16 -a)
- (57)
r=n—1
hoy [ ] G-
N, = r-L =0
2 [16.,-a)
r=1 )
r=n-1 (‘71 1 —’/7,(‘”71)): 0
. (59)
s=n—2
("1,1 —ME" 2))2 0
B (60)

From the last conditions (59) and (60), we can conclude that:

* Dynamical absorption on the first pair of the main coordinates of the main
chains appear on the resonate circular frequencies of the set of the double DNA helix
chain system with one less pair of the material particles in comparison with the considered

real system.

* Dynamical absorption on the second pair of the main coordinates of the main
chains appear on the resonate circular frequencies of the set of the double DNA helix
chain system with two less pairs of the material particles in comparison with considered

system.

This mathematical fact is important to considered in the light of the interruption or
break of the double DNA helix chain system into finite parts.
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8. The double DNA fractional order chain model on the basis of the linearized
Kovaleva-Manevich‘s DNA models for free and forced vibrations

8.1. Constitutive relation of the standard light fractional order creep element.

Basic elements of multi mathematical pendulum system or multi coupled chain system
are:

1* Material particles with mass m,_, with each particle having one degree of motion

freedom, defined by following coordinate ¢, , when k changes by k =1,2,3,4,...., N .

2* Standard light fractional order coupling element of negligible mass in the form of
axially stressed rod without bending, and which has the ability to resist deformation under
static and dynamic conditions. Standard light creep constraint element for which the
stress-strain relation for the restitution force as the function of element elongation is given
by fractional order derivatives in the form

P(0)=~lex(0)+ ¢, 07 [+(0 )]} (1)
where D ,a [0] is operator of the a” derivative with respect to time ! in the following
form:

" dx(t) 1 dt x(¢)

D = —_—= = d
= =" 0=y a (62)

where ¢,c, are rigidity coefficients—momentary and prolonged one, and « a rational

number between 0O and 1, O < < 1.

Crtk-1(12) Chr(12) Crethen(12)

Figure 3. Double DNK fractional order chain helix in the form of multipendulum model with free
ends

Crorp=1(,2) Crk(12) Crrik(1,2)

Figure 4. Double DNK fractional order chain helix d model in the form of multipendulum
system with fixed ends
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8.2. The double DNA fractional order chain forced vibration model on the basis of the
linearized Kovaleva-Manevich‘s DNA model

For the fractional order forced vibrations of a fractional order double DNA chain
model on the basis of the linearized Kovaleva-Manevich‘s DNA model, we accept a two
chains as it is presented in Figure 3 or 4, in the form of the double chain fractional order
system containing two coupled multi pendulum subsystem, in which corresponding
material particles of the corresponding multi-pendulum chains are coupled by series of the
same standard light fractional order elements.

Let’s suppose that both coupled chains from system of the fractional order DNA
model are excited by the system of external excitation containing two series of the one

frequency excitations in the forms M, cosQ,r and M, ,cosQ, .z,

k=123,...,n, where My, | and M, , are amplitudes, ,, and Q,,

frequencies of the external forced couples each applied to one of the mass particles of the
double DNA model coupled chains. Then, corresponding system of the nonlinear forced
vibrations of the double DNA model coupled chains are in the following forms:

Then, we can use system of the coupled fractional order coupled differential
equations extended by terms containing external excitation forces or couples. Then, we can
write corresponding system of the fractional order differential coupled equations in the
form:

K K
JiPr — ;J [((”kafu - (pk,l)_ ((/’k.l - (/’k—l,l)]_ 1‘2’1’6 Dra[((/’kﬂ,l - @k,l)_ ((”kJ - ¢k-1,1)]+
+ Ka,/}ra(ru _rﬂ)¢k,l K, _i(l - Zam ](”a _”ﬁ)z((/’k.l - (/’k.z)_
apl

- Ka/?.rr ‘1‘[1 - Z))HMJ("Q _rﬁ)z Df[(@k,l - ¢k,2)] =M 04.1C088Y,
apl

Kk,Z,(r

2 ng[(%m‘z _¢k‘2)_(¢k,2 _qok—l‘z)]-'—

K
Jkiz(ﬁkiz - %2 [(¢k+1‘2 Pk )_ ((pk,z ~ P )]_
(63)

+Ku/xra(ra =T 5 JPx,2 ++Ka/fi[1_ Zaﬂz j(ra _rﬂ)z(gok,l _wk,2)+
afl

+Kop o ‘1‘[1 _Za/n](ra _rﬁ)z Df[((”k,n ~ Pk )] =M, ,c0sQ ,t
afl

Previous system is possible to rewrite in the following form:

25, . K
KkyI D1~ [((/’k+1,1 - (/’k,l)_ ((pk,l _(Dk—l,l) t- Kk’uT Dto[((pkﬂ,l _(pk»l)_ ((Dkv‘ ~ P )]+
. k.1
2K - K
B S e (AL OIS
—2121::[1 - a)z/;? ](Va _rﬁ')z Df[((”k,l - (pk,z) = K(:(V:II cosQ, ¢
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2d, ., . K
= 2 [((/’k+1,2 - ¢’k,2)_ (%,2 - %-1,2)]_ 2o Drg[((pkﬂa - %,2)_ (%,2 - ¢k-1,2)]+
Ky, Ky, 64)
2K - K
+ a/fjo;ir: rﬂ)@k,z ++ 2Ka:2 [1 - ZZ? J(”a _r/f)z(q)k‘l - ng,Z)+

K M
+ 21?;‘:[1 - ZZ? J(”a _rﬂ)thJ[((/’k,l ~ P2 )]: Kokkzz cosQ), ot

As our intention is to use previous double DNA fractional order chain model for
the case of the homogeneous system parameters, we take into account that: K, , =

K,,,=K.and K, ;= K, . and taking into account that, we introduce notation (7) and

(8) then the precious system of coupled fractional order differential equations is possible
write in the following form:

2?‘] Pra— [(¢’k+1,1 ~ Pk )— ((/’m ~Pk-11 )]_ KsDf [((Pk+1,1 ~ Pk )_ (‘/’k,l ~Pk-11 )]+

M,,
+2up 5 — K(‘/’k,l ~ P2 )‘ kKD [(‘Pk,l ~ P2 )] = [0;"1 cosQY; it

2J
KM ¢k,2 - [(¢7k+1,2 - ¢k,2)_ (¢7k,z ~ P12 )]_ KaDra[(¢k+1.z - (pk,z)_ ((pk,z - (/7k—1,2)]+

M
+ 2ﬂ(/7k,2 + K((pk,l P )+ xx,D; [((Dk,l - (Dk,z)] = 10;"2 COSQ“t
(65)

aff,c

K
By using change of the generalized coordinates ¢, ; and ¢, , for k -th bases of

where K =

both chains in the DNA model into following new é‘k and 77, by the following

dependence: &, = @y~ P, and My =@, +¢,,, previous system  of
differential equations (65) obtains the following form:

2J . - -

;é:k =& +28, — & +x,D; [_ Si, 28 =G ]+ 2uéy —2x6, —2xk, Dy [ék ] =

M 0.k,.1

= cosQ, t ——k2
% :

cosQ, ,t

2J .. -
?Uk /=y +2n, =N +5,D; [_ M, +2n, _77k+1]+2,u77k = i k= 1’2’3’ ..... )

M
— kL cosQ, ]t+70‘k"2 cosQ, ¢
K ’ K ’

(67)
First series (66) and second series (67) of the previous system (64)-(65) of the
fractional order differential equations are decoupled and independent. Then, we can

conclude that new coordinates &, and 1], are main coordinates of fractional order double
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DNA helix chain model system for forced vibration regimes and that we obtain two fictive
decoupled eigen single fractional order chains of the double DNA fractional order model.
This is also one of the fundamental conclusion as an important property of the fractional
order homogeneous model of forced vibrations in a fractional order double DNA
homogeneous helix.

Systems of fractional order differential equations (66)-(67) contains two separate

subsystems of fractional order differential equations expressed by coordinates of &, and

1, which are main coordinates of a fractional order double DNA chain helix forced

vibration model and separate DNA fractional order model into two independent fractional
order chains.

8.3. Analytical solutions of the subsystems of the main chains fractional order
differential equations for forced regime oscillations

We solve previous subsystems (66) and (67) through the use of Laplace
transformations. After conducting Laplace transformations of the previous systems (66) and
(67) of differential equations with fractional order derivative and having in account that we

introduced notations L{gk (t )} and L{nk (t)} for Laplace transformations, as well as having
in mind, that we accepted the hypothesis that the initial conditions of fractional order

—0 and d”'n,(t)
dto'—l

t=0 =0

o-1
derivatives of the system are given through the use of: di‘fk(t)

dr’™ =0

, as well that is

M M M M
L{ 0.k.1 COSQ“I$ 0.k.2 COSQk,zt}: 0.k..1 _ )4 3 0,k,2 _ p _
K K K p"+Q;, K p +Q,
(68)

where &, and &, as well as 77, and 7], are initial angular positions and angular

velocities defined by initial conditions of system material particles dynamics in the chains
at initial moment, we can write the following system of the equations with unknown
Laplace transforms:

R & -Labratta)- e Lo 6o 26 - o2l 2 ) 2w Lpr e -

=+hy 1 — Qil_ho’kzpz*'giz
(69)
2 .. o
?L{U }_L{’]/c—],}+2L{77/c}_L{ﬂk+]}+ KO'L{DZ [_77/(71,'*2’7/{_77“1]}'*2/1'-{ k}:
P

-tk Py P

opTea T ar,
k=123,...,n (79)

Previous system is possible to rewrite in the following form:
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[%[ﬂ + 2;1721((14— Ko,p”ﬂ

T a2 0, - 2 ],

+h0k1 2 2 £ 7h0k2 2 2 £
e (p +Qk’1x1+l(ap°—) e (p +Qk~2XI+KUp0)
(80)
2
p +2#j )
( K B B _2_J[P770k+770k]
WL@ } L{’?k-l,}+2|-{77k} RUME KWJF
h P h 4
TR0 N ) R P a ie ey p7)
(81)

Now, we have two separate, uncoupled non homogeneous subsystems of the
algebraic equations in the following forms:

—L{sk_l}+<z+v>u§k<t>}—L{§k+1}=J£f°k+—§?>k]]+ho,k,l e T

wpll+ K, p° 2+Q,2ﬁlxl+/cgpa)

p
2 +Qi’211+xap0)

—hoga (p
(82)

— L{’]kfl,}"' (2+M)L{77 }_L{Ukﬂ}: a[fzaoﬁ:ﬁ;[;])_’_h&k,l (pz +Q% le+K pa)+
() c )L o

+hy k21 2 i
o (p +Qk,2Xl+KUpU)
(83)
or in the following forms:

- L{ k—l}+ (2 + V)L{ k(t)}_ L{§k+1}= i (pagokséok)"' hépk(p’Qi,lanzc,zahOk,lahOk,z)
(34)
-L {’7k—1, }+ (2 + ”)L {77 }_ L {77k+1 } = hye (P>770ka’70k )+ Py (Pa Qi,l’glzc,Z shog s hOk,Z)

(85)
where
2 2 24 2ua? K
ve [1; +2ﬂa)(:7 2k u:LIZ[L(;]]’ 0)3 el
o, [l+x,p oyl +x,p 2J
(36)
: PSok +€éOk [P ok T Mok
hee\Ps Sor>Sox ) = s Mo\ D> Mok s Mox ) =
r;hk( 0k Ok) wg 14k p° qhk( 0k Ok) a)g Lk p°
(87)

ek (p’Qi,l’Qi,bhOk,l’hOk,z): B e (p2 +Qi 1lil i pa)—ho,k,z (pz 4_912c 2111 i pa)
> [ex 5 o

(8%)
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Py (Pagi,l7Q§,27h0k,1ah0k,2): B g1 (pz +Q% ]li“_’( p")+ B g2 (pz +le( sz1+ P p")
3 - 7 -

(89)

Both subsystems are same form and it is necessary to solve one of the subsystems
and by use analogy is easy to solve other of the subsystem equations. For that reason we
can use method proposed in the papers [14] amd [20]. Determinate of the previous
subsystem (84) as well as (85) are in following form (21) as well as (22) by similar way as
for the subsystems of algebra equations in paragraph 5..

Determinates of the previous algebra subsystem (84) as well as (85) are in the

same form as it is presented in (21)-(22).

Next consideration we focus to the case:

B e

0 k#1
(90)
Byt (D01 ior )+ g (- 2108 By ) e =1
L, 2 Lin, =L = J"nht 01>7701 npl 1L,1>2=1,2> 01,15 01,2
{nk—l,}+( +”) {’h} {’7k+1} { 0 o
o1

By introduce the notation hghl(p,§01,§'01)+hg(p,Qil,Qiz,hOk,l,hOk,z) and
hnhl(l?»ﬂou'lm)+hqpl(l’aglz,l»le,zshm,lahm,z) defined by (86)-(87), for the

determinants Z(k)(v,hi), we can write similar expressions as defined by (21)-(22) changing

expressions hi(p,fm,fm) by expressions hfhl(paé:Ol»éOl)"—hg(psQilsQIZ,Z’hOk,l’hOk,z) as

well as by hnhl(p37701$7701)+hr]pl(psQIZ,I’Q%J’hOl,l’hOI,Z)'
For solving the system of the algebraic no homogeneous equations (90) or (91)
with respect to unknown Lapalce transforms L{fk (t)} or L{?]k (t)} of the time function

main coordinate &, (t ) and 77, (t) - unknown normal chain coordinates of the system main

chains for forced vibrations, we can use Cramer approach by similar way as in the
paragraph 5.

8.4. Forced eigen modes of the subsystems of the main chains of a fractional order
double DNA helix chain system forced vibrations

In this part we start by two subsystems of fractional order differential equations
(66) and (67) expressed by eigen normal chains coordinates &, = (i and

M, = @, + @, , and we can rewrite these subsystems in the following form:
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2?‘]‘31( —Skst +2§k[1+#—’(]—§k—1 +KUD;T[—§/{—1, +2(1_K)§k _§k+1]:’

= ho,k,1 cosQ it — ho’,‘,2 cosQ ot

k=123,....,n
92)
%}ﬁk7UMJ+2nk0+ﬂ)7nh4+K0Df[7nhh+2nk7”kﬂ]:’
= ho),{’1 cos Q, t+ ho’“ cos Q, ,t
k=123,..,n
93)

Without loosing generality, we focused our next interest to consider two
subsystems of the fractional order differential equations in the following form:

%fk —& g +2& [1+,U—K]—§k—1 +K0Df[—§k_17 +2(l—;<)§k _§k+1]: {ho,(;,l cosQ, ;¢ . ;/zl—l
k=123,...,n
(94)
ZK—Jﬁ'k ~ar +2m (U i) =i kD w2y - )= {ho’(;’l o r flz 1
k=123,..,n
(95)

Previous two subsystems are for the case of fractional order forced vibrations of a
double DNA helix chain system excited by one single frequency external couple
M 1 cos€t, with amplitude M, | and frequency Q,;, applied to the first mass
particle in the first chain of a double DNA helix chain system.

First series (94) and second series (95) of the previous system (94-(95) of the
fractional order differential equations for forced vibrations are decoupled and independent.

Then, we can conclude that new coordinates &, and 1], are main coordinates of fractional

order double DNA helix chain model system for forced vibration regimes and that we
obtain two fictive decoupled eigen single fractional order chains of the double DNA
fractional order model. This is also one of the fundamental conclusion as an important
property of the fractional order homogeneous model of forced vibrations in a fractional
order double DNA homogeneous helix.

Systems of the fractional order differential equations (94)-(95) contains two
separate subsystems of fractional order differential equations expressed by coordinates of

&, and 17, which are main coordinates of a fractional order double DNA chain helix

forced vibration model and separate DNA fractional order chain model into two
independent fractional order main chains.
For first main chain of the double DNA chain helix (94), the eigen amplitudes for

free vibrations are in the form A,ES) =C_ sinke, and generalized coordinates &, (t ) of
the first main chain for forced vibrations is possible to express by set of this eigen main
chain main coordinates ¢ ¢ for free vibrations in the following form:
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&)= ¢,z sinkg, (96)
s=1
k=123,...,n

as well as for other main chain of the double DNA chain helix (95) generalized coordinates
i (t) of the second main chain for forced vibrations is possible to express by set of this

eigen main chain main coordinates ¢, for free vibrations in the following form:

nk(t)zzgsn Sink(ps (97)

s=1

Normal coordinates & ¢ or normal modes of the first main chain for forced
vibrations is possible to express in the similar form as for free vibrations, but introducing
suppositions that unknown amplitudes C| and phase &, depend of initial conditions are
not constant, but functions of time, C, (t) and phase o (t) , and for fractional order system
main coordinate are in the form

()= Cylt)eos(Qut + a,(¢) s =1,2,3,....m (98)
with known frequencies (see Refs. [25] by Hedrih and Hedrih , [29] by RasSkovi¢ P.
Danilo) and unknown time functions - amplitudes C,(¢) and phase a,(r) depending of

time and initial conditions.

Then, we introduce expressions (96) and (97) and their corresponding second and
fractional order derivative into subsystem of the fractional order differential equations (94)
and (95), we obtain the following systems:

%ZQ sinkp, — oo sin(k =1, +2[1+ u-x[Y_ & sinkp = £ sinlk+1)p, +
s=1 s=1 s=1 s=1

0 k=1

+KGD,{—2§S§ sin(k —1)p, +2(1—K)Z§S§ sinke, —ngf sin(k+1)¢x} _ {ho,u cosQ it k=1
s=1 s=1 s=1

99)
%Zé{vr] sin k(ps‘ - Zé,,vn Sin(k - 1)% + 2[1 + ﬂ]z é/w] sin k¢r - Zé/m] Sin(k + 1)‘”? +
s=1 s=1 s=1

s=1

n n n
+KJD;’[—ZQU sin(k—1)p, +2) "¢, sinkp, - Y ¢, sin(k+1)(p51 =
s=1 s=1 s=1

3 ho .y cosQYy it k=1
- { 0 k#1
(100)
k=123,....,n
After made a group sublimations of the some terms in previous equations (99), we
obtain the following subsystem:

1169



Third Serbian (28" Yu) Congress on Theoretical and Applied Mechanics
Vlasina lake, Serbia, 5-8 July 2011 M2-06

= 2J K K - )
Z—[Qé +ZE<[1+,U—K']—COS§DS>+§2K’O_<(1—K')—COS¢S>Dt [é'ssg]jsmk% =

s=1 K
_ Jhoyc08Q 4t k=1
1o k#1
(101)
k=123,...,n
Then taking into account denotations
(102)
K28 » s=123,...,
Kyge :5[251n2?+yﬂ(j S n
o K osin? @y e ]s s=123,0m
2J 2
(103)
o :ngﬁ: Kg£ 26in2 % |5 =1,23,...,n
‘ 2 J 2
(104)

previous subsystem of fractional order differential equation (101) is possible to rewrite in
the following form:

S2J( 2 K - , hy1 g cOsQ it k=1
—| Ce + 0,56 s +— KD/ | ko, =4 7 : )
Z K (é’sf @55455 2] Ksoely [é’sg. ]JSIH ?; { 0 k=1

s=1

(105)
Taking into account that it is possible to develop (to express) right hand side into
series according to sin k¢, in the following series:

{ho,l,l c0s €2 it k=1 _ Z%ho,l’l(s)sin kg, cosQ, ¢t k=1

0 k#1 s=1
0 k#1

(106)
where

n
Zho,l,l sinkg,
s=1

By 1a(s) = % — k=1
<225in ko, sin k(pr>
s=1 r=1 r=s
ho11(s) =0 k=1

(107)
equations (101) is possible to rewrite in the following form:

Zn:%](&sg + a)ég“sg + a)szang[gsg]— ho1.4(5) cosQl_lt)sinkgos =0,k=123,.....n

s=1

(108)
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Then, taking into account that sinke, # 0 in general case, from (108) is possible
to obtain the following subsystem of fractional order differential equations:
Cop+ @il + wfafo[gsf]: hois)c0sy it , s =1,2,3,....,n
(109)

where a)S2§ are square of eigen circular frequencies determined by expression (103) and

2 . . .. . .
@, corresponding eigen characteristic numbers expressing fractional order subsystem

properties, determined by expression (104).
In analogous way, taking into account denotation

Ksmy = ZKO—(ZI;I a)SZ” _,U] s> 8= 1,2,3,....,}’[

(110)
o _K 2sin2&+/¢ ,s=1273,...n
RAA | 2

(111)
0 =de Kin?® . 5=123,.0n
o 72J 2

(112)

and by use (100), is possible to obtain the second subsystem of fractional order differential
equations in the following form:

.fm +wf§§m + wszgnD;’[;’m]z ho1(5)COS€2 1, S = 1,2.3,.....,n

(113)
where cosz,7 square of eigen circular frequencies determined by expression (111) and a)szcm
corresponding eigen characteristic numbers expressing fractional order subsystem
properties, determined by expression (112).

Then we have system of fractional order differential equations (109)-(1113)
describing system of 2n fractional order oscillators, containing two subsets of the main
fractional order forced oscillators, each described by #n fractional order differential
equations. Each of these 2n fractional order differential equations, contain only one main
eigen coordinate { £ or &y of the system.

The system (109)-(1113) represent the main fractional order forced oscillators
along independent system main coordinates ¢ or &, , S = 1,2,3,....,n each with one
circular frequency of external excitation and one eigen circular frequency and one eigen

characteristic number from one of the two sets of: @, or a,, eigen circular frequencies

determined by expression (103) or (111) and a)SZG§ or a)szm7 corresponding eigen

characteristic numbers expressing fractional order subsystem properties, determined by
expression (104) or (112).

All of fractional order differential equations of the system (109)-(1113) are same
type and is possible to solve by same way by use Laplace transform L{( &;(t)} and L{g“s,, (t)}

Applying Laplace transform to the system (109)-(1113) of the fractional order differential
equations, we obtain the following system of the equations:
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L{gs§}+@3§L{é’s§(t)}+ { [é/scf]} B 11(. )L{COSQI.lt}’ s=123,...,n

(114)
L{Q;SU}JF a)?ﬁL{ Sﬂ(t)}+ a)gzo'ﬂl—{Df[é’yl]]}: ho,],l(S)L{COSQI.lt}7 S = 1,2,3,....,”
(115)
Taking into account that
d*¢,
L{ j;f(t)} ZL éé [p§03§ +é’03§] s=123,..,n
(116)
d
L{ j‘g( )} é’w [pgom +é’ow] s=123,...,n
(117)
LicosQ, tl=—2
kos Lﬂ} p2+&)ﬂ
(118)
dffé/S " do-—léiv . B
L{dmf}= o = Lt 5 =123,n
(119)
dgg.w de- lgs” _ O S:123_“_ n
4:&@} {W} twltO—PLgﬁL s4isdyeney
(120)

and after introducing into system (118)-(119) for Laplace transform L{; s (t)} and L{ . ,](t)}

of system double DNA helix chain eigen main coordinates ¢ ¢ and £, we obtain:

lpéVo §+é;o gJ hOll() p
L - s s ,s=1273,...,
{é}g} (P2+ §+ o‘§p )+(P2+ §+ aajp )p2+91,1 ’ "
| | (121)
_ ngsr] + éLOS?] hO,l,l(s) p —
- (o2 + a2, + 0k, p7) (P + a2, +atyp®) PP 40 b2
(122)

Then, for obtaining system double DNA helix chain eigen main coordinates
Cye (t) and ¢ ,7( ) is necessary to applied inverse of Laplace transform to the expressions

(121)-(122).
Then, we can write the following:

é’sf(t): é/sf,hom(t)"_élsg,part(t) (123)
and
gsn(t): gsn,hom(t)+ sn,part(t) (124)

where
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a* ¢ s;hom(t) and &, hom() are terms correspond to solutions of the

homogeneous fractional order differential equations and solutions are in the following
forms (see Appendix (A.1)-(A.3) and (B.1)-(B.16)):

© 2 k a)zjft_ag
NS ; _\F ot T
Cothom(t)= o )kZ(; @z Z( j @HT(2k +1- og)+
. k F1Y 0,2t
+2.0 k 3(1; 2k ( j—m‘f
el );( d ]Z_(; J) @} (2k+2-cj)
(125)
o0 k +1 a)ézj t 4
;sq,hom Z k Sz‘i{” 2k ( J%—F
k=0 Jj=0 @sp Tty
© k J —2j o
. k 2k 2k M
+¢0 0 ZO: Dsonl JZ_(;U o2 T(2k +2 - o)
(126)

b* L pm( t) and ¢ s, pa,( t) are terms correspond to particular solutions

of the no homogeneous fractional order differential equations system (121)-(122) and
solutions must to obtain as a inverse transform of the following expressions:

h
gs ar(t):L_lL gs ar :L_l 011() P ,S:1,2,3,....,n
Sop { P } (p ‘o §+ ogp )p2+912,1

(127)

é/sn,put(t) = L_IL{é’sﬂ,pat}

Il
—
—
—
=
=)
<

s=123,....
2 2 2 2 2 > =9~ b
P+ +w,g,7p6)p +Ql,l}

(128)
or in developed form

) e 1 w (—lkwf k (+1)jpa/ ; —k)
§s§,par(t): L IL{gsf,par}: hO,l,l(s)L 1{ 2 Z 2% < Z(}j Zj

Ok
s=12,3,...,n
(129)
) e 1 © (—IY‘wZ k (kj( 1)/ a/wz(, k)
sn,pat\l =L'L sp.pat =P sLl > =
Ssnp (¢) {é',,,p } 0,L,1(s) {p P2+le,1; =z jZO j a’f;;
s=12,3,..,n
(130)

1173



Third Serbian (28" Yu) Congress on Theoretical and Applied Mechanics
Vlasina lake, Serbia, 5-8 July 2011 M2-06

9. Concluding remarks

At the end, we can conclude that new coordinates of &, and 1), composed to

generalized coordinates by the way &, = Gr1— P, and 17, =@+ @, . These

coordinates are main coordinates of the main eigen chains of a double DNA helix chain
system. Also we can conclude that it is possible to obtain two fictive decoupled and
separated eigen single chains of the double DNA chain helix liner model as well as
fractional order model. This is important fundamental conclusion as an important property
of the linear model of vibrations in a double DNA helix.

Considered as a linear or fractional order mechanical system, DNA molecule as a
double helix chain system has its eigen circular frequencies and that is its characteristic.
Mathematically it is possible to decuple it into two chains with their eigen circular
frequencies which are different. This may correspond to different chemical structure (the
order of base pairs) of the complementary chains of DNA. We are free to propose that each
specific set of base pair order has its eigen circular frequencies and it changes when DNA
chains are coupled in the system of double helix. DNA as a double helix in a living cell can
be considered as nonlinear system but under certain condition its behavior can be describe
by linear dynamics.

By use superposition’s of these solutions for the case that external excitations are
with same amplitudes and frequencies from system differential equations, we can see that
for this case external one frequency excitations in one eigen main chain appear pure free
vibrations with eigen subset of circular frequencies of its free vibrations, and in other
appear forced vibrations. This conclusion is possible to generalize for same multi-
frequency external excitations applied in which of the pair material particle in both chains.
This conclusion is possible to extend to the fractional order double helix DNA chain system
forced vibrations.

This solutions may correspond with process of binding the enzyme to the specific
part of the DNA molecule. Enzyme has a role of inducer of forced vibrations. In the
transcription process only one chain is used as a template for transcription other chain is
control. The part of DNA chain witch is template has to make more movements than the
other chain.

Dynamical absorption on the first pair of the main coordinates of the main chains
appear on the resonate circular frequencies of the set of the double DNA helix chain
system with one less pair of the material particles in comparison with the considered real
system.

Resonant state that appear only in one main chain may be important for
selecting the specific sequence for transcription and we suggest that every sequence of
DNA that encodes the specific protein has its own resonate circular frequencies different
from the sequences that encode other proteins.

Dynamical absorption on the second pair of the main coordinates of the main
chains appear on the resonate circular frequencies of the set of the double DNA helix
chain system with two less pairs of the material particles in comparison with considered
system.

This mathematical fact is important to consider in the light of the interruption or
break of the double DNA helix chain system on the specific places where the transcription
process starts and ends.
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APPENDIX
NOMENCLATURE

DNA — Deoxyribonucleic acid (DNA)
Pra [7ad ] - generalized coordinate — angles of the k -th base of the first chain of the

double DNA chain helix;
@, [rad ] - generalized coordinate — angles of the & -th base of the second chain of the

double DNA chain helix;
Jia [kgm2 ]- is the axial moment of mass inertia of the & -th base of the first chain of the
double DNA chain helix;
J k.2 [kgm2 ]- is the axial moment of mass inertia of the k -th base of the second chain of

the double DNA chain helix;

¢k,1 [rads™] - angular velocity of the k -th base of the first chain of the he double DNA
chain helix;

Jii = mar; s = mﬂrg [kgmz] - the base pair the axial moments of mass inertia ;
m,, [ kg - the value of the base mass

7, [ m] - the length

J k1= I’nmrw2 [kgmz] - the corresponding axial moment of mass inertia for all possible
base pair authors accepted as in the Reference [17].

K, i=12 [KJmol™]- parameters characterize the energy of interaction of the & -th

base with the (k + 1 )-th one along
the i -th chain i =1,2.

K, =K=6x 10°[KJmol -1]- for the calculation that the most appropriate value is

close /

& ny [rad ], k=1,23,.....,n - main orthogonal coordinates of the eigen main chains
of the double DNA chain helix;
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S=0— P, and 1, =@, +¢,, k=123,...,n - functional dependence
between main orthogonal coordinates &, and 77, of the eigen main chains and generalized

coordinates ¢, ; and @, , [rad ] of the double DNA chain helix;

@3> [sec_l] - are frequencies of rotational motions of the bases, in similar and opposite

directions accordingly, of the k -th base of the first chain of the
double DNA chain helix;

@51 [Secfl] - are frequencies of rotational motions of the bases, in similar and opposite

directions accordingly, of the k -th base of the first chain of the
double DNA chain helix;

K,, =K, , =K -forthe case of homogeneous double DNA chain helix;

Jii=d,=J [kgm2 ] - for the case of homogeneous double DNA chain helix;

A, - amplitude

u=JK o’ eigen characteristic number of the homogeneous double DNA chain helix;

k= K 4 2K '{1- Oy Oy 1) (ra —T )2 - parameter of the homogeneous double DNA
chain helix;

pu=K apla (ra T4 )K'l - parameter of the homogeneous double DNA chain helix;

a)sz5 [sec_z 1, s=1,2,3,4...,n- set of the n eigen circular frequencies of the first eigen main

chain of the homogeneous double DNA chain helix;
6032,7 [ sec ™ l,s=1273.4...,n - set of the n eigen circular frequencies of the first eigen main
chain of the homogeneous double DNA chain helix;
a)szg and a)szn , s=1,2,3,4..,n -two subsets of the set of the homogeneous double DNA

chain helix;
APPENDIX A*
Expansion of the Laplace transform into series.

L{ 2}: PPoi + Do (Al)

7. 2 ~7 . 3
2(/’ + @, pt @y + woo)

e —— Lo (g )L

2 °|:1 o [ a M§+M§"H p 2p{ %[ a a’o+a’00]:|

P+ + 5 1+ + 5

wUQ p a)Un’
k
o) 1 S . @+ (A.2)
a0} o+ i e B -
’ "op 2p; P @0

P ) 1 &) ok & [kJ plag (A-3)
Li& @)= o +j ' A
&) (01 » Zp; P JZ? @+ o)

1178



Third Serbian (28" Yu) Congress on Theoretical and Applied Mechanics
Vlasina lake, Serbia, 5-8 July 2011 M2-06

APPENDIX B*

Solution of a fractional order differential equation of a fractional order creep
oscillator with single degree of freedom

The fractional order differential equations obtained and considered cases of eigen
fractional order partial oscillators of the hybrid fractional order multichain system are in
mathematical analogy same fractional order differential equation with corresponding

unknown time-functions. We can use notation 7' (t ) and all previous derived fractional
order differential equations of eigen fractional order partial oscillators with one degree pf

freedom, correspond to the hybrid fractional order multi-chain system dynamics with sixth
degree of freedom, we can rewrite it in the following form:

T(t)+ 0>T' ) (¢)+ 0T (t)=0 (B.1)
This fractional order differential equation (B.1) on unknown time-function T (t),

can be solved applying Laplace transforms (see Refs. [3] by Bacli¢ and Atanackovi¢
(2000), [23] by Hedrih (Stevanovi¢) and Filipovski (2002)). Upon that fact Laplace
transform of solution is in form:

7(0)+7(0 (B2)
T(p)=Lr()]-—2
p +w§{liw—iR(p)}
@y
where Lp#[r()]|= R(p)L[T(1)] is Laplace transform of a fractional derivative 4°T(t)for
dt”
0 <a <1. For creep rheological material those Laplace transforms the form:
dzxfl d{lfl
L [l RO O)-4 = 70)= prLT(]- 45 70) ®-3)
where the initial value are:
dT(e)  _ (B4)
A
so, in that case Laplace transform of time-function is given by following expression:
LT} =Ll -3

P’ tolp +0]
For boundary cases, when material parameters & take following values: ¢ =0 1 =1 we

have the two special simple cases, whose corresponding fractional-differential equations
and solutions are known. In these cases fractional-differential equations are:

1* 7()+ @2, Tt)+ wlT(t)= 0 for a=0 (B.6)
where 7(¢)=T(¢), and
2% 7(t)+ 2, TVt )+ &T(t)=0 for ¢ =1 (B.7)

where 70(¢)=77(¢).
The solutions to equations (B.6) and (B.7) are:

*
1 T(t)="T, costy|w? + @, +%sint\/m (B.8)
0 — "0a

for ¢ =0.
2% a.
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o
o,
T(t)=e 2 {T,cost,|@? — Oy sint,|w; —
{Uw

for o =1 and for W, >~ 1 oy, . (for soft creep) or for strong creep:
2

(B.9)

2% b.
(B.10)
T(t):e;%’ T,Cht, ‘L"‘"-a); S TR ) “’i‘-wﬂz
4 ot 4
Ve

for o =1 and for 4, <%5012a'
For critical case:

2% ()= {T+2T }forazl and g, Ly (B.11)

la

Fractional-differential equation (B.1) for the general case, when @ is real number from
interval 0 < ¢ <1 can be solved by using Laplace's transformation. By using that is:
d°T(¢ " d*'T(¢ "
IO - I ey ®.12)
t ar" |,
and by introducing for initial conditions of fractional derivatives in the form (B.3), and
after taking Laplace's transform of the equation (B.1), we obtain a corresponding equation.

By analyzing previous Laplace transform (B.12) of solution we can conclude that we can
consider two cases.

For the case when a)g #0 , the Laplace transform solution can be developed into series by
following way:

(B.13)
L) - —— 2B B!
p{Hw—’g[ip”Jr—é] r p1+ "[tp“+ éj
p @ r @,
R R P (319
Pio P s
L1 &) 0 & [k](n)’ P (B.15)
LiT(e)h=| T, +=2 |— “
(7o) ( ]pz Vst

In writing (B.15) it is assumed that expansion leads to convergent series. The inverse
Laplace transform of previous Laplace transform of solution (B.15) in term-by-term steps is
based on known theorem, and yield the following solution of differential equation (B.1) of
time function in the following form of time series:

():L’IL{()} N .
e S S

prd prd 2T 2k+2 og)

(B.16)
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TANGENT SPACES OF POSITION VECTORS AND ANGULAR
VELOCITIES OF THEIR BASIC VECTORS IN DIFFERENT
COORDINATE SYSTEMS
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ABSTRACT. Angular velocities of the basic vectors of tangent
spaces of the position vectors of mass particles of the discrete
rheonomic mechanical system are obtained in different
coordinate systems. Starting from real three dimensional
coordinate systems of Descartes orthogonal three dimensional
system type with fixed coordinates axis as a reference, by
different coordinate transformations for each position vector of
corresponding mass particle in discrete rheonomic mechanical
system, basic vectors of position vector tangent three
dimensional spaces are obtained in different curvilinear
coordinate systems suitable to the corresponding geometrical
scleronomic or rheonomic constraints applied to the considered
rheonomic system. For each basic vector of the basic triedar of
position vector tangent space of each mass particle of the
discrete rheonomic mechanical system, angular velocity vectors
of basic vector rotations are determined.

Then, after consideration and analysis of the number and
properties of the geometrical scleronomic and rheonomic
constraints applied to the mass particles of the considered
discrete rheonomic mechanical system, number of system degree
of mobility as well as number of system degree of freedom are
determined. Corresponding number of independent coordinates
are chosen and corresponding rheonomic coordinates are
introduced. By use extended set of the generalized coordinates
contained corresponding number of independent coordinates and
corresponding number of rheonomic coordinates,  position
vectors of the mass particles of the discrete rheonomic
mechanical system, are separated into two subsets.

First subset contain position vectors of the mass particle, keep
their three dimensional tangent space each with three basic
vectors.
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Second subset contain position vectors of the mass particle, each
depending, in general case, of the all generalized coordinates,
independent and rheonomic. Then, each of the position vectors
are with p-dimensional tangent spaces and with p basic

vectors.

Keywords: Position vectors, tangent space, basic vectors,
angular velocity, rheonomic constraint, mobility, velocity of
basic vector extension, p -dimensional tangent spaces.

1. Introduction

Let consider a discrete system with N mass particles wirh mass m, , and with
corresponsing position in real three dimensional space determined by geometrical point
N(g),a=123,.,N (see Figure 1). For begining we take that positions of the material
points, as well as corresponding geometrical points coordinates are determined by
coordinates in fixed orthogonal Descartes coordinate system with three coordinates as
denoted by N(a)(x(a), y(a),Z(a)).a =1,2,3,...,N, where O is fixed coordinate origin, and
Ox, Oy and Oz fixed oriented coordinate strain lines-coordinate axes. Coordinates of
the position vector of each material point are equal to coordinate of the geometrical point
which determine mass particle position in the space. For Descartes coordinate system for
position of the each mass particle we can write:
[)(a)(x(a),y(a),Z(a)): X(a)l T V()] T Z()k s @ =123,.,N.

Let, now, to consider previus discrete system with N mass particles wirh mass
m,, , and with corresponsing position in real three dimensional space determined by same

geometrical points N(,),a=123,...,N in generalized coordinate system of curvilinear

coordinates (q(a)l,q(a)z,q(af) a=123,..,N corresponding to mass particle positions. For

same geometrical points coordinates in considered two coordinate systems are:
1 2 3

N(a)(x(a),y(a),Z(a)).a =12,3,.,N and N(a)(q(a) 4(a) 4() ) a=123,...,N .. Formule of

coordinate transformation from previous coordinate system with fixed axes and ne
curvilinear coordinate system are:

_ ( 1 2 3)
o) = Ma)(a) »9(a) >9(a)

Ya) = y(a)(CI(a)l,q(a)z,q(af) (1)
1 2 3
Z(a):Z(a)(q(fl) Y(a) >9(a) )

Position vectors of each mass particle and corresponding geometrical points are
invariant geometrical objects in both coordinate systems, but their coordinates in
considered coordinate systems are not equal to coordinates of the corresponding
geometrical point. In generalized coordinate system geometrical  points

N(a),a:1,2,3,...,N have following coordinates: (q(a)l,q(a)z,q(a)3) a=123,..,Nand
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coordinate ~ of  position  vectors of  these  geometrical points  are

(a)l R p(a)z, p(,),)3 ,a=123,..., N .For position vectors we can write:

- _ def =inv.vektor

B X Y Za) = X f + ¥l + 2k = ﬁ(a)(%)’%) ’%zf) @

Beoldte et )= Pl o) (0”00 e + 21l
a=123...N

3)
For first example in polar-cylindrical coordinate system geometrical points have
the following coordinates: N(a)(r(a),(p(a),Z(a)) a=123,..,N and position vectors

ﬁ(a)(i’(a),w(a),Z(a)) of corresponding geometrical point are: r(,),0, z(,) and we can write:

Bl Pt Z(a)) = T ota) + 0 Cofe) + 2k = M) * 2 Q)
a=12.3,.,N

where Z,(a),Eo(a)and lz,a=1,2,3,...,N are basic unit vectors of tangent space of

corresponding position vector in polar-cylindrical coordinate system.

For second example in spherical coordinate system geometrical points have the
following coordinates: N(a)(p(a),(o(a),S(a)) a=123,..,N and position vectors

[)(a )(p(a),w(a ),19(0, )) of corresponding geometrical point are: P(a)0,0 and we can write:
Pla)\Pla) Pla) Fa)) = Pla)Pofer) + 0+ Cofa) + 0 Volw) = Ple)Pofe) ®)
a=123,..,N

where  py(y), Co(q)and Vo(,),@ =12,3,..,N are basic unit vectors of tangent space of

corresponding position vector in polar-cylindrical coordinate system.

Figure 1. Disrete material system with N mass particles and gepmetrical
rheonomic constraints
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2. Basic vectors of the position vector three-dimensional tangent space in
generalized curvilinear coordinate systems

In real two-dimensional coordinate systems, position vector tangent spaces are tro-
dimensional and the basic vectors of the tangent spaces of each position vector of each

mass particle we denote with g(,), @ =123,.,N, i = 1,2,3 (see Figure 2). These vectors
are in tangent directions to the corresponding curvilinear coordinate line and I general are

not unit vectors. Basic vectors is possible to obtain by following way (for detail see Refs.
[2], [3] and [4]):

05
g izp—(“z, a=123,.,N, i=1,23 6)
%(a)
or by formula coordinate transformation and by following expressions:
3 1 2 3 1 2 3 1 2 3
g,(a)l _ ap(a) _ ax(a)(q(a) ,q(a) sq(a) )ZJr ay(a)(q(a) aq(a) ’q(a) )] + az(g)(q(g) ,Q(a) ,6](0,) )E
04(z) 04(,) 04(s) 2da)
G = 2Pl _ 5t 17 917 ); , St e’ t0r), Pttt 10 (7
) %a) Od(ay %)

- 12 3 12 3 12 3
s P _ Ot e e ) Dl 1’ 100 )+, el 910" 9007) i
8(ah 3 L+ 3 J+ 3
9(q) %q(q) 9q(q) 0q(q)
Contravariant coordinates of the position vectors is possible to obtain by following
formulas:

3

1 2

R e B A L R B )}

1 1
5

1P<a)(q(a> q(;)z’qwf)@%(qw)

2

Pl e )=

1 {OX(H)((J(Q)],q(a)z,q(af)&(a)(q(a) >4(a) ,qm}) GX(,,)(q(a) 24(a) "Rn)‘) az(a)(%)
A

1 el 0 900 Vi) 98] 0l 1009101 ) B 10) 9000101 o
: P— ; (o)) )
() 2 %(a) 04(a)

©
=
]
&,
N
\'
D
=
S
=
R
=
=
]
—w
N
®
R
=
R
=
W[’
—
=
N
|
D
=
&
=
R

3(a) () %(a)
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where
o5t el tler’) Bildle ) Pl Sl 1 )
6q1 Bql Bql
1 2 3 1 2 3 1 2 3
A jxm(q(aw(a) ') ol e ') Pt e >61(a>)¢0
(@) g g o7
ot e tler’) Btldte ) Pl Sl 1 )
6q3 6q3 6q3

NAOYROYR0) pla'a%.q’)

Ala 002 (0)a* (0)=p'g + 028, + P8,

qi G- ds ”513. ~
- 8,5 1 & 3. N 'L &3
— &1 Y ’
1T £ /)
% z ) igl _
- q JETT 8
o —6_'0 3 N2
2 2
0q ) &
g _9p &\ /N % q)
3 3 -
oq =
k P 81 . y
i O

0, =0l (a0 703 0'0)

Figure 2. A position vectors and its three-dimensional space with corresponding
curvilinear coordinate system and tangent space with corresponding three basic vectors of
the position vector tangent spaces along mass particle motion through time

3. Change of the basic vectors of the position vector three-dimensional tangent space in
generalized curvilinear coordinate systems

Without loosing generality, we consider change of basic vectors of the a position
vector of one mass particle during mass particle motion through real space and described in
three-dimensional space. Also we focused our attention to the orthogonal curvilinear
coordinate system. For that case change (first derivative) with time of the basic vectors of
tangent space of a position vector are:
d;él:gj +|o,.2]=2 (Fl i'+Th¢* +T '3)+ g (F2 I+ 57 + T} '3)+ g (F3 i+ TG + T} '3)
dt 1171951, 81]= &1\t 119 129 139 )t &9 129 139 )T &g 129 139

g, 1 [~ - 1= 2=~ 32 )1 1 = 2 = 3= )2 1= 2 = 3= )3
th:g2+[a’p2ag2]:(r21g1+r21g2+r21g3)9 +(F22g1+F22g2+F22g3)q +(F23g1+F23g2+F23g3)q
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g > [- - = 2= 3= )1, (Rl s 2 3= V2 (Fl = 22 3 )3
7: =gt [wp3’g3]: (1“31g1 +1318; +F31g3)q +(F32g1 +I58, +F32g3)q + (I“33g1 +1332, +F33g3)g
®)
After analysis of the obtained derivatives of the basic vectors of position vector
tangent spaces in three-dimensional orthogonal curvilinear coordinate systems we can

separate two sets of the terms in obtained expressions (8). First set correspond to the
relative derivative of the corresponding basic vectors in the following forms:

g1=g (rlllql JrlHllzqz +F11343)

& =5,(0hd + i + T34 9

&=8 (1"3314'1 + l"3329'72 + F333C]3)

These vectors present vector forms of extensions of the
corresponding basic vectors and in scalar form is possible to express relative

change of the intensity — dilatation of the basic vectors in direction of its
previous kinetic state. In differential form is possible to write:

d|g,|

de :|§_ = Fllldql +1—112dq2 +F113dq3
1
s
de, :—ng =T3\dg' +T5dg’ +Tisdg’ (10)
|g2|
ds
dey = ||§3|1| = 1ﬂ331a7q1 +F332d512 +1"333dq3
&3

From analysis of the obtained derivatives of the basic vectors of position vector
tangent spaces in three-dimensional orthogonal curvilinear coordinate systems we can
separate second set of the terms in obtained expressions (8). Second set correspond to the
rotation change of the corresponding basic vectors in the following forms:

[C?)pl’gl]: gz(rlzlql +F122q.2 +1"123q'3)+ g (Fflql +r132‘?2 +F133q3)
[6,0-8]= 8, (034" +Thd? + T J+ &, (T34 + 567 + T ) ()
[@p3a§3]: él(rglql +F312‘}2 +F313‘?3)+ éz(l}zlq.l +r3?292 +F323q3)

where we introduce notation @, @,, and @,; for vectors of the angular velocities of the

1>
corresponding basic vectors of the position vector tangent space. When curvilinear
coordinate system is not orthogonal and angles between three basic vectors are changeable
with time these angular velocities are different for each basic vector. When basic vectors
are orthogonal and without change orthogonal relation, all three angular velocity are same.

For the case of the discrete mechanical system N mass particles for each vector
position of each mass particle is necessary, by analogous way as presented in previous part,
is possible to determine change of the basic vectors of tangent space of position vectors.
For that case for first basic vector of each position vector tangent space, we can write:
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By | _ |
g amdied + Moo + T’ B (i) + T + Rapsdie’
+§(a)3(r(3a)116}( ) +F( )124( 13‘1 )
a=123,..,N (12)

After analysis of the obtained derivatives of the basic vectors of position vector
tangent spaces for each mass particle, in three-dimensional orthogonal curvilinear
coordinate systems, we can separate two sets of the terms in obtained expression (11) and
corresponding for other two sets of the basic vectors. First set correspond to the relative
derivative of the corresponding basic vectors in the following forms:

&

§<a)1=§(a>1(%né( ) +lapedia) +Hapsda )) =123,..N

*

() = &lap (Fé)zlé( )+ Tode) + Tamdie) ) =123,.,N (13)

é(a)fé(a)s(ﬂimq'( )+ Tepade)” + Tpsda )) =123,..N

These vectors present vector forms of extensions of the
corresponding basic vectors and in scalar form is possible to express relative
changes of the intensities — dilatations of the basic vectors in direction of
their previous kinetic state. In differential form is possible to write:

d|g(, .
dé(gy = |L || F(la)IIQ( )+ T)d(a ) + Mo psd(a ) a=123,..N
d\8(a .
dg(gy, = |f )2| =F(i)21q( )+ Tl ) + T (e PLa=123..N (14)
|g(a)z|
d|8(s .
dg(gp = |L7(())T| :F(3a)3lq( )+ (e ) + T p39(a ) a=123,...N
a)3

From analysis of the obtained derivatives of the basic vectors of position vector
tangent spaces for each mass particle in three-dimensional orthogonal curvilinear
coordinate systems, we can separate second sets of the terms in obtained expressions (8).
Second set correspond to the rotation change of the corresponding basic vectors in the
following forms:

[60 Jo1>& ] 8(a (F(za)né(a)l+F(i)n€'1(a)2+F(2a)134(a)3)+é(a)s(rfa)uc}(a)l+F(3a)u€2( Y+ T34 ))

1 (F(la)zlé(a)l +Tapd(a) +Tapsdia) )+ Zlap (T(i)z o)+ Tp2d(a) +T3d(a) ‘)
[0 )3+ 8] = & (Tla)ué(a)l + o )d’ +F(L)3sé(a)3)+ g(a)Z(r(znz)3lq(a)l +Tp2d(a) + i) )
a=123,.,N (15)

where we introduce notation @)

(G20 Ea = &)
B

pl>
of the corresponding basic vectors of the position vector tangent spaces. When basic

O)p2 and @(y),3 for vectors of the angular velocities
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vectors are orthogonal and without change orthogonal relation, all three angular velocity are
same.

For example 1*: in polar-cylindrical curvilinear coordinate system by expressions
(8),(9), (10) and (11) we can write (see Figure 3.a*):

dg, dg, [ -. - A B

——=—L=gl-ising+ jcosp)=—= =— = , 8,

= 1 sin g+ cos ) = 0= 0%, (@, 8, ]

dg, dg, .. dé, .. .. * 1. .

—==——=7Cy+Fr——=71Cy — TP 1y =g, +|0p,,

dt  dt O g 0TI =8 [ Pe g'”]

dgy _dg. _dk _

dt dt dt

, d|g B}

ngO, dgr: |_.(p|:ﬂﬂ E)Prngk
|g¢’| d

iy R - - x -

g(p:r00:7g¢, a)P(p:(pk: gz:()a wPZZO

Angular velocities of the basic vectors of each position vector tangent space of
mass particle motion in polar-cylindrical curvilinear coordinate systems are: cT)(a) p = gb(a)k ,
a=123..,N.

No@) o))  Alre.z)

Ar) o) =) =r(efy + 20 = p'g, + 25

P - R . L
@p =Y+ =y o+ ok
@p =y &y +@lpy siny +Vy cosy)

Figure 3. A position vectors and its three-dimensional spaces with corresponding curvilinear
coordinate system and tangent space with corresponding three basic vectors of the position vector
tangent spaces along mass particle motion through time
a* polar-cylindrical curvilinear coordinate system; b* spherical curvilinear coordinate system

For example 2*: in spherical curvilinear coordinate system by expressions (8),
(9), (10) and (11), we can write (see Figure 3.b*):

& _ By COSY + YT =GB + B

dt dt (/ja vty 0_p¢)g(p p!//gw

dg, 48, _ . - (= o
%:T;ZCO(PCOS‘//—Pl//Slm//)—(P(Po cosy —Vv, Sln‘//)PCOSV/
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dgy _dg, _ . -
== =pvy+ siny —
dt Jt =pVy P( @y siny ‘///30)

*

pp:09 lg)PpnﬁpJ:l/}‘jo_{—(bEOcosW

- ce L7 - N 1.
WDp, =W cCy+ =—- + smy +— CcoSs
Pp Y cy ¢k pCOSl//ggo ¢)(gp 4 pgx// l//j

*

g, :Eo(p'cosy/—py)siny/)z

1, L
(peosy — pyrsiny )g,
osy

[@P¢,§¢J= [—1//50 + qb(,Bo siny +v, cosy/), Eopcosy/] = —g(p, cosy — v, siny )pcosy

Los L. Lz 7/ 1.
Opy,=—Y +P=y o+ gk =~ 8, +t9¢| g,siny +—g, cosy
pcosy P
d§3 dgy/ . - .- . .-
—22=——=pv, + pl-¢c,siny —
== P+ o= ghysing — i)
. P
=pPVo="8y>
v P4

|@p, .8, |= 8 taw — g, =[-v& + (B, siny + ¥y cosy), pvy ]

- = . - .7 - . - . 1 -
wy/:_y/"'(o:'//%""‘ﬂk:_ g(p+¢[gp51nl//+;gl//COSl//J

pcosy
Angular velocities of the basic vectors of each position vector tangent space of
mass particle motlon in spherical curvilinear coordinate systems are:

+Bla) =Via) o) + Plaf ,
0e) + Pl Bole) SV ) + Vi) OV (1))

4. Dimensional extension of the position vector tangent spaces of the reheonomic
mechanical system in generalized curvilinear coordinate systems

Considered discrete mechanical system is constrained by G geometrical stationary
constraints in the form:

Sl 00900 A ) 0 )= 0, B =123,

(16)

and by R geometrlcal rheonomic constraints in the form (see ref. [3]):
f},( 2 q(l) ,q(z) q(z) ,q(z) yeeeeneen ,q(N)l,q ,¢;,(t))=0 ,7=123...R
a7

Considered system is rheonomic system with p =3N —G degree of the system mobility,
and with n=3N -G —R degrees of the freedom. For the nn generalized independent

coordinates we take qi , 1=123,...,n. Also we introduce additional subsystem of the R

rheonomic coordinates ¢% = ¢""” :¢},(t), 7 =1,2,3....R which correspond to number of
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rheonomic constraints. Then we have extended system of the generalized curvilinear
coordinates qi, i=123,...,0,..,n+7,...,n+R. Then we know that subsystem of R

rheonomic coordinates ¢ = ¢""” =¢},(t), y=123....R contain known rheonomic

coordinates as functions of the time. But, force of the rheonomic constraints change are
unknown (see Ref. [1]).

Let now taking into account that first # coordinates of the position vectors of the
mass particles are independent generalized coordinates. Extended system of the generalized

coordinates containing independent coordinates ¢', i=123,..,n and rheonomic

coordinates ¢% =¢"*7 = g, (¢),7 =1.2,3...R is possible to list in the form:

q =4()-
2_ 2

q _q(l) 5

7 =qq)

7" =qp)
5 2

q _q(Z) 5

q6 = q(2)39

9" =4

qn—l _ q(n)Z’
n _ 3

q" =q()

(18)
q” =q""7 =¢,(t),y =1.23..R (19)

On the basic of the listed system (19) we can conclude that in considered case, we
. . 1 .
use coordinates of the positions vectors of the first K < g = §(3N — G — R) mass particle as

generalized independent coordinates.
Then on the basic of previous for the coordinates of the geometrical point which
correspond to the mass particle positions at arbitrary moment of the motion, we can write:
1 1 2 2 3 3
Nl(q =4()-9" =40) -9 = 490) )
1 5 2 6

Nz(q4 =q0).0° =40) 4" = 4(2)3) (20)
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(2]

pele™ =) ™ = ™ = awr’)

,5K+j(ql,q2, ....... G Gy ,q“R) j:1,2,3,...,(N—K)

We cam see that in extended system of generalized coordinates we can
identified two sets of the position vectors of the mass particles, one set contain the K ,

K S§=§(3N —G—R) position vectors of the mass particles depending of three

. . . G+R
generalized  coordinates, and  second set contain the N-K > 3

KS%z%(Z»N —G—R) position vectors of the mass particles depending of all

p=3N—-G generalized coordinates in general case, or more then of three generalized
coordinates.

Also we can conclude that in extended system of generalized coordinates, we
can identified two sets of the position vectors of the mass particles, one set contain the K ,

n 1 .. . . . .
K S§:§(3N —G—R) position vectors of the mass particles with three-dimensional
tangent space and each with three basic vectors of this tangent spaces, and second set

contain the N — K > G+R

, K< g = %(3N —G—R) position vectors of the mass particles

with extended dimension of the tangent space and to each tangent space correspond
p=3N -G basic vectors in general case, or more then three basic vectors of the tangent

space..

5. Concluding remarks

By introducing system of generalized independent coordinates, or extended system
of generalized curvilinear coordinates depending of numbers of geometrical scleronomic
and rheonmic constraints in the mathematical description of the discrete mechanical system
motion we reduce total number of the system coordinate, but we introduce extension of the
position vector tangent spaces fro three dimensional into more dimensional the three but
maximal dimensional is equal to the total numbed of the coordinates accepted in extended
system of the coordinates.

Also, we show that each position vector of the mass particle described by
coordinates in curvilinear coordinate system have in tangent space basic vectors which
rotate with angular velocity depending of the functional dependence position vector
coordinates with respect to time.
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First set of the basic vectors g(,), @ =1,2,3,...K < % , 1 =1,2,3 of the position

. n 1 .
vectors of corresponding firs K < 3 = 5(3N -G- R) mass particles correspond to three-
dimensional tangent spaces, and are same as before coordinate restriction.
j >

Second set of the basic vectors g(a) a=K+1.K+2,...,N;, K> g,

j=123,..,n,...,p, ofthe N-K ,K< g = %(3N -G- R) position vectors of

corresponding second sets of the mass particles correspondto (p=3N-G)--

dimensional tangent spaces, and are new in comparison with these obtained before
coordinate restriction. For position vectors from this second set, we can write

ﬁKﬂ-(ql,qz, ....... q".q" " ,q’”R), j=123,..(N-K)

and for corresponding basic vectors of the tangent space
-0 L
g(a)jzﬁ,a—K+l.K+2, ...... ,N; K>§,j—1,2,3, ..... Mooy D

Also, by use previous obtained results for angular velocity of the basic vectors of
position vector tangent space and corresponding vectors of the mass particle velocity and
acceleration on the generalized coordinate system is possible to analyze present Coriolis
force present in the mass particle motion in curvilinear coordinate system, Some
presentation for polar-cylindrical system and spherical system are presented in Figure 4. a*
and b*.

A

ok = @(p, siny +7, cosu(

D=y +p=—y i+ gk
&=y &, +(p,siny +7,cosy)

El‘,C =-2m(G, pg cosy + pyv, )

Figure 4. a* Figure 4.b*

Figure 4.a* Description of the material particle mass #2 motion in the cylindrical polar
coordinate system by use coordinate transformation: Presentation of the Coriolis’ inertia forces
F

Jeir

=Fy, c =-mac =-2m|w,, \7,.]= —2me@7rc, induced by rotation motion of the cylindrical-polar

coordinate system in comparison with fixed — no moving reference Descartes’s coordinate system:
relative motion of the material rarticle along radii v,,; =V, = 7, and precession motion of the

coordinate system in the form of rotation motion with angular velocity & =gk -
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Figure 4.b*. Description of the material particle mass 7 motion in the spherical
coordinate system by use coordinate transformation. Presentation of the Coriolis’ inertia forces

Er’cp = —Zm(EO pPPcosy + /'31/7‘70) induced by rotation motion of the spherical coordinate system
in comparison with fixed — no moving reference Descartes’s coordinate system: relative motion of the
material particle along radii V,,; =V, = pp, and precession motion of the coordinate system in the

form of rotation motion with angular velocity

D=~ + =y, +k = &+ (P, siny + 7, cosy)-
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ABSTRACT. Vector expressions, based on the mass moment vectors for axis and pole,
introduced by Hedrih (Stevanovié¢) K., for linear momentum and angular momentum of a
heavy rigid body dynamics about two axes without section are derived, as well as their
derivatives. In the vector expressions of the derivatives of linear momentum and angular
momentum appear members with component vector multiplications in the form of pure by
kinematical vectors named by us rotators. These vector rotators are orthogonal to the
corresponding axis of rigid body coupled rotations and are functions of corresponding
angular velocity and angular accelerations. Vector rotators rotate around corresponding
axis with angular velocity different then component angular velocity of the rigid body
component rotation in general case. In this paper a series of the research results according
vector rotators are presented analytically and graphically. For the special case that heavy
rigid disk is eccentrically and skew positioned on the self rotation axis which rotate in the
horizontal plane around vertical axis with constant angular velocity on a distance, the
nonlinear differential equation of the system dynamics in the gravitational field and
corresponding equations of the phase trajectory as well as expressions of the kinematical
vector rotators and expression of their relative angular velocity are expressed in the
function of angular coordinate of disk self rotation. By use these derived expressions, series
of graphical presentation of vector rotators and their properties transformation with
changes of distance between axes, disk eccentricity and angle of skew disk position are
presented.

Keywords: Rigid body, coupled rotation, axes without section, mass moment vectors,
rotators, gravitational field, angular velocity, angular acceleration, graphical presentation.

1. Mass moment vectors for the axis to the pole

The monograph [1], IUTAM extended abstract [3] and monograph paper [5] as
well as series of the published papers [2], [4], [7] contain definitions of three mass moment
vectors coupled to an axis passing through a certain point as a reference pole. The
References [8]. [9] and [10] contain results of nonlinear dynamics of gyro-rotors which
dynamics contain coupled rotations around two axes without intersections.

Now, we start with necessary definitions of mass momentum vectors.

Definitions of selected mass moment vectors for the axis and the pole, which are
used in this paper are:

1* Vector S—r(io) of the body mass linear moment for the axis, oriented by the unit

vector i, through the point — pole O , in the form (see Figure 1):
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S = [[[in.pkm=[f.pc M am-cav (1)
\

where p is the position vector of the elementary body mass particle dm in point N,
between pole O and mass particle position N .

2* Vector J %O) of the body mass inertia moment for the axis, oriented by the unit

vector i, through the point — pole O , in the form:
def

3 = [[[1p.[5. Alkm @

For special cases, the details can be seen in [1-7]. In the previously cited
references, the spherical and deviational parts of the mass inertia moment vector and the
inertia tensor are analysed. In monograph [1] knowledge about the change (rate) in time
and, the derivatives of the mass moment vectors of the body mass linear moment, the body
mass inertia moment for the pole and a corresponding axis for different properties of the
body, is shown, on the basis of results from the first author’s Reference [1].

This expression

340 = 300+ [0, 8 |+ [U. 5. 7o [+ [70. . 7o I ®)
is the vector form of the theorem for the relation of material body mass inertia moment
vectors, 55-10) and 5,%01), for two parallel axes through two corresponding points, pole O
and pole O,. We can see that all the members in the last expression have the same
structure. These structures are: [5,,[fi,F. M, [£.,[f,5, M and [5,,[f, 5,]]M -

In the case when the pole O, is the centre C of the body mass, the vector I, (the
position vector of the mass centre with respect to the pole O, ) is equal to zero, whereas the
vector p, turns into p. so that the last expression (3) can be written in the following
form:

I =309 +[5c.[f. A IM )

This expression (4) represents the vector form of the theorem of the rate change of
the mass inertia moment vector for the axis and the pole, when the axis is translated from
the pole at the mass centre C to the arbitrary point, pole O .

The Huygens-Steiner theorems (see Refs. [1] and [5]) for the body mass axial

inertia moments, as well as for the mass deviational moments, emerged from this theorem

(4) on the change of the vector J %O) of the body mass inertia moment at point O for the

axis oriented by the unit vector A passing trough the mass center C , and when the axis is
moved by translate to the other pointO .

Mass inertia moment vector J %O) for the axis to the pole is possible to decompose

in two parts: first ﬁ(ﬁ, J r(ﬁo)) collinear with axis and second D r(.]o) normal to the axis. So we
can write:

700 _=(= 70 ), {© 0)z , RO

Jg):n(n,Jg>)+D<ﬁ>:Jg i+D® 4)
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Collinear component ﬁ(ﬁ, J éo)) to the axis corresponds to the axial mass inertia

moment J éo) of the body. Second component, 5%0) , orthogonal to the axis, we denote by

the 5éﬁ) , and it is possible to obtain by both side double vector products by unit

vector fi with mass moment vector J %O) in the following form:

5 =[i.[i© n]= FO(.7)-i(5.7©)= T© - 37 ©)
In case when rigid body is balanced with respect to the axis the mass inertia moment
vector J %O) is collinear to the axis and there is no deviational part. In this case axis of
rotation is main axis of body inertia. When axis of rotation is not main axis then mass
inertial moment vector for the axis contains deviation part 6%0) . That is case of rotation

unbalanced rotor according to axis and bodies skew positioned to the axis of rotation.

i lmpcl
" A Ae
P L HLYY |
" A ATl

Figure 1. Arbitrary position of rigid body coupled rotations around two axes without intersection.
System is with two degrees of mobility (two freedom or one degrees of freedom and one rheonomic

constraint) where (9, and 9, are generalized coordinates Fixed coordinate system and two moveable

coordinate systems O,&7,6; =0,&mz and 0,6,7,8, =0,6,1,2, that are rotating with
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component angular velocities of rigid body coupled rotations: independent generalized (/or

rheonomic) coordinates are (0, coordinate of precission rotation and (2, coordinate around self

rotation axis. Vector rotators R, , Rg;and R, are presented.

2. Derivatives of linear momentum and angular momentum of rigid body
coupled rotations around two axes without intersection

Let us to consider rigid body rotation around two axes first oriented by unit vector
f, with fixed position and second oriented by unit vector ﬁ2 which is rotating around fixed
axis with angular velocity @, = fi; . Axes of rotation are without intersection. Rigid body

is positioned on the moving rotating axis oriented by unit vector M, and rotate around self
rotating axis with angular velocity @, = ®,0, and around fixed axis oriented by unit vector
fi; with angular velocity @, = @jfi; . Then, axes of rigid body coupled rotations are without

intersection. The shortest orthogonal distance between axes is defined by lenght O,0, and
it is perpendicular to both axes that is to the direction of angular velocities @, = @ fi; and
. [A,, 7,

@, = w,h, . This vector isf, =0,0, (see Figure 1): Ty = ro ﬁ =Tolp; and it can
n,

be seen on Fig.1. Velocity of mass particle dmis: V = [a)l, r0]+ [a)1 + a)z,p] .

By using expressions for linear momentum (see Refs. [1], [11], [12] and [10]) and
after taking in account derivatives of parts, the derivative of linear momentum of rigid body
coupled rotations around two axes without intersection , we can write the folowing vector
expression:

&R

o EM 0l [V 0 S0 + olfn. S |+

+,8%)+02[6,,59]+ 20,0, [, 5]
7

After analysis structure of linear momentum derivative terms, we can see that
there are possible to introduce pure kinematic vectors depending on component angular
velocitie and component angular accelerations of component coupled rotations that is useful
to express derivatives of linear moment in following form

dK S0) = (0,

i =R 5 IM + Ry, S 10+ R0 |S € )+2a)1w2[n1,8(02)]

My

@®)

By using vector expressions for angular momentum after taking in account
derivatives of parts, the derivative of angular momentum of rigid body coupled rotations
around two axes without intersection and after analysis structure of angular momentum
derivative terms, we can see, as in previous chapter for the derivatives of linear momentum,
that there is possible to introduce pure kinematic vectors-rotators depending on angular
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velocities and angular accelerations of component coupled rotations and that to express
derivatives of angular momentum in following shorther form:

dlo,  _ oo o g
TZIIZ(rO’pC’M’a)l’wzawl’a)%nl’nZ)J"a)lnerZM +2a)1a)2[n1,\]r(<]202)]
(i, IO+, TR, +R,[DY]+ R D
9

where

=0 o

S = [[[[f,, pldm

v

and

S = J{]lm. pm

are correspond body mass linear moment of the rigid body for the axes oriented by
direction of component angular velocities of coupled rotations through the movable pole

O, on self rotating axis;

I W[P gl

[

are corresponding r1g1d body mass inertia moment vectors for the axes oriented by
directions of component rotations through the pole O, on self rotating axes. For detail see
ref. [10].

In previous expressions (8) and (9) we introduce following notations: R 01> R 011

and

3‘,\

Ry, R, and R,. These vectors are vector rotators which intensity depends

of angular velocity and angular acceleration of corresponding component
rotation.

3. Vector rotators of a rigid body coupled rotations around two axes without
intersection

We can see that in previous expressions (8) and (9) for derivative of linear

momentum and angular momentum are introduced the vectors R, Ry, Rgn, R

and R, . Let us to consider vector forms and properties of these vectors.

— L P B ~ g e 2=
Ro1 =@l + o Vg, » Ro, = wl[nl, }raﬁ {nl,[ﬁl,r—oﬂ’ R = @y, + @V,
fo fo

s o S8l S sl el s R = g, + 0l
R = @ — +a)12 fi, , = J’eo +o? Lt 1:PC » Ry = oy, + @)V,
msl) Yl el A
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S (0,) 5(0,) S S
R gy = s S, + @ B, Sh, =&, [f,. Ac ] + P [f2.[7,. Ac ]
st s) [N [, oc ]
(11)
(0,) (0,)
R, =¢ Os +@?| f Os = a0, + XV
1= 50 M50 oy + @V
ﬁu m
(0,) ~(0,)
5 Ds,” o| = Dn, . 2
R, =0y ==+ @5 | Ny, —> = w,U, + oy V,
D©2) D©2)
n, n,
e & 4 0
........ B/ /n,
“““ e wy
30)

n

Figure 2. Vector rotators R; (a*)and R, (b*)in relations to corresponding mass moment vectors
J éoz) and J %)2) , and their corresponding deviational components Dé?Z) and DESZ) as well as to
1

corresponding deviational planes.

Three vector rotators R 01> Ii(m and Iil from the set (11) are orthogonal to the
direction of the first fixed axis oriented by unit vector fi; and two vector rotators Fiozz and
Iiz are orthogonal to the self rotation axis. But, first vector rotator Iio] is coupled for

pole O, on the fixed axis and second and third vector rotators, Iion and F\;ozz , are coupled
for the pole O, at self rotation axis and for corresponding direction oriented by directions

of component angular velocities of coupled rotations. Intensities of three first rotators are
equal and are expressed by angular velocity and angular acceleration of the first component

rotation, and intensities of two vector rotators ﬁozz and Iiz are expressed by angular
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velocity and angular acceleration of the second component rotation, and are in the
following forms:

R01:R011:1/é)12+a’14 and R(m:\/a’)22+a);

(12)

Rotators from first set are rotated around axis through pole O, in direction of first
component rotation angular velocity and depend of angular velocity @, and angular

acceleration @, . There are two vectors of such type and all trees have equal intensity.
Rotators from second set are rotated around axis in direction of second component rotation
and depend of angular velocity @, and angular acceleration @, . There are two vectors of
such type and they have equal intensity.

4. Relative angular velocity of vector rotators of a rigid body coupled rotations around
two axes without intersection

Let’s introduce notationy,, and ¥, denote difference between corresponding
component angles of rotation, and®, of the rigid body component rotations and
corresponding absolute angles of pure kinematics vector rotators R o1 R o115 Fiozz R Fil

and FEZ , about corresponding axis oriented by unit vector f,, and M, through pole O,
(see Fig. 2). These angles are determined by following relations:
.2 )
7 —arctg 2 7/2=arctg§_[)f2
# and % (13)

Angular velocity of relative kinematics vectors rotators Iim R liml R Ii(m , R,

and F:’2 which rotate about axes in corresponding directions in relation to the component
angular velocities of the rigid body component rotations through pole O, are:

¢1 (2¢12 - ¢1¢1 ) ¢2 (2§022 _ (/.)23/.’.2 )

@+ @ + ¢, (14)

1

7}22

5. Concluding remarks

First main result presented in this paper is successful application the vector
method by use mass moment vectors for investigation of the rigid body coupled rotation
around two axes without intersections and vector decomposition of the dynamic structure
into series of the vector parameters useful for analysis of the coupled rotation kinetic
properties.

By introducing mass moment vectors and vector rotators we expensed linear
momentum and angular momentum, as well as their derivatives with respect to time for the
case of the rigid body coupled rotations around two axes without intersections.
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Appearance, as it is visible, of the vector rotators, their intensity and their directions as
well as their relative angular velocity of rotation around component directions parallel to
components of the coupled rotations is very important for understanding mechanisms of
coupled rotations as well as kinetic pressures on shaft bearings of both shaft.

Special attentions are focused to the vector rotators, as well as to the absolute and

relative angular velocities of their rotations.
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Abstract: This work is based on the analysis of vibro-impact system
motion, moving freely along non-ideal lines-rough curvilinear paths in
vertical plane in the shapes of: parabola, cicloid and circle. Non-ideal
caracter of the relation is due to the Coloumb’s type friction force with
coefficient x=tgea,. The oscilator is composed by one heavy mass

particle ( the observed systems have one degree of freedom of motion)
whose free motion was limited by one or two stabile elongation limiters.
The analyitical-numerical results for certain kinetic parameters of the
observed vibro-impact systems are basis for the visualization of the
motion analysis and energy analysis, which are subject of this analytical
research. In this paper the methodology of the energy transfer
investigation among the elements of the observed vibro-impact system is
presented.

The Applied methodology : Free motion of the heavy mass particle was
divided to the corresponding intervals. Each motion interval corresponds
one differential equation from the group of ordinary homogenious non-
linear differential second order equations. This differential equation was
solved in analytical form. The differential motion equation for
corresponding motion conditions is matched to initial motions coditions,
impact conditions to elongations limiters and conditions of alteration of
motions directions causing the alternation of direction of friction force.
By solving the differential equation of motion analyticaly we came to
analytica; expression for phase trajectory equation in plane (¢), gb) , that is

neccessary for energy analysis of dynamics of vibro-impact systems
together with the energy equation curves. The graphic visualization of the
energy curves and motion analysis of representative point of system
kinetic state during the kinetic (dynamics) is done by using software
package MathCad and user’s package CorelDraw.
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Application: Based on vibro-impact systems there are constructed
various vibration machines, where working part has to perform periodic
impacts for realization of technology processes. In general, vibro-impact
systems are applied in transportation systems, construction machines,
casting machines, vibro-devices etc.

Keywords: Heavy mass particle, rough parabola, rough cicloid, rough
circle, friction, impact limiters, vibro-impact, phase trajectory, singular
points, large initial conditions, total energy, kinetic and potential energy,

analytical expression,
differential equations.

graphical

presentation, representative point,

1. Introduction

The investigation of vibro-impact
processes to the dynamics of the systems
and properties and specifications of non-
linear phenomena with discontinious
conditions were made by many researcher
all around the world. Based to the previous
knoledge ablut the theory of vibro-impact
systems, and to the original works by:
FrantiSek Peterka, Katica (Stevanovic)
Hedrih, Alz Nayfeh et al., Dimentberg M.F
and Menyailov A.L, Foole S. and Bishop
S., Lieber P. and Jensen, D., Luo G.W. and
Xie J.H., Nordmark A.B., Pavlovskaia E.
and Wiercigroch M., and other, it can be
concluded that there is greater interest today
for investigation of energy transfer within
complex systems and non-linear modes.
That is the reason of importance of energy
analysis of the dynamics of vibro-impact
processes in vibro-impact systems with one
or more degrees of freedom as well as non-
ideal relations.

The problems of dynamics of
vibro-impact systems represent separate
area of applied theory of oscilations. The
theory of vibro-impact systems is specially
important for engineering practice for wide
application of vibro-impact astions, used
for realization of the technology processes.
The collisions occured in the procedure of
kinemtaic couples oscilation motions cause
increased dynamic impact loadings,

decreasing durability and liability of the
system, as well as alternating dissipative
system features. The studies about vibo-
impact systems and vibro-impact actions
are essential because of some very harmful
impacts to the gaps and wearing in kinetic
systems. The investigation of such vibro-
impact actions is important for achievement
of expected motion regimes and system
stability, i.e. regulation of the system
motion.

The introducing theory for this
paper were taken from the nooks of D.
Raskovi¢, where the motion of mechanic
system in ideal conditions and without
limitations was analyzed, as well as the
motion of curvilinear oscilator in the
presence of sliding Columb’s friction, than
from the papers by Katica (Stevanovic)
Hedrih referring to the movement of heavy
mass particle along rough curvilinear path.
In order to perform the analysis of the
dynamics of vibro-impact system with
curvilinear paths and non-ideal relations, an
explanation of free oscilation of heavy mass
particle along curvilinear paths and non-
ideal links must be done first.

2. Free mass particle oscilations
along curvilinear paths and non-
ideal links

Vibro-impact system represents
the dynamic system with oscilation motion
in the periods with impacts occurances. In
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order to study the motion and energy
analyze of the corresponding vibro-impact
system, non-impact motion i.e. motion
between the impacts, must be analyzed
first. Non-impact motion is described by
differentail (double) motion equations and
by double phase trajectories equations, free
oscilations of heavy mass particle along
curvilinear rough lines and vertical planes
and with non-ideal links, as well as the
particular examples of motions along the
rough parabolic line, rough cicloid line and
rough circle line, based on the results from
prof.dr Katica (Stevanovi¢) Hedrih [10-11].

2.1. Free motion of heavy mass
particle along rough curbilinear line

Let wus study free motion
(oscilation) of heavy mass particle M, mass
m, along rough curvilinear line with sliding
Coulomb’s friction force and coefficient

type x4 (Fig.1).

Fig. 1. Free motion of heavy mass particle
along curvilinear path: a* derived position
of heavy mass particle; b* force plan

Curvilinear line equation situated
in vertical plane Oxz is written in a form
= f(X). By using the principle of
dynamic equilibrium, with acting forces
presented on Fig. 1 b* the vector’s
equation of motion of heavy mass particle
along curvilinear path can be written in a
form :

by completing of obtained scalar vectors
equations one differential (double) equation
of motion of heavy mass particle is
obtained, as a function of curvilinear (arc)

coordinate S, (ds:dxv1+ 2'2), in a

form:

2
S+ gsinai,u[\é—+ gcosaj =0
‘ (1)
BY solving of differential (double) equation
of motion (1) we get (double) phase

trajectory equation

2

X (x)= eIﬁLﬂF#r J .

2)

) Iﬁ[%Jmtw%}dxdx + C}

.|:—Zg‘[(1+lzrz)(2’i/l e

The equations (1) and (2) are basis for
formation of diffrential (double) motion
equations and (double) phase trajectory
equations for any shape of curvilinear line.
In this papere there are considered rough
parabolic, cycloid and circle lines.

2.1.1. Free motion of heavy mass
particle along parabolic rough line is
presented on Fig. 2.

Based on the theory conducted for
motion of heavy mass particle along rough
curvilinear line in general, the analysis of
this motion__is special case.

Fig.2. a* initial and derived position of
heavy mass particle; b* force plan

The general equation of parabola

2
(—m§f)+{—m;N]+mg(—sinaf—cosaﬁ)+ Fy l\]law‘fl\f ; &> =2pz, where Zp[m]- is
k

After scalar multiplication of this vector
equation with unit vectors T and N and

parabola ' parameter equal to quadric
distance of focus from the top of parabola.
The observed system has one degree of
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freedom of motion. For generalized
coordinate we take parameter ¢ (the angle

between tangence direction with the
direction that is paralel to axis Ox). Based
on equations (1) and (2) and the general
parabola equation, using many mathematic
operations, the differential (double)
equation of motion and phase trajectory of
heavy mass particle equation along
parabolic rough line (as a function of
generalized coordinate ¢ ) were obtained.

zav>0 (3)

zav<0

3
G+(3tgptu)¢’ +ngS(p(sin(piycos¢)=O, {

g +Ce*z"“’j {za v>0 (4)

-2 6

o =eos w(_pcosz(p zav<0
Where C - integration constant depending
of initial motion conditions (valid also in
equations for cicloid and circle lines). The
integral constant has some alternation in
dependence of period of motion of heavy
mass particle along parabolic rough line,
limited by points at phase trajectory where
the the velocity is equal to zero. That
alteration is related to the alternation of the
direction of heavy mass particle motion, i.e.
alternation of velocity direction of heavy
mass particle causing the alternation of
friction force.

2.1.2. Free motion of heavy mass
particle along cicloid rough line is
presented on Fig.3.

Based on the theory conducted for
the motion of heavy mass particle along the
curvilinear rough line in general, the
analysis of this motion represents the
special case.

Fig.3. a* the initial and derived position of
heavy mass particle; b* force plan

The observed system has one degree of
freedom of motion. For generalized
coordinate we adopt parameter ¢ (angle

between direction MPyand vertical line),

which defines the position of heavy mass
particle M , positioned on the circle of seni
diameter R, moving equaly along the axes
Ox. Heavy mass particle in this case
describes the line representing geometry
clear cicloid path. Based on equations (1)
and (2) together with parametrs of cicloide
equation X= R((p +sin ¢)) and
z=R(l-cosp), and using chain of
mathematic operations we get differential
(double) equation of motion and (double)
equation of phase trajectory of heavy mass
particle along cicloid rough line ( as a
function of generalized coordinate ¢ ).

Lol e [ g
- —tg— tg—tu|—=0,
b-0'(30%5u )+ (10l u) 2 .

zav:2Rcos§qb>0

za v=2Rcos%¢7<O

2
9= {(iﬁﬂ)sin!ﬂ*(1—2/12)005¢7+71+;ﬂ +Ce‘2“w}

VY

za v:2Rcos%¢)>0

(6)
za v:2Rcos%q’;<0

where C - is integration constant

2.1.3. Free motion of heavy mass
particle along circle rough line is presented
on Fig.4.

The

generalized coordinate of the observed non-
conservative mechanical system with one
degree of freedom of motion.

By wusing the coordinate system of
references with axes in direction of
perpendicular and tangent, and based to the
procedure conducted for the motion of
heavy mass particle along rough curvilinear
path (1), the differential ( double) equation
of motion of heavy mass particle along the

angle @ represents

1205



Third Serbian (28™ Yu) Congress on Theoretical and Applied Mechanics

Vlasina lake, Serbia, 5-8 July 2011

M2-10

circle rough line can be written in a form
of:

gbigbztgao +Lsin(¢)ia0): 0

Rcos

zap>0
zap<0

(7

Fig. 4. a*the initial and derived position of
heavy mass particle , force plan; b* and c*
presentation of the ,,relative equilibrium
positions with alternation properties +«,,

By solving the equation (7) we get (double)
phase trajectory equation of heavy mass
particle moving along circle rough line

o) :(ﬁm[cos(wian)—ztgaﬂ sin(p+ @, )]+ Ce™"%
{za »>0
zap<0 ®)

where C - integrating constant.

3. Vibro-impact system based on
oscilator moving freely along
curvilinear paths and non-ideal
connections

The dynamics of vibro-impact
systems based on oscilator with free motion
along non-ideal links-rough curvilinear
lines, in shape of parabola and circle was
analyzed by application of analytical
method of ,, adjustment™ and phase plane
method. Also, for the part of oscilator there
are used one or two heavy mass particles —
pellets, moving freely along rough
curvilinear route with sliding Coulomb’s
type friction force. The system becomes
vibro-impact system when one or two
elongation limiters for each are positioned

and concerned as mobile and stabile
limiters.

3.1. Vibro-impact system based on
oscillator moving freely along parabolic
rough line

Heavy mass particle moving along
parabolic rough line in vertical plane, with
sliding Coulomb’s type friction force
coefficient x=tgea,, with one elongation

limiter on the right and one elongation
limiter on the left side (Fig.5).

Fig.5. The system with two stabile
elongation limiters, based on oscilator with
one pellet:

a* initial and derived position of the pellet;
b* force plan

The positions of the limiters are determined
by arc coordinates S, ;=5 (gol) and
Sua2 =5, (;02) are measured from the
equilibrium position of heavy mass particle.
The arc (curvilinear) coordinates are given
in as a function of the angle ¢ .

For the complete description of the
dynamics of heavy mass particle, the
differential (double) equation of motion (3)
is coupled to:

a* initial conditions
5(0)(60(0) ): So(p) and

V(o) ((0(0) »®(0) ): S(0) ((/’(o) »9(0) ) =V (0.9 )
b* angular elongation limitation
conditions, and impact conditions

Suli =Si ((/’i) > Sul(i+1) =5(i+1)(¢(i+1))’
Sodl,i (¢od|,i ): _ksul,i (¢u|,i ),
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Sodl,(i+l)(¢odl,(i+l))= _ksul,(i+1)(¢ul,(i+l))’
i=123,..,n,
where: k- impact coefficient in the range
between k = 0, for ideal plastci impact, and
k =1, for ideal elastic impact; n- number of
impacts until arrestment of heavy mass
particle on the parabolic rough line, or until
the interval where heavy mass particle
continues to move without impact to the
limiter.
Free motion of heavy mass particle along
parabolic rough line is divided to the
corresponding intervals and subintervals of
motion:
The first; From the initial moment of
motion to the impact into the right
elongation limiter; The second; From the
right elongation limiter to the impact to the
left elongation limiter, until the direction
alternation ( motion intervals limited by
friction force direction alternation)
The motion analysis is conducted by using
the phase trajectory equation (4) with
corresponding argument in dependance of
motion interval.
3.1.1 Grafic visualization of the phase
portrait of heavy mass perticle in the
observed vibro-impact system

Based on real values of kinetic and
geometry parameters of the system,
~Zlrad]. g, =0, ¢0=7[rad},

(/71:%[rad]:(/72: 5

p=1[m], &, =0,05, g =9,81Lm2}

m=0,2[kg] i

The phase portrait of heavy mass particle
moving along parabolic rough line is
showed (Fig.6).

Fig. 6. Phase portrait of heavy mass
particle moving along the parabolic rough
line with sliding Coulomb’s type friction
coefficient u=tga,with  limited
elongations in a plane (¢,¢)

3.1.2 Graphic visualization of energy
analysis of the observed vibro-impact
system

By using the analytical expressions
for the peripendicular pressure force Fy; ,

power originated of sliding Coulomb’s type
friction force P,,; to the heavy mass particle

on the parabolic rough line, kinetic energy
Eyi, potential energyE,; and total

mechanical energy E;, (i = 1,2,.,n.),

gz +Cie¢2”"’J
pcos” @

Fyn,i =mgcosg + mp cos’ (p[—

s
_ = P,
Pui=—HFyiS=—pFyi—5—¢ =
cos” @

:—ymp{gcosq)+ pcos%{— gz +Cieﬂ“¢’JJ - gl +CieTHe,
pcos’ p pcos®p

Ek-((p):lmv?:lm p’ ¢_2:lmp2 - +C,e¥2He
' 20 2 sy 2 peoslp ’
1 mgp
Epi(p) =~ % ng
2 cos” @
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Ei(9) = Eki(p) + Ep; (p) =

:lrnp2 ,L+Cieizﬂ¢’ +lﬂ
2 pcos? o 2 cos? ¢

For every separate branch of the phase

portrait, there is a graphic of alternation of

Fn s P#, Ex, E, and E from the initial

moment of motion until the moment when
heavy mass particles returns into
equilibrium position (Fig.7-11).

Fy gl a|l
i '\_') Legenda
oy | Fey =
<4:\ = | AL/ _ by
™y T ]
©
(&) (3
P g
@2 7)
= WL
W o)
(E) (L)
(15} { o
- | . 12
-1 i[l S ] @
L.0.542] i =0.785 |~
@y | o =0.785 @

0, =-0.542 L =().785
| 72 ; e

Byl
Fig.7. Curve of
pressure force
alternation as a
function of angle ¢

DI
Fig. 8. Curve of
power alternation
P, as a function of

angle ¢
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Ek{ip)a
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T | p,=0.542
Epia) &
i+

@y =-0,542

Fig. 9. Graphic
presentation of
kinetic energy
alternation in

Legenda

i, =0.785 3

Legenda

9, =0.785 |

Fig. 10. . Graphic
presentation of
potential energy
alternation in plane

plane (Ep, o)
(Ek,0)
Eig)
64 D)
Legenda = >
= | ©)
= 4] >
92} ll-f-,ﬁ:_:__-@-!‘ (id)
= }c ||_§‘
—— | ©
0 '1 @
p,=-0.542 p =0.785
Fig.11.Graphic  presentation of total
mechanical energy alternation in plane
(E.o)
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3.2.  Vibroimpact system based on
oscillator moving freely along cicloid
rough line

Heavy mass particle is moving
along cicloid rough line in vertical plane,
with sliding Coloumb’s type friction
coefficient u=tge,, with elongation

limiter on the left and on the right side

(Fig.12). The Ilimiters positions are
determined by arc coordinates
Sui,t =8 ((01 ) and S, , =5, ((ﬂz) and

measured from the equilibrium position of
heavy mass particle. The arc ( curvilinear)
coordinates are given as a function of the
angle ¢ .

For the complete description of the
dynamics of heavy mass particle there are
conditions matched to the differential
(double) motion equation:

a* initial conditions
5(0)(¢’(0)):50((/’0) and

V(o) (¢(o) . ®(0) )= S(0) ((0(0), (b(o)): Vo (@099 )

b* angular elongation limitation
conditions, and collision conditions

Suli =Si (1) . Sul (i+1) = S(i+1)(¢(i+1))v
sodl,i ((bodl,i ): _kéul,i ((bul,i )»

Sodl,(i+l)(¢odl,(i+l))= _ksul,(i+1)(¢ul,(i+l))’
i=123,..,n,

where: k- is impact coefficient within the
range from K =0, for ideal plastic impact,
to k =1, for ideal elastic impact; n- number
of impacts until the heavy mass particle
stopping on the parabolic rough line or to
the interval where heavy mass particle
continues to move without impact to the
limiter.

[

Fig. 12. System with two stabile elongation
limiters, based on oscilator with one pellet:
a* initial and derived position of the pellet;
b* force plan

Free motion of heavy mass particle along
cicloid rough line is divided into
corresponding motion intervals and sub
intervals:
The first; From the initial moment of
motion to the impact into the right
elongation limiter; The second; From the
right elongation limiter to the impact to the
left elongation limiter, etc., until the
direction alternation ( motion intervals
limited by friction force direction
alternation)
The motion analysis is conducted by using
the phase trajectory equation (6) with
corresponding argument in dependance of
motion interval.
3.2.1 Grafic visualization of the phase
portrait of heavy mass perticle in the
observed vibro-impact system

Based on real values of kinetic and
geometry parameters of the system,

. rad
o= %[radl% = —%[rad]’% =0,9, = S[T}

R=0,05[m]a, =0,05,g = 9,81{3},m =0.2[kg].

The phase portrait of heavy mass particle
moving along cicloid rough line is showed
(Fig.13).
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Noft= g i )
8 h

Fig. 13. Phase portrait of heavy mass
particle moving along thecicloid rough line
with  sliding Coulomb’s type friction
coefficient u=tga,with  limited
elongations in a plane (¢, )

3.2.2 Graphic visualization of energy
analysis of the observed vibro-impact
system

By using the analytical expressions

for the peripendicular pressure force Fy; ,

power originated of sliding Coulomb’s type
friction forceP,; of the heavy mass

particle on the parabolic rough line, kinetic

energy E,;, potential energy E,; and total
mechanical energy E;, (i = 1,2,.,n.) R

E;, (i=12,..n),

Fyi=mg cos%+ m2Rcos%-

CIn

1+4 29
2

2
[(i 3u)sing— (1 - 2yz)cos¢ +% + Cieﬂ""’} R

Cos

= —yFNViZRcos%(k = —yFN'iZRcos%-

5

1-%—4,112 2P

P

i

2
{(i 3;1)sing0 - (l - 2y2)cosgo+ ! *;‘# + C,eizw} 5

Ek; () = 2mR? cos %,‘;,2(4;) = 2mR? cos? %

)

l+du? 2@
2

1+44°

l:(i3;/)sin(p—(1—2yz)cosq)+ +Cie12“"’:| s

Ep; (¢) = MgR(1 - cos @) i

Ex(p) = Eki(p) + Epy(p) = 20R” cos” £

)

I+dp? 29
2

2
{(t 3u)sing — (1 - Zﬂz)cosgo + % + Cieﬂ“’”} +

+mgR(1-cosp)
For every separate branch of the phase
portrait, there is a graphic presentation of

alternation of Fy , Pﬂ , B, Ep and E from

the initial moment of motion until the
moment when heavy mass particles returns
into equilibrium position (Fig.14-18).

ey,

Legenda

py=-0.542 0 ) =0.785

1, =-,542 @, =0.785

1 K 0 [p 9) {7 1

AL IST

Fig. 15. Curve of
power alternation
P, as a function of

LA

Fig.14. Curve of
pressure force
alternation as a
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function of angle ¢

Ekip)a

angle ¢

Fig. 16. Graphic
presentation of kinetic
energy alternation in
plane

(Ek,p)

Fig. 17..
Graphic
presentation of
potential energy
alternation in

plane (Ep,¢)

Fig.18.Graphic  presentation of total

E{p) 4

0,27 Legemda

Q)lm

alternation in plane

mechanical energy
(E.p)

3.3.  Vibroimpact system based on
oscillator moving freely along circle rough
line

Heavy mass particle is moving
along circle rough line in vertical plane,
with sliding Coloumb’s type friction
coefficient p=tge,, with one elongation
limiter on the right side (Fig.19). The
limiter position is determined by the angle
0 measured from the equilibrium position
of heavy mass particle i.e. from the vertical
line driven through the center of the circle.

Fig. 19. System with one stabile elongation

limiter, based on oscilator with one pellet:

a* initial and derived position of the pellet;
b* force plan

For the complete description of the
dynamics of heavy mass particle there are
conditions matched to the differential (
double) motion equation:

a* initial conditions g, =¢, and

Py =%os

b* angular elongation limitation conditions,

and collision conditions

Py, =96, Podi, = Ky, »
i=123,.,n,

where: k- is impact coefficient within the

range from K =0, for ideal plastic impact,

to k =1, for ideal elastic impact; n- number

of impacts until the heavy mass particle

stopping on the circle rough line or to the

interval where heavy mass particle

continues to move without impact to the
limiter.
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Free motion of heavy mass particle along
circle rough line is divided into
corresponding motion intervals and sub
intervals limited by direction of the friction
force alternation.
The motion analysis is conducted by using
the phase trajectory equation (8) with
corresponding argument in dependance of
motion interval.
3.3.1 Grafic visualization of the phase
portrait of heavy mass perticle in the
observed vibro-impact system

Based on real values of kinetic and
geometry parameters of the system,

rad

5="lrad]) g, = % [rad} g, - 3,8[T} R = 0,5m]

oy =3,9 = 9,81{%},m =02[kg].

The phase portrait of heavy mass particle
moving along circle rough line is showed
(Fig.20.).

) A Nift=00p)

o Nl =(,8.9, )

[
TP

Noft=,.6.9 =)

Nt ={y,6.-,,)

Fig. 20. Phase portrait of heavy mass
particle moving along the circle rough line
with sliding Coulomb’s type friction

coefficient H=1Qa, with  limited

elongations in a plane (¢’¢)

For the selected initial conditions and
friction coefficient 3 (high degree of
resistance), in the observed case there were
one impact and one oscillation until the
moment of arrestment.

The conditions needed for the
heavy mass particle to have several impacts
into angular elongation limiter in the
observed vibro-impact system are:

P <0 and

,/2%(1—cos5) <y < \/4%—2%(1 —cosd)

It can be concluded that for the lower
friction coefficient and larger initial
velocity, there are larger number of impacts
and oscilations before the arrestment of
heavy mass particle along rough circle line.

In order to get better graphic visualization
of the motion analysis and energy analysis
of the observed vibro-impact system the
values for sliding friction coefficient will be

changed (instead of @ =3 there is

%o = 0’05) and also for initial velocity of
heavy  mass  particle (instead of

) rad . rad
weulS] e
S there is S ).

The rest of kinetic and geometry parameters
remained the same.

Fazni portret teSke materijalne
tacke koja se krece po kruznoj hrapavoj
liniji u ovom slucaju data je na (sl.21).

Fig. 21. Phase portrait of heavy mass
particle moving along rough circle line
with sliding Coulomb’s type friction
coefficient 1 =0,05with limited

elongations in a plane (¢, ¢)
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3.3.2 Graphic visualization of energy
analysis of the observed vibro-impact
system

By using the analytical expressions for the
peripendicular pressure force Fy; , power

originated of sliding Coulomb’s type
friction forceP,; of the heavy mass

particle on the parabolic rough line, kinetic
energy E,;, potential energy E 0, and total
mechanical energy E;,

Ei, (i=12,.n),

Fyi =mgcosp+mR-

[(]4—229)'?7 [cos((p +a,)-2tga, sin(p+ a )]+ Ce*2M% j, . I Pu )
s Reosay Fig.22. Curve of Fig. 23. Curve of

P.=— ‘Rpp=—, R- .
ui = HWRG =4 pressure force power alternation

| {7 \/ (14{_229)‘?7 SR } alternation as a P, as a function of
i ;
9%, Reosa function of angle ¢ angle ¢

1 . 1
Ek; () = Emszﬁ (0= EmRZ .

: [(l—zzgv [cos(p + @y ) - 2tgar, sin(p + a, )]+ C;e 729 ]
+4tg-a, Rcosa,

Epi(p) = ng(l - COoS ¢7) and L
Ei(@):EK((p)+EQ(¢)):%mRZ‘ . g |
[ 2 * [codpay)-2tgay sir(¢ia0)]+cie¥2¢19%]+

+mgF{1—cos¢).

For every separate branch of the phase
portrait, there is a graphic presentation of
alternation of Fy , Pﬂ, Ey, Ep and E from

the initial moment of motion until the o]
moment when heavy mass particles returns oS

into equilibrium position (Fig.22-26). ) ) ) .
Fig. 24. Graphic Fig. 25. Graphic

presentation of presentation of

kinetic energy potential energy

alternation in plane alternation in
(Ek.0) plane (Ep.¢)
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| E{g)

3 3
Legenda |7} —
- . |GD =
——————

.- @0 (&1

&=0.785

Fig. 26. Graphic presentation of total
mechanical energy alternation in plane

(E.o)

4. The application of vibro-
impact systems to the construction
of vibro-machines

Vibro-impact motion is necessary
for the technology process in many devices.
In the next paragraph there are presented
schematic presentations of vibro-impact
machines () for the conducting the
presented motion analysis and energy
analysis of the observed vibro-impact
systems  with  appropriate  graphic
visualization by the corresponding dynamic
models. It should be mentioned that this
paper represents the sequal of the paper in
reference [14], but with difference that the
paper referred to the straight line oscilator
which can be also included as a special case
of heavy mass particle motion along rough
curvilinear route ( the oscilation motion is
enabled by elastic spring force instead of

gravity).
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-
& 4 F 1 )
\& 2 3
il ©;
L 1
C 3
Fig. 34. Vibro-transporter
- - - ]
Fig. 31. Schematic presentation of the
. . . e [ 2
vibro-impact system with curvilinear - ®°
motion of heavy mass particle
1 i
- / e )
; I 7 11/1///; 2 i i
ﬂlg\lmlgl'{/-/%---'-' Fig. 35. Helicopter
, l‘\\"\\\ o -:-|'|=
N )
Ui /5 RS i i /

AN GE__ >
e \

a) :
Fig. 36. Manual vibro-impact hammer

f‘”l s

Fig. 32. The example of the mechanism for
technical realization in the constructions
such as elevators, holding tools etc.
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A,

Fig. 37. Fig. 38.
Vibroimpact Vibroimpact
Hammer platform

Fig. 39. Manual stroke-rotary hammer

m, |54

X,

m, E

Fig. 41. Vibro-rammer

5. Concluding remarks

Non-linearity of the observed
vibro-impact systems originate by the
discontinuity of heavy mass particle angular
velocity moving along rough curvilinear
routes. Discontinuities of the angular
velocity occure at the moment of impact of
heavy mass particle into angular elongation
limiters set on the right and on the left side,
at the moment of direction alternation of
motion of heavy mass particle (when the
alternation  occures) causing angular
velocity and friction force alternation. This
non-linearity is described mathematically
for heavy mass particle by regular
differential equation, more precisly by the
second member, representing square
angular velocity of generalized

coordinate > . This corresponds to the case

known in literature as a case of ,,turbulent®
damping.

It should be pointed out that in
observed vibro-impact systems there are
trigger coupled singularities, ie.
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phenomena of bifurcation of equilibrium
positions, because of the influence of
sliding Coloumb’s type friction force and
angular velocity direction alternation.

For  considered  vibro-impact
systems there is a common conclusion that
non-impact motion  represents  free
supressed oscilations of the dynamic system
with one degree of freedom. Rough
curvilinear lines are mutual detaining bond.
Free oscillations of heavy mass particle
along rough curvilinear lines, representing
vibro-impact systems are divided into
corresponding motion intervals and sub-
intervals. Each interval or sub-interval are
matched to differential motion equation
from the group of regular homogenous non-
linear differential equations.

Differential  (double)  motion
equations for correspponding interval and
sub-intervals are coupled with initial
motion conditions, imact conditions into
elongation limiters and direction alternation
conditions, which cause alternations of the
friction force direction.

By analytic solving of differential
(doble) motion equations, the analytical
expressions for phase trajectories in
plane( ,(p), are made, which are necessary

for energy analysis, together with equation
of curves of mechanical dependance for the
energy analysis of the dynamics of vibro-
impact systems.

The authors presented a good
quality graphic visualization of the curves
of alternations of the components of
mechanical energies of vibro-impact system
dynamics and motion analysis of
representative point of system kinetic state
during the kinetic (dynamics), by
application of the analytical expressions
and software package MathCad and user’s
package CorelDraw.

By the phase portraite analysis and
graphic of kinetic energy Ey, potential

energy Ep, total mechanical energy E,

Pressure force Fy and power originated of

the sliding Coloumb’s type friction force
alternations, for all examples of free motion
of heavy mass perticles along rough
curvilinear lines, with one degree of
freedom, it can be concluded:

The perpendicular pressure force
on rough parabola, cicloid and circle line
doesn’t change its value.

* In the moment of impact of
heavy mass particle into elongation limiter (
any position), when the impact is ideal
eleastic, the intensity of motion velocity is
not changed.

* In the state of heavy mass
particle direction alternation, the velocity is
equal to zero. .

In the case of mutually retaining
bond in the point of alternation pressure
force has local  minimum, and
corresponding friction force alternates its
direction.

The friction force direction is

altered: in the point where angular velocity
of heavy mass particle is equal to zero and
at the point of impact of heavy mass
particle into elongation limiter.
Power alternation, due to sliding friction
Coloumb’s type force follows the graphic
of friction force alternation, but the power
is always with negative argument and in the
following representative points has lower
values ( decreasing from the higher lewel to
the lower level). In heavy mass particle
motion along rough curvilinear lines with
elongation limiters, assuming that the
impact is ideal elasctic, from the initail
moment to the moment when the particle
returned  into  equilibrium  position,
maximum value of power of sliding
Coloumb’s type force decreases constantly,
no matter how many degrees of freedom are
there in the observed system.

Kinetic energy, depending
explicitely of angular velocity of heavy
mass particle, permanently changed and its
maximum value in the sequence motion
intervals is decreased.
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Potential energy depends of
elongation, identical for all identical motion
intervals, due to the fact that it depends of
heavy mass particle weight and generalized
coordinates, and the impact doesn’t have
influence to the potential energy, for it is
due to the action of the conservative forces
to the system.

Total mechanical energy of the
system is constantly decreasing, i.e. in
every following motion interval, the total
mechanical energy of the system dynamics
has lower value ( at the point of impact into
elongation limiter and point of angular
velocity alternation).

In the fourth section of this paper,
there is presented a series of models of
technology processes, with real engineering
constructions. The selected models are
characteristic, presented in scientific
monographies of the leading scientists and
researchers from the field of vibro-impact
dynamics. In every real model, the motion
and energy analysis of the corresponding
vibro-impact system can be done, by
application of the methodology presented in
this paper, being continuation of the
author’s own research presented in
reference [14].
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A NEW DIRECT TIME INTEGRATION METHOD FOR THE
EQUATIONS OF MOTION IN STRUCTURAL DYNAMICS

John T. Katsikadelis

Institute of Structural Analysis and Aseismic Research

School of Civil Engineering, national Technical University of Athens
Zografou Campus, 15773, Athens, Greece

e-mail: jkats@ central.ntua.gr

Abstract. A direct time integration method is presented for the solution of the equations of
motion describing the dynamic response of structural linear and nonlinear multi-degree of
freedom systems. It applies also to equations with variable coefficients. The proposed
method is based on the concept of the analog equation, which converts the coupled N
equations into a set of single term uncoupled second order ordinary quasi-static differential
equations under appropriate fictitious loads unknown in the first instance. The fictitious
loads are established from the integral representation of the solution of the substitute single
term equations. The method is simple to implement. It is unconditionally stable and
accurate. Several examples are presented, which demonstrate the efficiency of the method.
The method can be extended to equations of order higher than two.

1. Introduction

In dynamic analysis the equations of motion are obtained by considering the dynamic
equilibrium of the external, internal and inertia forces, namely

£,(t) + o (t) + £5(t) = p(t)
which may be written as
Mii + f, (1) + f5(u) = p(?) (D

where f;(t) = Mii are the inertia forces, f,(t) = f,(u) the damping forces, f5(t) = fs(u)
the elastic forces and p(t) are the external excitation forces; u = u(t) is the displacement
vector. The problem consists in establishing the time history u=u(f), where
t €[0,T], T > 0, satisfying Eq. (1) with the initial conditions

The forces (1) and f5(u) are in general non linear functions of their arguments. For

linear problems they are given as f,,(¢) = Cu and fs(¢) = Ku and Eq. (1) becomes

Mii + Cu + Ku = p(t) (3)
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where M, C and K are the mass, damping and stiffness matrix of the structure,
respectively.

In the last fifty years, significant advances have been made in the development and
application of numerical methods to the solution of the equations of motion governing the
dynamic behavior of structural systems. Many methods have been proposed either in the
time or in frequency domain. The reader is advised to relevant literature, where extensive
surveys of the various numerical solution methods and computational procedures for linear
and nonlinear structural systems subjected to dynamic loads are presented, e.g. Hughes [1],
Dokainish and Subbaraj [2], Subbaraj and Dokainish [3].

In this paper a new direct time integration method is presented based on the principle of the
Analog Equation [4]. According to this principle the system of the N coupled equations of
motion, linear or nonlinear, are replaced by a set of uncoupled linear single term quasi-
static equations each of which includes only one unknown displacement and are subjected
to appropriate unknown fictitious external loads. These fictitious loads are established
numerically from the integral representation of the solution and the requirement that the
equations of motion are satisfied at discrete times. The method is easy to implement.
Numerical examples, including linear as well as non linear systems, are treated and the
results are compared with those obtained by exact or other numerical methods. The method
is accurate and unconditionally stable. The solution applies also to equations with variable
coefficients as it is the case of time dependent mass, damping or stiffness.

2. The one-degree-of-freedom system

2.1. The AEM solution

For the linear one-degree-of-freedom system the initial value problem (2), (3) becomes

mii + ct + ku = p(t) (4)

w(0) =uy, w(0) =1 ®)
Let u = u(t) be the sought solution. Then, if the operator d* / dt’ is applied to it we have

i = q(t) (6)

where ¢(t) 1is a fictitious source, unknown in the first instance. Eq. (6) is the analog

equation of (4). It indicates that the solution of Eq. (4) can be obtained by solving Eq. (6)
with the initial conditions (5), if the ¢(t) is first established. This is achieved as following.

Using the Laplace transform method we can obtain the solution of Eq. (6) in integral from

u(t) = u(0) + a0}t + [ a(r)(t —7)dr ™

Thus the initial value problem of Egs (4), (5) is transformed into the equivalent Volterra
integral equation for ¢(t).
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‘ \ }/_u | t
d—hF—hF—h T —hF=h—A—h—~h——h—~h=Fh—h—
T = Nh

Figure 1. Discretization of the interval [0, T] into N equal intervals h = T’ / N
Eg. (7) can be solved numerically within a time interval [0,7'] as following.

The interval [0,T] is divided into N equal intervals At =h, h=T /N, in which ¢(¢)
is assumed to vary according to a certain law, e.g. constant, linear etc. In this analysis ¢(t)
is assumed to be constant and equal to a weighted value in the interval A . That is

¢ =aq. + g, ®)
where «, 3 are constants satisfying a constraint of the form
fle.p) =1 €)

The values of these constants influence the stability, the convergence and the accuracy of
the resulting numerical scheme.

Hence, Eq. (7) at instant ¢ = nh can be written as

U, = Uy + nhi

h 2h nh (10)
+ [ql j; (nh —7)dT + g3 j; (nh —T1)dT + -+ qn j;H)h (nh —T)dT
which after evaluation of the integrals yields
n—1
u, = Uy + nhiy + 012[2(71 —r)+ 1]q§“ + ¢iq,
":171 (11)
= U1 + hily + 2012 g +ag)
r=1
where
h2
¢ =— 12
1= (12)

The velocity is obtained by direct differentiation of Eq. (7) making use of the Leibnitz rule
for the integral. Thus we have
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u(t) = +u(0) + j; q(T)dr (13)
Using the same discretization for the interval [0,T] to approximate the integral in Eq. (13),
we have
n—1
un = 1}'0 + Co q:n + C?q:Ln
; (14)
= unfl + CQq;”
where

n—1
Solving Eq. (14) for Z ¢, and substituting in Eq. (11) gives

r—1
u =u _ +hi —cq” (16)
By virtue of Eq. (8), Eqs (16) and (14) can be further written as
Bag, — hi, +u, = —acq, 1 + U, 17)
=By, + Uy = Ty 1 + G, (18)
Moreover, Eq. (4) at time ¢ = nh is written as

mqn + Cun + kun = pn (19)

Eqgs (17), (18) and (19) can be combined as

m c ki|q, 0 0 0|q,, 1
Be, h 154, —ac, 0 1]3a, ,t+40 P, (20)
—Bc, 1 0f|u, ac, 1 Offu,_, 0

Since m = 0, the coefficient matrix in Eq. (20) is not singular for sufficient small ~» and

the system can be solved successively for n = 1,2,... to yield the solution u, and the

derivatives u,, i, = ¢, at instant ¢{ = nh < T . For n = 1, the value ¢, appears in the

right hand side of Eq. (20). This quantity can be readily obtained from Eq. (4) for ¢t = 0.
This yields

qo Z(po—cdo—kuo)/m (21)
Eq. (20) can be also written as

U, =AU, , +bp,, n=12..N 22)
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in which

1 2w @' 0 00

dn
U =li, A=| B —-h 1 —ac, 0 1 (23a.b)
u —Bc, 1 0 ac, 1

1 2w W’ 1
b=| g —n 1| Jo (23¢)
—fBe, 1 0 0

where P, = p, /m; w=+m/k is the eigenfrequency and & = ¢ /2mw the damping
ratio. The recurrence formula (22) can be employed to construct the solution algorithm.
However, the solution procedure can be further simplified. Thus, applying Eq. (22) for
n =1,2,... we have

U =AU, +bp,

U, = AU, +bp,
= A(AU“ + bf)l) +bp,
= A’U + Abp, +bp,

U =A"U, + (A”’lg_y1 + A”’QE —|—...A°‘5n)b

24

Apparently, the last of Eqgs (24) gives the solution vector U, at instant ¢, = nh using only

the known vector U, at ¢ = 0. The matrix A and the vector b are computed only once.

2.2 Stability of the numerical scheme

The matrix A is the amplification matrix. In order that the solution is stable A" must be
bounded. This is true if

timA" =0 (25)

n—00

which is satisfied if the spectral radius of A
p(A) = max{|p |,] o || ps|} <1 (26)

If p(A) <1 the method is strongly stable.
We examine the case where Eq. (9) is of the form o + 3 = 1, that is the constraint is
linear. The eigenvalues of A are

p=0 (27a)
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42— DsE+4-s* sy 16(1— €7) — 8sE(1 — 2b) — 5*(1 — 2b)°

= (27b)
4 +2bs® + 80 4 4 2bs” + 80s¢
, _dob-msera-s sy 16(1— €7) — 8s¢(1 — 2b) — 5*(1 — 2b)° 279
P 41 2bs? +80s¢ 4+ 2bs® + 8FsE
where it has been set s = hw .
1.4
1.2
1
<
“ o038 |
0.6 \ i \ ‘
964 05 06 07 08 09 1
B
Figure 2. Spectral radius p(A) versus parameter (3 for various values of § = hw (£ = 0).
We distinguish the following cases
(i) € = 0. It can be shown that for 5 =1/2 we have
2] =[ps| =1 (28a)
while for 3>1/2
|p2| =]ps| <1 (28b)

This is shown in Fig. 2.

(i1) 0 < £ < 1. Fig. 3 shows the variation of the spectral radius versus the values of 3 for
various values of & . We see that for £ > 0.125 the method is strongly stable for any value
of 8 in the interval [0,1]. Apparently, for a given set of values of s and ¢ a region of
values of 3 can be established for which strong stability is ensured.
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1.15

Figure 3. Spectral radius versus parameter 3 for various of the damping

ratio £ (s = H).
2.3 Error analysis and convergence

The error is due to the approximation of the integrand in the integral of Eq. (7) in the n
integration interval [(n — 1)h,nh]

ﬁ t f()dr, t =(n—1h t =nh (29)
where

fr) =q(r)(t, —7) (30)
which in this analysis is approximated as

f@)=q"(t, =) (31)

Expanding f(7) and f(7) in Taylor series at T = t, and evaluating the integral of
f(r)— f(7) in the interval [t ,t,] we find

2

[ 1760 = Frdr = (g, — )W +(a, —, + q?)%
) (32)
:§ mh2

g b

Therefore the convergence of the algorithm is O(h*).

2.4 Accuracy

For free vibrations, the numerical solution can be written in terms of the eigenvalues
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u, = epy + e (p, = 0) (33)

It can be shown that for 0 < § <1, 0.5 < 8 <1 and 0 < s the eigenvalues p,,p, are
complex conjugate and the solution of Eq. (33) can be written as

u, = 7" (c, sinnd + c, cosnb) (34)

n

where r =+/a® +b0*, O =tan'(b/a), a =Re(p,), b=1Im(p,)

The corresponding exact solution is given as
u =e (g sinw,t +e coswt), w, =1-E&, t =nh (35)

0.3

0.2+-|7" p=06| _______'“ ____‘_____ m

0.1r-

period elongation %

Figure 4. Period elongation versus § for various values of the parameter (§ = 0).

Comparison of these two solutions could show the accuracy of the numerical scheme.

However, to avoid a rather complicated investigation, the period elongation and the

amplitude decay of the free undamped vibration can be defined as measures of the relative

accuracy. Thus, if T and T are the exact and the approximate periods, respectively, we
define the period elongation

T-T s

e =— = — — ]_ 36

» T 7 (36)

Fig. 4 shows the dependence of the period elongation on s = wh for various values of 3 .

Apparently, s should be small to avoid period elongation. Since for § =0, 5 =1/2 itis

|p2r: |p3| =1, we obtain r" =1. Thus, there is no amplitude decay, provided that

B=1/2.

2.5 Numerical examples

Following the steps of the previous solution procedure a MATLAB program has been
written and various example problems have been solved.
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Displacement u(t)

10

e computed
exact H

— error x 10°

20 T T T T
| | |  computed
150 - - — — — — U e —— - - — = exact
| | | error x 10°
10— - —§ 4 - -4 - — - - - - — - - _ _
| | | |
| | | |
5+ — - 4 — | - — — — = — L [ [
| | |
| |
o Ly N, G 2 —
| |
| | | |
5+ — I JSNY S - [ S— L L __ ¥
| | |
| |
10+ - - - - — - - - M -
| | |
I | | |
-15+ — e | - - - — — - _ Lr______
| | | |
| | | |
20 | | | |
5 10 15 20 25
t
Acceleration u,(t)
30 T T
| « computed
exact
20 e

10

—error x 10°

10 15 20 25

Figure 5. Displacement, velocity, acceleration and respective errors in Example 1, Case (i)
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Example 1. Free and forced damped vibrations. Error discussion

Eq. (4) has been solved with data: m =1, { =0.07, w=2, u, =1, 4, =20, T =25,
h=1/500, 8 =0.5.Case (i) p(t)=0; case (ii) p(t) = p H(t), p, =10; H(t) is the
Heaviside function.

The analytical solution is

u(t) = Msin wpt + u(0)cosw, t|e
wD
—i—& 1—|cosw, t+ ¢ sinw tle ™ 37
D D
k 1-¢

where w, = wy1— £ . Fig. 5 and Fig. 6 show the obtained solution together with the error
e=u—u,  for the two load cases. Moreover, in Fig. 7 the variation of the computed
error e =e(h), h(k) =1/500k, k=12,...,8 has been plotted, which verifies that the
convergence is of O(h%) .

Displacement u(t
1 p ©

e computed
FL O o S e iy M exact

error x 10°||

AN o N M O @

Figure 6. Displacement and error in Example 1, Case (ii)

- 10° case (i) , X,lpls, - ?ii??, (7||7)7‘ 777777
i e computed ) i ® computed
2% - - :’ - —expected e=c*h? 1.5\ - :, _ | — expected e=c*h?||
| |
|
|

error

Figure 7. Computed and expected error € = e(h) in Example 1; h(k) =1 / 500k, k =1,2,...,8

e=ch’, c=e)/h(1).
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3. Variable coefficients

So far we have developed the method for the solution of the equation of motion with
constant coefficients. Obviously, if the coefficients m,c and k are functions of the
independent variable ¢, the previously described solution procedure remains the same
except that the elements m,c,k in the first row of the coefficient matrix in the left hand
side of Eq. (20) depend on time. Therefore, this coefficient matrix in the respective solution
algorithm must be reevaluated in each step. In the following, the efficiency of the method is
demonstrated by solving an equation with variable coefficients.

Displacement u(t)

0.8

0.6

e computed
exact

—error x 10°

0.4

0.2

-0.2

-0.4

-0.6

-0.8

Figure 8. Solution % and error ¥ — u, . in Example 2.

act

Example 2.
We consider the initial value problem

(14 £2)ii 4t + ey = p(t), (38)

where
p(t) = —0.01e ""[(99 + 10t 4+ 99¢>) cos t 4 (—20 + 100t — 20¢*)sin t — 100e/"*" cos t)].

The equation admits an exact solution u_ ,(¢) =e ""cost. The solution for 7' =20 is

shown in Fig. 8 as compared with the exact one.

4. Multi-degree-of-freedom systems
The developed solution algorithm can be applied to systems of N linear equations of

motion describing the response of multi-degree-of-freedom systems. The initial value
problem is described by Eq. (3) with initial conditions (2)
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The solution procedure described in Section 2 may be also applied to this case provided that
the coefficients m,c,k and the quantities wu,%,v ,u ,q ,p, —are replaced with the

coefficients matrices M,C,K and the vectors u ,u ,u ,u ,q ,p, , respectively, and the

scalar operations by matrix operations. Thus Eqgs (17), (18) and (19) become

M C K 0 00
c n c qn—l I
?I —hl I|{u t=|-=1 0 I|{u _ t+{0{p, (39)
C u C u,_, 0
9 n 9 n
-——=I 1 0 =I I 0
2 2
q,=M"(p, —Cu, —Ku,), det(M) = 0 (40)

Eq. (39) is solved for n = 1,2,...

20

T T T

| | | °

‘ ‘ ‘ computed
| | |

15

10

-10

-15
0

Figure 9. Solution u = {u,

u3}T in Example 3.

2

Example 3.
We consider the initial value problem for the system of three equations

52 10 20 ||, 31.3093 26.0236  72.3331 ||

1

10 150 30 |y, +1{26.0236 176.1373  60.5706 |{ ,
20 30 441 |u, 72.3331  60.5706 579.9713| | uw,

1472 407 5553 ||u 1

1

+/407 1001 4154 |Ju,} = {1}10H(1)
5553 4154 43516||u,| |1

(41)
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with initial conditions
u ={-10 1 5}, u,={0 50 20}" (42)

A proportional damping matrix C has been constructed with modal damping coefficients
§ =0.3,§ =0.05 ¢ =0.09. This ensures orthogonality of the damping matrix with
respect to the modes ¢, of the free undamped vibrations. Thus the exact solution can be
obtained using the modal superposition method. Results for 7" = 5 are shown in Fig. 9.

5. Nonlinear equations of motion

The solution procedure developed previously for the linear equations can be straightforward
extended to nonlinear equations.
The nonlinear initial value problem for multi-degree of freedom systems is described as

Mii + F(i,u) = p(t) (43)

u(0)=u, u0)=u

- o

(44)

0

where M is N xN known coefficient matrix with det(M)=0; F(a,u) is an
N x 1vector, whose elements are nonlinear functions of the components of w,u; p(t) is

the vector of N given load functions and u, 0, given constant vectors.

The solution procedure is similar to that for the linear systems. Thus Eq. (43) for t = 0
gives the initial acceleration vector

q, =M"[p, —F(u,u)], q, =i (45)
Subsequently we apply Eq. (43) for ¢t =1
qu + F(l.ln7 un) = pn (46)

Apparently, the second and third of Eqs (39) are valid in this case and can be written as

C
—nn qfa ] fo 1ffa,,] | T T
= + q, + q, (47)
I O0ffu I 0|u C. n c n
n n—1 __21 _QI
2 2

Eqgs (46) and (47) are combined and solved for q ,u ,u with n =1,2,... ..

n?

Example 4.

The method is employed to solve the initial value problem for the Duffing equation
i +0.20 4+ u + u® = p(t) (48)
w0)=0, 4(0)=1 (49)
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For p(t)e [(£* sint —2€ cost —sint) — C(Esint — cost) + Bsint + Ae > (sint)’]
Eq. (48) admits an exact solution u__ (t) = e "'sint. The solution for 7' =25 is shown
in Fig. 10.

1

===Computed
— Exact

—error X10°
06-f - 4-———FH— T

0.8

04H-- -y - -—-+r-——-—4/-§y\-—"-"1-———————1-———— - —
02ff-A-4- - - "¢ -——-——-———-F-N"~"""""“"""-"—=—----—4

0
02F- -\ A/ N L]
04 ——— - o

] N

08 25

Figure 10. Solution % and error U — U

in Example 4.

exact

Example 5.
In this example we solve the initial value problem
.. 1 1
mlyii + FAu|2 — — =0 (50a)
J2 (116 —v? a2+ 1+ 6 +0)
miyi+ EA|2v+ ——1F% v I+hFv [ (50p
V22 (146 —0) N2+ 1+ & +v)

u(0) ~]0.066 4(0) 0 51)
v(0)[  0.050[" |o0) |0
The employed data are: A =3.14cm®, I, =3.00m, m = 3kNm'sec?,

g =9.81m/sec’, & =0.065m, EF =2x10"kN/m®. Fig. 11 shows the time

histories of u(t)and v(t) as compared with those obtained with the mean acceleration
method.
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| |
—u (present \ |
0.1F---- (P ) . i -
* u (mean accelaration) | |
| |
------ Vv (present) | |
= v (mean accelaration) | |
| | | |
0.05% -~ A A U A U A s U U s
L4 Y i [ I A L
4 y [ / g i
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\ ! i ! Vo H [ \ 4 !
(I SR A O SR SR RO B WY AR VT W T |
4 ! B ! Y ! 4 ! \ i i !
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‘. N
\ / |
-0.05F -4 -4 >
I i} I
| | |
| | | |
1 1 1 1
0 0.2 0.4 0.6 0.8 1

Figure 11. Displacements U(t) and U(t) in Example 5

6. Conclusions

An integral equation method has been developed for the numerical solution of second order
linear and nonlinear differential equations. The coefficients may be variable. The resulting
numerical scheme is applied to the solution of the equations of motion arising in structural
dynamics. The method is simple to implement. It is unconditionally stable and accurate.
Several examples are presented, which illustrate the method and demonstrate its efficiency.
The method can be readily extended to equations of order higher than two.

References

[1] Hughes TJR (1987) The finite element method, Englewood Cliffs, NJ, USA: Prentice
Hall Inc.

[2] Dokainish MA and Subbaraj K (1989) A Survey of Direct Time-integration Methods in
Computational Structural Dynamics, Computer and Structures, 32, pp.1371-1386.

[3] Subbaraj K and Dokainish MA (1989) A Survey of Direct Time-integration Methods in
Computational Structural Dynamics, Computer and Structures, 32, pp. 1387-1401.

[4] Katsikadelis JT (1994) The Analog Equation Method - A Powerful BEM-based
Solution Technique for Solving Linear and Nonlinear Engineering Problems. In:
Brebbia C.A. (ed.), Boundary Element Method XVI, pp.167-182, Proceedings of 16th
International Boundary Element Method Conference, Southampton, UK, July 12-15,
Computational Mechanics Publications.

1236



Third Serbian (28" Yu) Congress on Theoretical and Applied Mechanics
Vlasina lake, Serbia, 5-8 July 2011 M2-15

BRACHISTOCHRONIC MOTION OF A VARIABLE MASS
SYSTEM

A. Obradovié¢', S. Salini¢?, O. Jeremi¢', Z. Mitrovi¢'

' Faculty of Mechanical Engineering,

University of Belgrade, Kraljice Marije 16, 11120 Belgrade 35
e-mail: aobradovic@mas.bg.ac.rs

2 Faculty of Mechanical Engineering

University of Kragujevac, Dositejeva 19, 36000 Kraljevo
e-mail: salinic.s@ptt.rs, salinic.s@mfkv.kg.ac.rs

Abstract. A mechanical system consisting of rigid bodies and material particles, of which
some particles are with variable masses, is considered. Laws of variation of the masses of
the points and relative velocity of particles separating from the points are well-known. The
system is moving in an arbitrary field of known potential and nonpotential forces. Applying
Pontryagin’s Maximum Principle and singular optimal control theory, brachistochronic
motion is determined. A two-point boundary value problem, due to nonlinearity of equations
in a general case, is needed to be solved using some of the numerical procedures. Here the
Shooting method is used, where the missing boundary conditions are chosen so as to be the
physical variables (velocity and mass). The field where they are found can be approximately
estimated, which is not the case with the conjugate vector coordinates being of purely
mathematical nature. The paper also presents the manner of brachistrochronic motion
realization without the action of active control forces. It is realized by subsequent imposition
to the system a corresponding number of independent ideal holonomic mechanical
constraints. The constraints must be in accordance with the previously determined
brachistochronic motion of the system. The method is illustrated by an example of
determining the brachistochronic motion of the system with three degrees of freedom and
method of its realization. The system consists of one rigid body to which two points of
variable masses are attached, where the system is moving in a vertical plane.
Brachistochronic motion is realized by the help of two ideal holonomic constraints.

1. Introduction

The problem of a brachistochronic motion of mechanical systems is a very topical area of
research as evidenced from literature cited. Research is inspired not only by the expansion
of existing fundamental knowledge in this area, but also by various engineering
applications (see e.g., [1-7]). Thus in [8-16] the brachistochronic motion of a particle in the
presence of resistance forces (forces of dry friction, viscous friction) is analyzed, while in
[6,17,18] the brachistochronic motion of a particle on a surface is considered. In [18] it was
shown that results from [8,10,13] represent special cases of the brachistochronic motion of
a particle on a surface. Note that in [6] the problem of optimization of a bobsled travelling
on a path was solved as the problem of a brachistochronic motion of a particle on a surface,
whereas [7] considers the brachistochrone problem for a steerable particle moving on a 1D
curved surface

with application to ski racing. The next important group of references comprises the papers
that consider the problem of brachistochronic motion of a rigid body [1-3,5,19] and system
of rigid bodies [21-23]. Furthermore, in [24-27] the brachistochronic motion of mechanical
systems with nonholonomic constrains is analyzed. Also, a certain number of references
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can be singled out [14,28-31], where the solution of the classical brachistochrone problem
(cycloid) was used with the aim of testing various numerical methods in solving nonlinear
engineering optimization problems. References [32,33] consider the problem of
brachistochronic motion of a variable mass particle.

This paper considers the mechanical systems that consist of constant-mass rigid bodies and
variable-mass particles. It is started from the assumption that such mechanical systems are
moving in the arbitrary field of known potential and nonpotential forces. Pontryagin’s
Maximum Principle [34] and singular optimal control theory [35] is applied in solving the
brachistrochrone problem. Considerations in this paper represent a continuation of research
commenced in paper [27].

2. Problem statement

The motion of mechanical system with n-degrees of freedom within which there are /¢
variable-mass particles is considered. The system configuration is determined by

generalized coordinates G:(ql,qz,...,q”). Laws of variation of the masses are well-

known:

m,=m,t), p=L...0 (D
as well as relative velocity of particles separating from the points

grel _ orel = =

Vp = p (q3q7t)9 pzlb"')g' (2)

Since the system motion is under the imposition of holonomic scleronomic mechanical
constraints, kinetic energy has the form

T:%%dqt i,j=1...,n (3)
where covariant coordinates of metric tensor, taking into account (1), are

a;; = &;(T.1), i,j=L...,n “)
Let the system move in the field of known potential forces with potential energy

I =T11(@,1) (%)

and let the system be also acted upon by arbitrary known nonpotential forces, whose
generalized forces are

QiW:QiW(q_sq;st)a i:1,...,n. (6)

Differential equations of motion of such variable-mass system in the form of Lagrange’s
equations of the second kind [36] have the form

d or oT oIl w var c
G g e QAT %

where generalized forces Q" have the following form
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: R
QU (@G, = Y, (V, + V" )ﬁ ()
p=1

while Q represent generalized control forces. Their determination represents an essential

part of solving the problem of brachistochronic motion of the mechanical system. They can
be generalized active forces and/or reactions of constraints, depending on the manner of
brachistochronic motion realization. In accordance with the original postulates of
brachistochronic motion [20] their power equals zero

c4' =0, i=1...n. ©9)

Thus based on (3), (7) and (9), there exists linear dependence of the second derivatives of
generalized coordinates

. i 0T on var i
auq’q'=(—auq‘+6—qi—a—qi+QiW+Qi Jq', i,j=1,..,n. (10)

Let the initial values of generalized coordinates and total mechanical energy of the system
be specified

ty =0, Tq(ty) =To, T(ﬁoﬁoﬁo)*'n(qo»to):lzo (11)
as well as terminal values of generalized coordinates at unknown instant of time t

ﬁ(t1)=ﬁl- (12)

Solving the problem of brachistochronic motion of a variable-mass mechanical system,
whose differential equations are (7), consists in determining the control forces

Qf =Qf (t) and the system motions corresponding to them, so that the system transfers for
the shortest time from the state described by (11) into the state described by (12).

2. Brachistochronic motion as a problem of optimal control

Linear constraint (10) allows for another derivative of generalized coordinate to be
expressed via the others. Let it be, without limiting the generality

4" =®+dG° s=1...,n-1 (13)

where:

. .j . OT ol var |4
[—aijqj+—-+QiW+Qi ]ql

. 6 i a ]
O(T.G.t) = 1A ,
ainq
p— . .s
OG0 =—B9 i j=1,.n s=1,..,n-L. (14)
ainq

Introducing the control
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u®=g° s=1..,n—-1 (15)

differential equations of the first kind in the problem of optimal control can be,
incorporating the rheonomic coordinate, written in the form

qi:yi7 qn+1:la ys:USa yn:q)+q)5us' (16)

Taking into account the form of functional in a time minimization problem
J= jdt, (17)

In solving the problem by the help of Pontrryagin’s Maximum Principle [34], it is necessary
to form Pontryagin’s function

H=2+ A4y +xUs +x,( @+ DU+ A,,,, i=1..,n s=1..n-1 (18)

where A,, A, A,.,and x; are coordinates of the conjugate vector. A costate system of
differential equations corresponds to them

- m__Kn(a_@+6®susJ

- oH oD oD _ 19
ln+1:—W:—Kn(m+ﬁus] ( )
Vi =—$:— i—zcn[%+ g)isus} i=1...,n, s=1,...,n-1

Pontryagin’s function (18) depends linearly on the control
H=H,+Hu* s=1,...,n-1 (20)

In the optimal control theory such case is referred to as singular [35] because the
corresponding condition of a maximum principle

oH
ou’®

H,=0 s=1,...n-1 1)

does not allow for determining the optimal controls. Instead, one obtains a constraint
between parts of the conjugate vector coordinates

Ky = —Kk,Dg s=1L...,n-1 22)

In order to determine optimal controls, it is necessary to further differentiate the relation
(21) with respect to time in accordance with (16) and (19). Applying the formalism of
Poisson brackets [36]

Hy ={H,H }={H,,H}+{Hs,H, Ju? =0, s,z=1,...,n—1 (23)

and taking into account the fact that for multidimensional singular controls [35]
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{He,H,}=0, s,z=1,....,n—1 (24)
it is obtained that
{Hy,Ho}=0, s=1,...,n-1 (25)

From (25), taking into account (22), another constraint between the coordinates of
conjugate vector can be established

A =4,(Q,¥,t,4,,5,) s=L...,n-1 (26)
Further differentiation yields:
{{Hs,Ho}, Hod + {{H, Hol, H,Ju? =0, s,z=1,...,n~1 27)

Limiting to the singular controls of the first order [35], the linear system of equations (27)
using the relations (22) and (26) yields optimal controls

u® =u’(q,V.t,4,5,), S=1...,n—1 (28)

Substituting (28) in (16) and (19) one obtains the system of (2n+2) differential equations of
the first kind in normal form

q' =6'@. V.t Aoy,

yl = yl(qﬁyatyﬂ'na’(n)a (29)

An =A@ V.0 4, ),

kn :K..n(q’yat’ﬂnaKn)’ izla'“,n
where differential equations, whose solutions are (22) and (26), were eliminated from (19).
In a general case, due to nonlinearity (29), a two-point boundary value problem should be
solved by applying some of the numerical methods. If the Shooting method is used [37], it
is necessary to adjust the choice of the missing boundary conditions such that one can
approximately estimate their field. In this regard, it should be avoided, whenever it is
possible, having any of the coordinates of conjugate vector among them, because they are
of purely mathematical character and as such difficult to estimate the field. Therefore, it is
suitable here to perform backward numerical integration in the interval [t,,t;]. At terminal

point the maximum principle can be utilized for the case of unspecified interval [t,,t;]
H()=0 (30)

Since final velocities yi (t,) are not specified, nor is the rheonomic coordinate q"*! (t,), it
follows from the transversality conditions that:
Kt)=0,i=L...,n, A, ,({)=0 (31)

Taking into account that 4, = —1 (according to the maximum principle A, =const<0) as

well as the relations (12),(18),(26),(30) and (31), it is possible to establish in the analytical
form the dependence

An(t) =2, (Y1,1) (32)
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which, along with the fact that
Kn(t) =0 (33)

completely excludes the necessity to estimate the fields for A,(t;) and  x,(t)in

backward shooting procedure.
The backward shooting procedure consists of choosing n+1 values of generalized velocities

yi(tl) and duration t; of the time interval [t,,t;], so that n+1 values (11) of generalized

coordinates and mechanical energy are shot.
There remains the discussion on transversality conditions at the initial point:

2i (1) (t)) + i ()Y (tg) + Any ()™ (t) =0 i=1...,n.  (34)
Based on specified values (11) it follows

&'(t) =0, O™ () =0, ayty)y'(ty)d' t)=0, ji=1...,n.(35)
Substituting (14) in (22), it is obtained

K (1) (ty) = K (t) 3y (1) Y (t)F' (t) i, j=1....n . (36)

Directly substituting (35) and (36) in (34), it is evident that transversality conditions at the
initial point are satisfied. Numerical solving of the system (29) yields

T=01). T=q1, 4y =4 (1), & =5,(1) (37)
and based on (13), (28) it is also obtained

q=ae) (38)
which enables too final determination of the control forces (7)

Q=07 (39)

Control forces (39) can be realized in various ways, combining active forces and/or
reactions of constraints. The most approximate to the original brachistochrone problem is
realization of motion by subsequent imposition to the system a corresponding number of
independent ideal stationary constraints, without the action of active forces. The constraints
must be in accordance with the brachistochronic motion (37).

Let the ideal holonomic stationary independent constraints, in accordance with (37), be
imposed to the system

S
P* (@ =0, rank{zii}:n—l, s=1..,n-1 (40)
q

In that case, generalized control forces read

Q= 2P, i=in s=l...n-I (1)
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where from, if necessary, based on (37), (39) and (40), multipliers of constraints can be also
determined

M =ps () s=1...,n-1 (42)

More information on such manner of control can be found in []. The form of constraints
(40) is most often chosen to be performed by the simplest construction. One of the manners
for the case of motion control of mechanical systems, especially of a rigid body, is
imposition of guides to the specified number of particles whose motion is determined by
numerical relations.

3. Example

The rod AB of mass m, of length 2/ and radius of inertia i, = ¢ moves in a vertical plane,
where the Oy axis is directed upward (see Fig.1).

o
\F®

Figure 1. Variable-mass mechanical system

At both ends of the rod there are two variable-mass points, whose masses change according
to the Law

My (t) =mg(t) =m—kt (43)

wherek =const >0. The particles are separating by relative velocities of constant
intensities (v =const > 0)

Ves =Veo =V (44)

It is needed to determine the brachistochronic motion of the system and present its
realization without the action of active forces if at the initiation of motion (11) (E, > 0)is

specified:
'[0 =0, ql(to):qz(to):q3(to):0’
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3m|, . > (.

7[(q'(t0>)z @)+l -, “3)
while at the end of motion (12)

h=2 d'ty=a’t)=r a't)=7 (46)
Differential equations of motion (7) of this system are:

(Bm-kb)§' =kv(cosq® —sing?®)+Qf

(3m—kt)i? =kv(cosq® +sing*)— (3m—kt)g + Q¢ (47)

(Bm—kt)?G® =kv/+QS
so that the relations (14) obtain the form

® = L[— g+ (cosq3(q1 +4%) +sing*(@* - 4" +fq3)]

¢ 3m-kt ,
1 , (48)
q q

@, :_£2q3 s @ __152(13
The problem is solved for the following numerical values of the parameters:

(=1m, m=1lkg, E,=303,v=1" k=1X9 (49)

s s

The missing values of boundary conditions are:

.1 _ m _ m

g (t) =1.14877 s .G (1)) =1.30177 oy (50)

Gl(t3) =2.946865 1 t; = 0.532857s

The trajectories of points A, B, and C are shown in Fig.2.
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Figure 2: Trajectories of points A, B, and C

4. Conclusions

This paper is a continuation of research from [27] for the case of brachistochronic motion
of a variable-mass system. Like in [27], the manner of motion control is presented without
the action of active forces. The novelty in this paper is the numerical solving procedure for
the two-point boundary value problem of maximum principle, based on shooting method,
where costate variables were avoided as the missing boundary conditions. The number of
missing boundary conditions is the least possible, such as n—generalized velocities and

timet, , which yields n+1 conditions. Their values can be approximately estimated.
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ABSTRACT. The paper is based on an analysis of vibro-impact system motion based on
oscillator with two degrees of freedom moving in a parabola rough line in the vertical plane.
Oscillator consists of two heavy mass particles whose free motion is limited by two fixed
elongation limiters. Analytical and numerical results for the specific kinetic parameters of
observed vibro-impact systems are the basis for visualization of the energy analysis which
was subject of this analytical research. This paper deals with the methodology study of
energy transfer between elements of the observed vibro-impact system. The process of
determining time interval and angle at which there is an impact of heavy mass particles
appeared and the determination of their incoming and outgoing velocities immediately
before and after the impact was studied here.

Free movement of heavy mass particles was divided into appropriate intervals. Each motion
interval corresponds to the differential equation of motion which belongs to a group of
ordinary non-linear homogeneous second order differential equations with variable
coefficients. These differential equations are solved in analytical form. Differential
equations of motion for the corresponding motion intervals are matched with the
corresponding initial conditions of motion, impact conditions to the elongation limiters,
impact conditions of heavy mass particles, and alternation conditions of the direction that
cause an alternation of friction force direction. By the analytical solution of differential
equations of motion, we came to the analytical expression for the equation of phase

trajectory in plane (q)i s gbi ), i =1,2 -number of degrees of freedom, with energy equation

curves necessary for energy analysis of the dynamics of vibro-impact system. Graphical
visualization and analysis of the energy curves and representative kinetics state point of the
system during the kinetics (dynamics) was performed using the software package MathCad
and the users package CorelDraw.

Keywords: Heavy mass particle, rough parabola, friction, two impact limiters, pellet, vibro-
impact, phase trajectory, singular points, large initial conditions, total energy, kinetic and
potential energy, analytical expression, graphical presentation, representative point.

1. Introduction

Investigation of the vibro-impact system dynamics and nonlinear phenomena in
the presence of certain discontinuity represents the area of interest of numerous researchers
from all over the world. Theoretical knowledge of vibro-impact systems (see references [1-
5]) are of particular importance to engineering practice because of the wide application of
vibro-impact effects that are used for technological process. Based on knowledge of the
theory of vibro-impact systems and relying on the original works on this subject by the
authors: FrantiSek Peterka [6-8], Katica (Stevanovic) Hedrih [9-16], Alz Nayfeh and his
associates [17,18], Fool S., Bishop S. [19], Luo G.W., Xie JH [20], Nordmark A.B. [21],
Pavlovskaia E., Wiercigroch M. [22,23] et al., we can say that today there is an increasing
interest for the study of energy transfer within complex systems and non-linear modes. This
is the reason for importance of vibro-impact processes dynamics analysis in vibro-impact
systems with one or more degrees of freedom of motion.
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The necessary theoretical knowledge, which leads us to this paper are from the
books by D. Raskovi¢ [24-25] in which he analyzes the motion of mechanical systems in
ideal conditions and without constrains, as well as curvilinear oscillators motion in the
presence of sliding Coulomb-type friction and from the paper published by Katica
(Stevanovic) Hedrih [13-14] related to the heavy mass particle motion along the rough
curvilinear paths. In these papers, there is a basic mathematical description of the
movement of heavy mass particles by rough curvilinear line, and special cases of motion of
heavy mass particles along the circular rough line, cycloid rough line and parabolic rough
line.

In previous works [26-31] authors analyzed several variants of vibro-impact
system with one and two degrees of freedom, based on the oscillator moving along a rough
circle, sliding Coulomb-type friction and limited elongation. Referring to them, the vibro-
impact system with two degrees of freedom, moving along rough parabola in the vertical
plane and sliding Coulomb-type friction Coulomb's coefficient with limited angular
elongation (Figure 1) was studied in this paper.

Oscillator consists of two heavy mass particles (pellets 1 and 2) mass M, i m,,

exposed to gravity. These mass particles are moving along rough parabola in vertical plane
on which the two sided impact limiters of elongation (constraints) were placed. The impact

limiter positions were determined by the angle O, for the limiter of elongation set on the
right, and &, for the impact limiter of elongation positioned on the left side. The angles &,
and 0, were measured from the equilibrium position of the mass particles, through the
vertical center of the circular line. The angular elongations of the first and second mass
particles at arbitrary time t were marked by ¢, and ¢, and measured from the equilibrium
position. At the initial time the material points were at position ¢, and @,, from the

equilibrium position 0-0, with initial angular velocities, ¢, and @,.
Az

Fig. 1. Oscillator moving along rough parabola in vertical plane, with limited elongations
puy =0, and ¢, , =0, : a*initial heavy mass particles position, b* active, reactive

and innertial forces plan.

Let’s discuss the properties of the oscillation of the first and second heavy mass
particles in a parabola rough line with limited elongation, so the system becomes vibro-
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impact with two-sided impact limiter. The differential equations of motion of heavy mass
particles for each interval of motion are requested. The motion interval is interval from
impact to impact, from collision to collision and motion interval when the friction force
direction alternation appears. The friction force direction alternation is associated with the
alternation of angular velocity direction alternation of motion of heavy mass particle, as
well as impact velocity alternation of heavy mass particles into angular elongation limiter
and heavy mass particles mutual impacts. Differential equations are matched to the initial
motion conditions, system elongation limitation conditions, heavy mass particles impact
conditions, and friction force direction alternation conditions. Also, it was necessary to
determine, for heavy mass particles in particular, the equation of phase trajectories in phase
planes (gol,(pl) and (goz,gbz) , and the equation curves for constant energy with the

corresponding graphical visualization and motion analysis of the same representative point
of the kinetic state of the system during the kinetics (dynamics). It was also necessary to
conduct the analysis of total mechanical energy alternation for each heavy mass particle as
a part of the system as a parameter of mechanical energy decrease in each characteristic
motion interval.

The operating conditions for such observed vibro-impact system are:

P10 > P s P10 > P - (D

2. Differential Equation of Vibrations of a Mass Particle Motion along Curvilinear
Rough Parabola

The obsreved vibro-impact system has two degrees of freedom, so the
corresponding governing non-linear differential equations of motion are presented
as:

for v, >0

for v, <0
@

for v, >0

for v, <0

3

for u=tge, - sliding Coulomb-type friction coefficient, ¢,, ¢, - generalized

3
@y +(3tge, £ p)pr +gc0—rs)(ol(

sin(pli,ucosgol):o, {

g cos’ ? (
p

G, + (39,  u)p3 + sin g, + 1cosp,) =0, {

coordinates for monitoring the motion of first, second and third heavy mass
particles.

This system of double differential non-linear equations is coupled by inital
motion conditions:

a* the first heavy mass particle (pellet 1), in further text marked with

subscript -1 Pi0) = Pro and (/71(0) =P
“
b* the second heavy mass particle (pellet 2), in further text marked with
subscript -2

P2(0) = P20 and a0y = P20 Q)
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At the initial moment of motion, heavy mass particles were given the
positive initial angular velocity (¢, >0, ¢, >0).

The first integral of governing non-linear differential equations (2) and (3)
are representing the phase trajectory equations of heavy mass particles moving
along the rough parabola line.

For the first heavy mass particle 1

_ for v, >0
¢ =cos’ g,| — gz +C,eFH { f :
pcos” ¢, orv, < 0

For the second heavy mass particle 2

- for v, >0
(pzz = cos® 0, ——92 + C2e+2/“”2 { ¢ 2
pcos” ¢, orv, < 0

where C, and C, are integration constants depending of the initial conditions of
motion.

3. Motion analysis of vibro-impact system

The analysis of heavy mass particles vibrations was conducted for each motion
interval. For the certain motion interval the corresponding vibration of the first and second
mass particles were analyzed.

Pellet 1, with mass m,, is moving in the interval from impact to the pellet 2 with
mass M,, to the impact to the angular elongation limiter, or to direction alternation point of
the first mass particle 1 (when it appears).

Pellet 2, m, =0,2[kg] is moving within the interval of motion from the impact
with pellet 1, m; =0,2 [kg] to the impact to the angular elongation limiter positioned on the
left side, or to the direction alternation point of heavy mass particle 2 motion (when it

appears).

Heavy mass particle 1 —the first motion interval represents the interval from the
initial moment to the first impact of the pellet 1 to the angular elongation limiter positioned
to the right side.

Heavy mass particle 1 is moving according to the rule

¢ =cos’ (Pl[—LzJF Cpe 2 ]
peos’ g,

By using the initial conditions (4) we get

2upy -2

) e 7
Ci1(@10:P10)=— ( 410 +gJ
cos” @p\ cos @y P

The impact conditions are
L= tlull— , P, (tlull—) =0, ¢’1u|l (tlull—) = ¢lu|1— .
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After the determination of constant C,,, the conditions for phase trajectory

visualization were created (Fig.2) @, = f(¢,) in the first interval to the first impact of

heavy mass particle 1 into angular elongation limiter.
Parameter values are :

o) = %[rad], Yo = O[rad], Pro = 7[%} p=1 [m],ao =0,15, g= 9,81[522} ;
an

m, = 0,2[kg]

Fig. 2. Phase trajectory curve of heavy mass Fig. 3. Heavy mass particle impact
particle 1 in the first motion interval until first time into elongation limiter
impact

Angular velocity of the firts impact to the limiter is determined as:

. 6 g —2u8,
P, = 4/€0S 51(_—+C119 lj
: \/ pcos’ &,

The first impact appears at the moment t,, is analytically represented by

6

do
t1u|1 = I L

%0 lcos® gy —L2+C“e_2”‘”1
peos’ ¢,
(6)

Time t,, (Fig.3) was determined by numeric method or by using MathCad software

for solving equation (6) and function t = f (go) graphic presentation.

Heavy mass particle 2- the first motion interval represents the interval form the
initial time to the first impact of the heavy mass particle 2 to the heavy mass particle 1.
Heavy mass particle 2 is moving according the expression

3 = cos’ (Pz(_Ler C, e 2 J .
pcos” ¢,

By using the initial conditions (5) we get the following expression:

2 pyo 52
i e 1)
C1(@20,020) =— ( 420 +g]-
COS™ @y  €COS @9 P
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After the determination of the constant C,;, the conditions for phase trajectory
visualization were created (Fig.4) ¢,, = f(@,) in the first interval to the first impact of

heavy mass particles.
Parameter values are:
8, =—[rad] gy = —[rad] ¢y =5 rad .p=1[mla, =015, g=981 Ll
6 12 S S2 and

m, =0,2[kg]

22

Fig. 4. Heavy mass particle 2 phase trajectory Fig.5 Time alternation vs angle ¢,
curve, until the first impact

For further analysis the position of heavy mass particle 2 has to be determined
when heavy mass particle 1 reaches elongation limiter. For this position the value of time
t,y, is determined (from the graphic presented on Fig.3). Time alternation t;, as a function

of the angle ¢, is defined by the equation

P d ?,

70 lcos® p, —L2+C216_2W2
pcos” @,
(7

Time alternation curve t,, = f((pz) (Fig.5) is defined by using MathCad software

t) =

for function (7) graphic presentation.
On the graphic presentation t,; = f((pz) given in Fig.5., value for time ty, is

subtracted (by absolute value) from the time value t21((020) . Angle ¢, (tluh ) was defined on
the x axis of a diagram of function t,, = f((oz). Angle ¢, (tluh) represents the requested

position of the heavy mass particle 2, when heavy mass particle 1 reaches the elongation
limiter.
After the position ¢, (tlull ) was defined, from the graphic presentation of the phase

trajectory @,, = f(p,) (Fig.4) we can read the angular velocity of heavy mass particle 2,

when heavy mass particle 1 comes to the elongation limiter.
Heavy mass particle 1- the second motion interval represents the interval from the
first impact into the elongation limiter to the first impact of heavy mass particles 1 and 2.
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Phase trajectory equation for the second motion interval is
¢y = cos’ ¢1£—L2+ C e J
pcos™ ¢
The initial angular velocity for this interval is
¢’1od|, = _k(i’ml]f = _¢1u|]7 >
with Kk — impact coefficient in the range from k =0, for ideal plastic impact to, k =1, for

ideal elastic impact (referring to ideal elastic impact).
By using the initial conditions for this period

t = t1u|l+» ACTIE d, P (G +) = ¢"lod|1 = —(blull—a
The integration constant can be determined

e’z”‘/’l ((plulI )Z + g

cos’ o cos” o P

C12 =

ot

Fig. 6. Phase trajectory branch for heavy Fig. 7. Time alternation vs angle
mass particle 1 in the second motion interval (t,, = o))

After the definition of constant C,, the conditions for the phase trajectory
¢, = T(¢,) (Fig.6), for the second motion interval were defined. The time for the second

motion interval of heavy mass particle 1 can be expressed as a function of generalized
coordinate ¢, as:

—9 d o

4 —\/0056 (p{—pcogsz(p+Clze+2’“A J
|

The function t,, = f (gol) can be presented by using MathCad software (Fig.7)

The first heavy mass particles impact happened in the second motion interval of
mass particle 1 and in the first motion interval of mass particle 2.
Further analysis is focused on the definition of time necessary for the first impact

t, =

appearance. After the first impact time definition tsudl angle P, WS determined,

representing the basis for further heavy mass particles motion.

The condition for time definition '[Sudl is

$=5p (tsudl )+ S21 (tsud1 ) or (51 —P (tluh )): P12 (tsud1 )+ P21 (tsudl ) ®)

Time '[Sud1 was defined by relation
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(t )2 2(¢)lull + ¢, l0 (tyy, )»t B 25, - 9, (tlull ) o ©)
- (@12 +P21) - (@12 +P21) .

Here the accelerations ¢, and ¢,, were approximatelly determined, with enough
accurance, as arithmetic mean values of average accelerations at subintervals of the given
interval. For this specific case the interval (51 -0, (tluh )) was divided into six equal
subintervals.

For the obtained value of tSudl from the graphic presentation presented in Fig.7. or
Fig.5 (the values must be corresponding) the angle of the first impact was defined Pud, -
Value for angle Poud, is used for determination of angular velocities of heavy mass

particles 1 and 2 immediately before the first impact ¢lsudl u and gb25udl u » from phase

trajectories for the second motion interval for heavy mass particles 1 (Fig.6) and the first
motion interval of heavy mass particle 2 (Fig.4).

Mass centres of material points are positioned on rough circle line, i.e., impact
centers are positioned on the same axis. This is about the central impact.

The expressions for the explicite definition of angular velocity immediately after
the impact by using amount of motion alternation law and Newton’s hypotesis of relative
angular velocities of mass particles are:

. m,(1+k) . m, —km, .
Psud,odl = Isudyul ~ Posud,.ul >
- m, +m, P my +m, '*
. km, —m, m,(k+1) .
2 =0 Eea—— .
1sud, ,odl m, +m, Lsud,,ul m, +m, 2sud,,ul

Generalized coordinate Poud, for the first impact, and velocities of heavy mass

particles immediatelly after the impact (plsudl odl ? (pmdl oqi Tepresent the initial conditions of

heavy mass particles in the following motion intervals.

Graphic visualization of conducted motion analysis for analyzed vibro-impact
system based on oscillator moving along rough parabola, which consists of two ideal smooth
pellets, will be shown in Fig.8 and Fig.9. Phase portrait of heavy mass particle 2 was given
in Fig.8 and phase portrait of heavy mass particle 1 was given in Fig.9.
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1 =g,

Based on the phase portraits of heavy mass particles, it can be seen that the value of
angular velocities of heavy mass particle 1 impact into the elongation limiter placed on the
right side and heavy mass particle 2 impact into the elongation limiter placed on the left
side, alternately decreasing and increasing, and in general, if only even or only odd motion
intervals were matched, it can be observed that the values of the initial angular velocity
decreased.

4. Energy analysis of vibro-impact system

Energy analysis of the observed vibro-impact system consisting of heavy mass
particles 1 and 2 was conducted so the graphic representations of alternations Ek, Ep and E
for each branch of the phase portraits were performed. Graphic visualization of the energy
alternations will be presented by figures (Fig.10) and (Fig.11) for the kinetic energies of the
second and first heavy mass particle, (Fig.12) and (Fig.13) for the potential energy
alternations of the second and first heavy mass particle and (Fig.14) and (Fig.15) for total
mechanical energy of the second and first heavy mass particle.

A o 4
6+ Ek(p) Ek
Legenda Mo 64 @)
— Legenda
|| @ -
| Poud, P, (pwmf._ o

- 44

q‘.\'mh q"_\-ud_\ Poud
Poud 5

®

N S
S s

1 gug s 0 05 o -1 05— 0 05— 1 0

0 - o = ¥ ~—
01550524 | 870785 Paiy,— 8,-0.524 8=0.785 ~Rainy,

Fig. 10.- 11. Kinetic energy of heavy mass particle 2-1 in plane (Ek,¢).
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Fig. 12.- 13. Potential energy of heavy mass particle 2- 1 in plane (Ep,¢7)
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Fig. 14.-15. Total mechanical energy of heavy mass particle 2-1 in plane (E,go)

5. Concluding Remarks

Non-linearity of the analyzed vibro-impact system is a result of discontinuity of
heavy mass particles angular velocities moving along rough parabola. Discontinuities of
angular velocities appeared at the moment of impact of first mass particle into elongation
limiter set on the right, than at the moment of the motion direction alternation of the first and
two heavy mass particles (when it appears) causing angular velocity and friction force
alternations, and at the moment of heavy mass particles impact. This non-linearity is
mathematically described for heavy mass particles by the system of governing non-linear
differential equations, by the second part representing angular velocity square of generalized

coordinate gblz ,(bzz . This corresponds to the case of “turbulent” supression.

It shoud also be noted that in analyzed vibro-impact system with two degrees of
freedom, there is a trigger of coupled sigularities, i.e. phenomena of bifurcation of
equilibrium positions, because of the influence of sliding Coulomb’s friction force and
angular velocities alternation of heavy mass particles.
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Using analytical expressions for the phase trajectories branches of heavy mass
particles, and after determining the integration constants, graphic visualization of heavy
mass particles oscillation in the observed vibro-impact system with two degrees of freedom
was presented. For graphic visualization, we used a software program MathCad.

The combination of analytical and numerical results in the process of getting the
graphical performance of phase trajectories in different motion intervals of heavy mass
particles, by using MathCad software and Corel Draw, phase portraits of heavy mass
particles were obtained. On the phase portraits there are clearly visible phenomena of non-
linearity of vibro-impact system with two degrees of freedom.

Furthermore, the energy analysis was performed for the observed vibro-impact
system. The alternation of kinetic energy, potential energy and the total mechanical energy.
It can be concluded that the observed vibro-impact system dissipation of the total
mechanical energy is present, reduced pressure on the rough circle line and decrease the
force that comes from the force of friction.

At the end, it is necessary to point out that using a software program MathCad and
analytical expressions for the branches of phase trajectories at intervals between impacts and
graphical determination of kinetic parameters of the state kinetics, in the process of impacts
and velocity alternation, the visualization of vibro-impact dynamics is presented. A
methodology that is easily applicable in engineering practice to analyze the dynamics of real
vibro-impact systems is based on various visualizations. This methodology is gaining
importance as an algorithm that facilitated the analysis of kinetic parameters of the dynamics
vibro-impact system with two degrees of freedom.
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Abstract. Dynamic suspension system for high-rise buildings has a role to reduce the
oscillation of the highest floors of the effects of wind or the earthquake, and other adverse
effects. It is a complex mechanical and mathematical problem.

The suspension system, which can be active and passive, to absorb and suppress all
components of the forces that would lead to reduced life of the structure, comfort, housing
and disruption of stability and security. Modeling of dynamic suspension system is reduced
to the formation of physical and mathematical models that most adequately describes the
real system. This paper presents a dynamic model for tall buildings. Given the numerical
solution and the appropriate comments.

Key words: modeling, dynamic, intelligent building, dumping system.

1. Introduction

In recent years there are a lot of discussion about the category and the concept of
"intelligent building", "smart buildings™ or " the next generation buildings". This includes
the use of technology and processes to create buildings that are safer and more productive
for their users and that can apply all kinds of loads during the scheduled lifetime.

The concept of "intelligent building" was first introduced in the eighties in Australia,
Canada, China, Japan and the United States. In fact, there is a race along with the
construction of skyscrapers whose peaks are found in complex wind. Although to careful
design in terms of aerodynamics, the problem of protection against the effects of weather is
not solved. Intelligent design implies, in addition to the use of new standards such as XML
and AEC-GB-XML and other system models to be tracked throughout the lifetime of the
building and updated as necessary.

High buildings belong to the group of dynamical systems that influence the stability of the
building in case of sudden, shock loads. The most common causes of horizontal and
vertical oscillations of tall buildings are wind and tremors, i.e. earthquakes (Melbourne &
Palmer, [27], 1002nd). Most unstable part of the tall building is its top - the highest
intensity of oscilations is on the top floor. By adding the masses and building elements for
depreciation or damping system such oscillations can be reduced.

In order to determine the boundaries of individual endurance, in terms of oscillations,
experiments were carried out based on simulation of movement (Chen & Robertson, [6].
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1973, Irwin [15] 1981, Goto [11], 1983, Shioya et al. 1992). In most cases the observed
sinusoidal reasons. Isyumov, [14], 1993. showed that there are significant differences
between these tests and the actual conditions. In fact there are axial, transversal and
torsional oscillations, which can not adequately show the sine wave.

Based on these studies are conducted especially in North America, because it is subject to
frequent hurricanes and typhoons, which set the limits can be exceeded because a certain
period, the condition stabilizes and returns to its original (Isyumov, [14], 1993, Kareem
[18.19] 1988th, Irwin, [16] 1986.etc.).

Structural systems that can mitigate the effects of wind are very different. For example, by
adding a system of pillars, Figure la, one can increase the resistance of buildings,
especially the effect of torque caused by lateral loads caused by wind. The building of 30 ...
40 floors, typically relying on a "shear wall" and the focal steel struts that are very effective
in confronting the forces caused by earthquakes. For more solitary, central systems are
becoming scarce. In these cases, installation of load-bearing walls or bars, usually at a
distance of 2 ... 3 floors, it can be to alleviate that problem as one of the cargo transferred to
the external structure. Installation of such systems has proven to be efficient in the world's
highest buildings, such as the Melbourne Tower (500 m).Later, these systems have been
modified using the band walls / grid as a "virtual carriers", Figure 1b. so that achieves the
same transmission power, but much simpler structure. This system was applied at the
highest world of reinforced concrete building with 77 floors of Plaza Rakyat, (office
building in Kuala Lumpur).

Figure 1. (a) Schematic representation of outrigger system. (b) Illustration of “virtual
outrigger” system using belt trusses (Model of Plaza Rakyat)
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A similar system was implemented with the so-called.
Vierendeel pads, Figure 2, placed at 775 feet high
building, at the First Bank Place in Minneapolis
(Dorris, [9], 1991). The tower carried by the skeleton
is in the form of a cross with four pillars of reinforced
steel which is effective when it comes to large
torsional moments. Vierendeel installation and trim,
structural strength is more increased by 36%. Lining
of the upper floors receive the cargo and transfer it to
the massive pillars between the columns and beams
(the Sears Tower, World Trade Towers and Center Super column
John Hancock Center). This concept has become

popular and was applied and the Shanghai World

Finance Center.

Vierendeel
bandage

The combination of tube ("tube in tube") or a double
system of pipes of steel and reinforced concrete
(composite pipes) has proven very effective in Figure 2. Schematic of
protection from typhoons. Vierendeel bandage

Other solutions mainly based on increasing the mass of the upper floors. This method is
applied to the Washington National Airport Control Tower so the rotation of the building
(and Banavalkar Isyumov, [5], 1998).is neglected.

Aerodynamic modifications of the building proved to be very effective (Kwok and
Isyumov, [24], 1998.) and it is usually called "Cross-sectional” shape. Researches (Kwok,
[23], 1995.) have shown that various modifications can deliver significant reduction in the
harmful effects of wind. Aerodynamics effect tests showed that there is some adjusting in
the angles inside the building (Hayashida and Iwasa, [12], 1990.), Figure 3. The angle
modification reflected a favorable angle to reduce the effects of weather along and inside
the building. It is shown that the larger rounding buildings (closer to a circular shape) is

very convenient.
‘ .
A .

Basic Fins Vented Fins SlottedCorners Chamfered Corners

4

Figure 3. Aerodynamic Modifications to Square Building Shape

This method was applied at a height of 150 m, the Yokohama Mitsubichi Heavy Industries
Building, and wind power is considerably reduced. But still there is a certain consensus
(agreement) about the advantages of angular geometric modification, since some studies
have also shown that modifications at the corners in some cases have been ineffective and
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even had negative consequences (Miyashita et. al., [29], 1993, Kwok & Isyumov, [24],
1998).

Improved response in relation to the cross
wind, in tall buildings, is given by reduction
in cross section with increasing altitude
(Shimada & Hibi, [33], 1995), Fig. 4. This
was confirmed in some other works and the
general conclusion is, if the top of the
building more sculpted, the greater the
influence of longitudinal and transverse
wind is less (Jin Mao building (Figure 4a)
in China and Petronas Towers (Figure 4b)
in Malaysia.

Figure 4. (a) Sketch of Jin Mao Building. (taken from Skidmore,
Owings, and Merrill, LLP); (b) Photo of upper plan of Petronas Towers

One method in order to improve
aerodynamics is to add designed holes
(Miyashita, [29], 1993. Irwin, [17], 1998.),
Figure 5. The holes completely through the
building, especially those near the top,
significantly reduce whirling wind power
(Dulton & Isyumov, [10], 1990., Kareem, [18,
19], 1988). Effectiveness of this modification
is impaired if the holes are on the lower levels
of buildings.

However, this method may have a negative
impact in terms of increasing whirling sound
resonance imaging (Tamura, [36], 1997).
Adding a hole was applied and the Shanghai
World Finance Center. Diameter hole at the
top of the tower is 51 m. In this case, is
reached and the previous effect of reducing
the cross section at the top of the building.

Figure 5. Shanghai World Financial Center)

The tall buildings Model can be represented as a system of two masses with two springs
and ballasts (P. Horan, [31]) where the second mass, the mass of the last floor of a
characteristic element of depreciation which is tied to it will depend on which elements are
applied. This system works as a passive truck.
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2. Display oscillator model

The tall buildings Model can be represented as a system of two masses with two springs
and ballasts (P. Horan, [31]) where the second mass, the mass of the last floor of a
characteristic element of depreciation which is tied to it will depend on which elements are
applied. This system works as a passive truck..

If beside bearings, springs, ballasts, there is a system
for control and automation at any time determines

the output value depending on the size of input and m g
previous output we get active tipper. System with bE
passive tipper will give better acceleration and C2 % ljfl b2
displacement reduction system in relation to the

controlled system but worse results in the case of il . ; yi
loads such as earthquake in comparison with the Ci % :L b,
controlled system. Therefore, in practice,

uncontrolled systems are rarely used. This example

was first exposed to passive systems analysis and  Figure 6. Model of a six- store building
control system is carried out. In Figure 6 simplified

model of a six-building is shown.

System parameters are chosen based on the weight relationship L.
m
2
n=
m, 2.1)

The optimal damping ratio for the mass m; (&) is chosen among these three
recommended values from the literature [2, 28, 31], 0; 0.02; 0.05.

Based on the weight relationship p and adopted the optimal damping relationships &, for
m;, one can calculate the optimal damping ratio and the optimum ratio &, frequency
setting for the mass damper £, i.€. mass m, in the equation (Sadek):

_ 1 K
f20pt T '[1'51\/;]»[-] 22

_ & il
S20pt W+ 1+lu,[-]

The next step is reading the value of the optimal damping and optimal stiffness b, and
Coopt fOr mass m, on the basis of weight relationship p on diagram which is shown in Figure
7, (M. H. Chey, [28]).
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koeficijent krutosti
(¢)
&
koeficijent prigusenja

(b)

Qo = 0,02 — )05

u
maseni odnos

Figure 7. Diagram of the stiffness coefficient, damping coefficient - weight relationships

By using obtained optimal values for fr,p, Exopts b2opt aNd Caope frequency w, for circular mass
m; and damping ratio & of the mass m, are obtained from equation::

2
2 [0
o) -1 2
l(él 1+HJ 2 Copt _ C20pt(lty)
2 I T 2
(I+u) m2I20pt mol & o
2 &1y
(2.3)
Copt _ C20pt
=0 =5
20pt m?2 E.sl H 1
1+

b
2opt
b =2m,&,0,f =& =———"—
2opt 25271 20pt 2
2myo1f ot

It was necessary to determine the angular frequency ®, of mass m, from the equation:

Coopt ~ M2 Toopt

®
_ _ 2 _
By = Thopt =7 @2 =1 Faopt 2.4
1
Finally, the values of stiffness and damping parameters for both mass are obtained from the
equation:
C. .
o = = ¢=mo, , i=1,2 ;¢ =mo; c,=m,0)
m. (2.5)

1

b, =2{,0om; ,i=1,2 ; b, =2§,0om, ; b, =2§0,m,

In this case, approved the masses m;=203t i m,=32.277t that gives p=0.159. The optimal
damping coefficient &, for mass m is 0.05.

By applying the above-described procedure, the following parameters were obtained for the
system to be analyzed, Table 1, [2, 28, 31].
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Table 1. System characteristics

spring stiffness . .
mass coefficient damping coefficient
m m, c Co b, b,
[t=10kg] | [t=103kg] [kN/m] [kN/m] [kNs/m] [kNs/m]
203 32.277 245.63 28.0185 22.33 16.6

2.1 Mathematical modeling of the system

For the oscillatory model, Figure 6, it can be written Lagrange second kind equations, [22,
32, 37] in the form of:

dt\ oq; ) 0q; aq; (2.6)
8
o™ - ¢

d 8Ek _6Ek:Q(N)_6Ep
1

qu

where s is the number of degrees of system freedom. For the given system there are two
degrees of freedom, i.e. s = 2.
Independent movement of the mass are vertical movement so as adopt generalized
coordinates are y; and y,.
It is necessary to determine the kinetic, potential and dissipation energy of systems in order
to write the Lagrange equations of motion.
The kinetic energy of the system is equal to the sum of the kinetic energies of bodies with
mass m; and m, and it is a function of generalized speeds::

E.=E.+E, ; Ey :%m1 Y12 S =%m2 y22 v B :%m1 )’12 +%m2 3/22 (2.7)
The potential energy of the system is a function of displacement, i.e. reflected in the
generalized coordinates as follows:

1 1 1 1
E =E, +E,; E, :ECI v E, :Ec2 ™,-v)" ; E, :Ec] v+ Ecz (v,-V,) 2.8)
and the damping energy is:
1 .2 1 .2 1 .2 1 .2
O=0;+0, 5 & ==byy 5 ¢, =-byy 5 d==byi+-b,y; (2.9

2 2 2 2
Furthermore, it is necessary to find partial derivatives of the calculated energy. Partial
derivatives of kinetic energy (2.7) per generalized speeds are:
OE, my OE, m, y
., gy, =1L Y, 2.10
&, %, 210

and their derivatives by time:
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d|oE |_ o - d]E |_ g 2.11)
dt| 5. e dt| 5. 202
a2y, 0y,

Partial derivatives of kinetic energy in generalized coordinates are zero because the kinetic
energy is not dependent on displacement; it depends from mass velocities only:

B, OB
Y, ’ Y,

Partial derivatives of potential energy (3.3) in generalized coordinates are:

0 (2.12)

8Ep
57 =Y +Cz(}’2 'yl)‘('l) = (Cl +C2)yl D)
b4
OE,, 2.13)
by l=y tey,
6y2

It is necessary to determine the generalized forces on the basis of statements of partial
energy damping (2.9) by the generalized speeds:

o
o™ =-6y¢='b191 by (75 - ¥1)- (1) = (by +b,)3; +b,¥,
I
o 2.14
Qz( ). (I) = by (¥ - Y1) 1= b,y -byY, o

Based on the calculated energies and partial statements of their respective sizes Lagrange
equations can be written in the form of:

d OB, OE, 0 3B,
doy, oy, Loy
d OF, 0B, oE,,

(2.15)

dt oy, oy, 2 oy,
Substituting the calculated values it is obtained Lagrange equations that describe the
grange ¢€q
monitored system:
(1) my ¥y by T07)yy -by¥y HlepTey)yy-eayy =0 2.16)
@) my¥y -by¥y +by¥y -cyyy ey, =0

The equations of motion can be written in matrix form as:

mp 0| |§1| |b1tb2 b2 | |y1| |c1te2 2| |yv1| _
oo (F Nor [T Ny, [0 (2.17)
0 mp] |¥2 by b2 ] (¥2 <2 tea] |y2 :

where M, B i C are mass matrix, damping and stiffness matrix, respectively, ie.:

M= m 0 B- bj+by by - cltcp ¢
0 mp by +by -c) +cp

(2.18)

Hamilton's equations, [22, 32, 37], are:
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. , . oL
d(Z1 piyi-L) = '21 [(Qi-pi )dyi+¥idp; ] - - dt
1= 1=

L= Ek -E
P (2.19)
oL _ 9(Ex-Ep) _ oy
T T i

where L is a function of Lagrange and p; is generalized impulse. Hamilton function H is
represented by the expression:
H= % piyi-L
1= (2.20)

. . oL
dH = ‘21 [(Qi-pi)dyi+idp; |- - dt
i=
Characteristic functions for the reference system are still determined and that is:

1 . 1 . 1 1
L=E,-E, :Eml YI2 +_—-m, yi -3¢ YI27 Ecz (Y2*Y1)2

2 2
L P pi oL p p: 2.21)
P: :ayi']: my, = Y, —;11 = yl = m2 s Py = 6y2_mzy2 =Y, _mizz = y2 _mizé
S Y . 1 pl 1 pz
HZ; piyi—L=pYy, +p,y,—L ; H :EW_FEITTZ-’_ECI y1 2Cz o=y

The Hamilton function (2.20) derivatives by generalized coordinates and generalized
impulses are:

oH _
67}’1 =Y +Cz(Y2 'yl)'('l) = (Cl +02)y1 €Yy

oH _ B
Byy 202 YD =0y T opyy

OH_ 1 ., _PL 2.22
oo 2mg Py (222)

oH 1 . = P2

oy 2my P27 my
Hamilton's equations in canonical form are obtained based on terms:

. OH cH (2.23)
=% > =Q-——
p; ;
For the considered system the canonical form of equations is obtained in a form:
. OH _ P
17 opy ml
Ql == by Tby)y; Tby¥, - (e ey teyy, =-(by +b2) p1 +b, p2 -(e; ey teyy,
. _H _p (2.24)
Y270 T my

oH
by =Qy-5yy TPV -ba¥p Feay meyyy = by m1 ) o my SRR S
The state matrix of system by taking into account the main coordinates are determined by
the Hamilton generalized coordinates and generalized momentum:
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99 =" ql = 5’1
4 =¥z =9
43 =Py ‘fI3 = pl (2.25)
d4 =Py - fI4 = pz

The state matrix of system is:

fa} = Alg 220

So the state matrix of system based on the canonical Hamilton equations for modeled
system can be written:

_ 1 i
0 0 - 0
my
; 1
4 0 0 0 — | |%
A _ 2| J92
; (b, +b,) b
(}3 (e tey) < 179%) 5 143 (2.27)
d4 ™ My 94
by b
¢ ) — —
my my |

Substituting the data of the mass, stiffness coefficients and damping coefficients from Table
1 in equation (2.26) the matrix A becomes:

0 0 4.926e-6 0
0 0 0 3.0982e-5
A= (2.28)
-273.65e+3  28.0185e+3  -0.1918 0.5143

28.0185e+3 -28.0185e+3  0.0818 -0.5143

To determine the stability of the system Ljapunov stability method [22, 32, 37] is used.
According to Ljapunov criteria it is necessary to determine the matrix D such that satisfies
the condition:

ATb+DA=0Q (2.29)

The matrix Q in previous equation is non positive unit matrix, i.e.,

1000 [-1 00 0
goo.|0 10 0[O 100
0010 (00 -0 (2.30)
0001 |00 0 -

It is known that the system is stable if the determinant of the matrix D and all major minors
are greater than or equal to zero [7, 8, and 30].

The matrix D is obtained by solving matrix equations or it can be easily obtained in MatLab
by using the command:

D=lyap(A,I) where the identity matrix [ is I=— Q. I =eye (4.4).
For analyzing system it is obtained that the dynamic matrix D is matrix with following
values:
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0.0000  0.0000 -0.0000 0.0000
0.0000  0.0000 -0.0000 -0.0000
D= 1e+10 (2.31)
-0.0000 -0.0000 9.55005 0.1503
0.0000 -0.0000 0.1503  0.4281

The matrix D determinant is:

det|D| =1.2908-1021 > 0 (2.32)
and order appropriate major minors determinants are respectively:
Do=1.9909>0 ; D;=88730 >0 ; D,=59811-10">0 (2.33)

So it can be concluded that analyzed system is stable.

2.2 Own system frequency definition

By solving the frequency equation their own system frequency are obtained. Frequency
equation is in the form, [20, 26, and 34]:

det(A-A)=0 (2.34)
A0 0 O 0 0 4.926e-6 0 A 0 -4.926e-6 0
0O A 00 0 0 0 3.0982e-5 _ 0 A 0 -3.0982¢-5
0 0 A 0| |-273.65¢+3 28.0185e+3 -0.1918 0.5143 273.65¢+3  -28.0185e+3 A+0.1918 -0.5143
0 0 0 A |28.0185¢e+3 -28.0185e+3 0.0818 -0.5143 -28.0185¢+3 28.0185¢+3  -0.0818  A+0.5143
A 0 -3.0982e-5 0 A -3.0982e-5
det(AI-A) =A-|-28.0185¢+3 A+0.1918  -0.5143 |-0.000004926-| 273.65¢+3  -28.0185e+3  -0.5143
28.0185e+3  -0.0818  A+0.5143 -28.0185e¢+3 28.0185e+3  A+0.5143
4 3 2

det(AI-A)=A1" +0.70611~ +2.27261L" +0.71781 +1.0503
(2.35)

Thus we obtain the characteristic determinants of polynomial (2.35) by an unknown A.

The characteristic polynomial can also be obtained on an easier way via MATLAB if one
enters values for the matrix A in the main window and press command:

characteristic polynom = poly (A)
By solving the characteristic polynom by A its own frequency (2.36) are obtained.

Own frequencies, we can also determine from Matlab using the command:
frequency = eig (A)

The obtained values of its own frequency for a given model are:

A= -0.2086 + 1.16641 ; po= -0.2086 - 1.16641 ;ps= -0.1445 + 0.85281 ;

2.36
Aa=-1445 -0.8528 (2.36)
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2.3 The transfer function of the system

In order to define the system transfer function, it is necessary to determine the damping
factors and appropriate frequencies. By using MatLab programs and commands:

[, £] = damp(A)
damping factors are obtained:

£ =0.1760 ; &=0.1760 , & =0.1671 ; & =0.1671 (2.37)
The appropriate frequencies for the system are respectively:
Wn =1.1849 ; w,;, =1.1849 ; w,; =0.8649 ; w, =0.8649 (2.38)

By using obtained values for the frequency and damping of the observed system transfer
functions can be written in the form of polynomials based on the formula:
H(S) = 71—2 (2.39)
Se+2EwnS+wp
The transfer functions of the observed model are:
1 1

H(S) =5 i HiS) =5
S°+0.4171S+1.404 S°+0.4171S+1.404
| | (2.40)
HB(S): 2 > H4(S): 2
S°+0.28905 S + 0.74805 S +0.28905 S +0.74805

To express transfer function through the transmission zeros and poles, it is necessary to
determine the zeros and poles first of all:

21=0 ; p=-0.20855+1.1651 ; p,"=-0.20855 - 1.165i ; k, =1
=0 ; p,=-0.20855+1.1651 ; p,=-0.20855 - 1.165i ; k,=1

(2.41)
73=0 ; p;=-0.1445+0.8531 ; ps=-0.1445-0.8531 ; k;=I
2s=0 ; ps=-0.20855+1.1651 ; ps =-0.20855- 1.1651 ; ks =1
Now, the transfer function is:
k.
H(S)= ———— (2.42)

*
(S-p,)-(S-p; )
By applying calculated zeros and poles at the above formula transfer functions are obtained:
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k 1
H )= e (S+0.20855-1.1651)-(S+0.20855+1.1651)
S-p-(S-p;) : ~ : :
k 1
Hy(®) = 2 - (S+0.20855-1.1651)-(S+0.20855+1.1651)
(S-py)-(S-py ) : : : :
k 1
Hy (S) = 3 =
3 .~ (S+0.1445-0.8531)(S+0.1445+0.8531)
(S-p3)-(S-py )
(2.43)
k 1
Hy® = - (S+0.1445-0.8531)(S+0.1445+0.8531)
(S-pg) (S-py ) (14450, (144540.

To draw a layout of the poles in MatLab
one need to enter the transfer function and Wt

the set commands: |

zeros = roots (num); poles = roots (den);

hold on; or

plot(real(poles), imag(poles),'x"); 05 t

It can be seen on Figure 8. that all poles

are in the left side and it is concluded that

the observed system is stable. 021 02 419 005 017 D18 015 0ls
Figure 8. Pole transfer functions layering

10 F

Based on the derived transfer function, system responses to unit step function are shown in
Figure 9.
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Figure 9. System responses to unit step function

It can be seen in Figure 9 that in the case without loads there is a big jump and a relatively
long time to reach steady state - about the 40s.

That is why it is necessary to automate the system to reduce overshoot and oscillatory
interval shortening and achieving faster response system and reach steady state. In further
work in this field, it may review the effects of management on the first transmission
function and automating and semi-automating dumping systems..

Semi-active type works by changing the coefficient of viscous damping system on various
ways. Basic characteristic of semi-suspension system is that it is activated only in the time
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interval when the relative velocity of the piston dampers and the required force are of the
same sign.

Differential control can reduce the overshoot but leads to zero steady state which is also
undesirable. Proportional control can reduce the oscillation amplitude to such an extent as
is permissible reduction in output. Responses to the appropriate management systems are
shown in Figure 10.

0.7

06

L L L L L L L L L L L L L L L L L L
10 20 30 40 50 60 70 80 a0 100 i 10 20 30 40 a0 B0 70 &0 a0 100

Timet, s Timet, s
Figure 10. Semi—Active System responses to unit step function

It can be seen that there is a smaller jump and a shorter time during system reaches steady
state - about the 20s (twice shorter).

The active suspension system achieves the effect of management present whenever the
movement of suspension system. Active systems differ from passive by the presence of
actuator which generates a variable force that compensates disturbances acting on the
system.
This system is achieved by placing the order PID
controller with transfer functions and the closure of '
the unit negative feedback. The parameters of the = 1~
proportional, integral and differential control and sl
simulation are combined to test the response until mi|
the shape does not get as close as first-order system M{
is so skip it and eliminate the oscillations. System
response is shown in Figure 11 and it can be seen
that system became stable very fast. AU T
Figure 11. Active System responses to unit step function

14

02

Conclusion

This paper has presented a number of different techniques used to reduce vibration
(movement) of objects. It was shown how to control the movement of the object, in order to
improve the performance of high buildings, under the gusts of wind.

Among the numerous methods it may be listed damping systems, i.e. oscillatory systems
that are installed in building.

One such system is shown in this work and for it are derived the appropriate equations and
obtained solutions for the oscillation frequency, transfer functions and responses of the

1272



Third Serbian (28" Yu) Congress on Theoretical and Applied Mechanics
Vlasina lake, Serbia, 5-8 July 2011 M2-20

system.

Based on the results, it can be concluded that the proposed model describes the real
problem and that the system is stable. This means that it can recommend the installation of
such oscillatory systems in real facilities to protect against wind and earthquake shock
caused by the earthquake.

Since the time of the stabilization system is relatively long (40s), for further research it is
recommended to applicate of more sophisticated damping system (automated) where
corrections can be made during working life.

Acknowledgment. Parts of this research were supported by the Ministry of Sciences and
Technology of Republic of Serbia through Mathematical Institute SANU Belgrade and State
University of Novi Pazar Grant ON174001 Dynamics of hybrid systems with complex structures.
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NUMERICAL INVESTIGATION OF LAMINAR FLOW IN SQUARE
CURVED DUCT WITH 90° BEND
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Abstract. Numerical solution of incompressible laminar flow in square curved duct with
90° bend is performed in order to better understand the flow phenomena present in this
type of flow. Simulation of flow was done in OpenFOAM, an open-source CFD software.
Essentially, OpenFOAM is large C++ library which can be used to create application for
solution of various problems in continuum mechanics. Besides object-oriented approach,
the main advantage of OpenFOAM is that it is extendable, i.e. users can add their own
applications and utilities. The solution for the flow investigated in this paper is for Reynolds
number Re= 790. We used experimental results from literature as a validation tool for our
simulation. The results of simulation showed very good agreement with experimental results.
They also showed that centrifugal force convects the quickly moving fluid particles towards
the outer wall. As a result, the axial velocity has peaks in curved region, and secondary
flow with various number of vortices is also present. Development of flow in vertical straight
section after the bend is also analyzed, where presence of swirl is detected.

1. Introduction

Fluid flow in curved ducts are practically inevitable thing in most devices and systems in
mechanical engineering. We could only mentioned a few of them: turbomachines, ducts for
air ventilation, heat exchangers, aircraft intakes, etc. Their practical importance motivated
considerable research effort in the past decades, and it's still a motive today. In curved ducts,
centrifugal and viscous (Tollmien-Schlichting) instabilities may exist and interact strongly
[1]. The resulting nonlinear interaction between these two type of instabilities may cause the
flow to evolve to exhibit turbulence. Advancing of knowledge about this three-dimensional
curved flow is, thus, of fundamental importance. Nowadays, a large computer power, even on
ordinary PC, enables efficient numerical simulations of flow in various engineering devices
or systems. Results of simulations help us to better understand the flow phenomena by
predicting flow structure and values of significant flow quantities.

We can say that main flow characterics in curved channels or pipes is formation of so
called secondary flow. This was first pointed out by Eustice, [2] in his experimental work with
flow in curved pipes. Main reason for formation of secondary flow is presence of centrifugal
force and it has great influence on primary flow development. Also, centrifugal force causes
that velocity is skewed towards the outer wall. This experimentally observed phenomenon
was analytically confirmed by Dean, [3]. Presence of secondary flow increases dissipation
of fluid mechanical energy, which implies a larger pressure drop. Also, wall shear stress
distribution along the wall is not uniform, in contrast with straight channel or pipe.
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Advance of PIV experimental equipment and techniques in past years enables
visualization of these secondary flows. Jarrahi et al., [4] studied process of mixing by
secondary flow in a developing laminar pulsating flow through a circular curved pipe. They
noticed different secondary flow patterns during an oscillation period due to competition
among the centrifugal, inertial, and viscous forces.

Besides experimental and analytical studies of these kind of flows, numerous numerical
investigations are performed. Some relevant papers in that spirit are Patankar et al., [5],
Humphrey, [6], Soh & Berger, [7], Tsai [8]. In papers by Soh [9] and Bara [10] studies
of flow development in curved ducts with square cross-sections have been addressed on
the determination of critical Dean number, above which the formation and disintegration
of secondary flow can lead to multiple vortex pair solutions.

In this paper, we made a contribution to numerical studies of flow in curved duct. An
open-source CFD software named OpenFOAM is used. OpenFOAM is essentially a large
collection of C++ libraries which can be used to create application for solution of various
problems in continuum mechanics. There are numerous advantages of open source software
over commercial ones. First one is, of course, the fact that code is open; it is extendable
and user can create their own applications and utilities, in contrast to “black-box” principle
of commercial codes. Secondly, open-source principle implies formation of community in
which people can freely communicate, cooperate and help each other in solving particular
problems. They are not limited by software licenses, inability to adopt the software to their
needs, etc. On the other hand, most open-source software have a lack of documentation, but
on global scale every user of software give a small contribution to development of software
and documentation.

The fact that OpenFOAM is written in C++ has big advantage over CFD codes
written in procedural programming languages like FORTRAN and C. Object oriented
approach in programming involves abstraction, inheritance and polymorphism. That enables
implementation of complicated mathematical and physical models in code to be similar to
high-level mathematical expressions, [11].

2. Problem description and governing equations

In this paper we simulated the flow which was studied experimentally by Humphrey, [6]. The
sketch of duct is shown in Fig. 1. The flow configuration is @ Bénd of mean radius 92mm
attached to the end of the8Im long squared channel with cross-section ofx40 mm.
Experiments in [6] were done by LDA technique and the measurements of all velocity field
are available at three cross-sections before the bend, and also in three cross sections in the
bend itself. These experimental results is a validation tool for our simulation. On the Fig.
1 characteristic coordinate systems are shown. Afgie measured along the bend, and
coordinatex* = 0 corresponds to the cross-section with- 0°. When we sax* = —2.5 we
are thinking on cross-section at the distahce 2.5-40= 100 mm before bend.

Reynolds number in experiment, based on bulk velodity= 1.98-102m/s and
hydraulic diameteDy = 40mm was Re= 790. The Dean number of the flow was Be
Re(%d/RC) = 368, whereR; = 0.5(R + Rp) is the mean radius of curvature.
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Figure 1. Sketch of computational domain, dimensions and non-dimensional coordinates.

2.1. Governing equations

The flow in channel and bend is incompressible, laminar and steady and it is described with
continuity and momentum equations, which are, under that conditions

0-U=0 1)

—

- 1 -
U-IZIU:—EDP—i-vDZU, 2)

whereP is generalized pressure. Form of continuity equation (1) for incompressible fluid
enables that convection term in momentum equation can be written in following fordiJ,
whereUU is second-order tensor, whose componeuis. Constant density of fluid enables
that we define kinematic pressuysé= P/p. Now the momentum equation have the form

0.00 = —0Op* +0- (vOd) ()
This form of momentum equation is callsttong conservation form, which is suitable for
discretisation by finite-volume method.
We need to add the following boundary condition to the equations in order to solve them

for particular problem. For chosen coordinate system we can define compopamsand
u; of vectorU. Now the boundary condition are:

xn = —10(inlet plane): u= fullydevelopedductflowv=w=0,
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walls cu=v=w=0 (4)
xn = 10 (exit plang : dgug = dguy = dgu, =0

for velocity field, and
xy = —10(inlet plane): dgp* =0
walls o' =0 (5)
xy =10 (exitplang : p* = pp

for pressure field. Inder in wall boundary condition for pressure designates a direction
perpendicular to wall angy) is specified, constant value of kinematic pressure in exit plane.
With this boundary conditions it is possible to solve the system of equations (1)-(2), using
numerical methods. It is done is next section.

3. Set-up of the problem and solution procedure in OpenFOAM

OpenFOAM, as mentioned before, is first and foremost a C++ library. It is divided into a set
of precompiled libraries that are dynamically linked during compilation of the solvers and
utilities. Libraries such as those for physical models are supplied as source code so that users
may conveniently add their own models to the libraries, [12], [13].

At the top-level of OpenFOAM code are the solvers, each designed to solve a specific
problem in computational continuum mechanics. Each solver is based on finite-volume
method of discretisation, which consists of three steps:

e gpatial discretisation where solution domain is defined by a set of points that fill and
bound a region of space when connected - generation of numerical mesh. In that space
points, face, cells and connection between them is defined.

e eguation discretisation where system of algebraic equation is defined in terms of discrete
guantities defined at specific locations in the domain. Starting equation is partial
differential equation that characterize the problem.

e temporal discretisation where time is divided into a finite number of time intervals
(steps) - for unsteady problems

Geometry in this problem is rather simple, and OpenFOAM applicaiibszkMesh
is used for mesh generation. This geometry also implies that mesh is orthogonal, so we
don’t need to introduce some non-orthogonal correctors in discretised equations. The mesh
is shown in Fig. 2.

In our problem we have laminar, stationary and steady flow of incompressible fluid, and
the solver designed for that type of flowd$mpleFoam. Object-orientated approach enables
the representation of the equations in code in their natural language. So, the momentum
equation insimpleFoam solver for laminar flow is represented as

fvm::div(phi, U) - fvm::laplacian(nu, U) == - fvc::grad(p)

The syntax of the equation is straight-forward and cl€atr;, FiniteVolumeMethod desig-
nates implicit method of discretization of equation terms, white, FiniteVolumeCalculus
designates explicit method.
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Figure 2. Numerical mesh for the problem.

Finite volume discretisation of each term is formulated by first integrating the term over
a cell volumeV. Most spatial derivative terms are then converted to integrals over the cell
surfaceSbounding the volume using Gauss-Ostrogradski theorem

/D*(pdvzfmqodA, ©)
\% S

where @ represents any tensor field and the star notatioapresents any tensor product,

i.e. inner, outer and cross and the respective derivatives: divergénpegradientClp and

0 x @. Volume and surface integrals are then linearized by some differencing scheme. Result
of discretisation is set of algebraic equations for each cell and it can be expressed in matrix
form as

[Al{x} = {b} )
where[A] is a square matrix{x} is the column vector of dependent variable dibd is the
so-called “source vector”, [13].

For velocity, we prescribed fully developed profile at inlet from previous simulation for
straight channel, non-slip conditions at the walls and zero gradient at the outlet. For pressure,
we prescribed zero gradient at inlet and walls, and fixed vaiue On?/s? (gage pressure)
at the outlet. Outlet was placed long enough after the bend so that we have developed,
unidirectional flow at the outlet. We used upwind differencing scheme for convective therm,
and central differencing scheme for gradient and laplacian therm in equation (3). For solution
of Navier-Stokes equation (3) characteristic thing is that there is no independent equation for
pressure, whose gradients contribute to each of three momentum equations, [14]. These
difficulties are overcomed by use of numerical procedure called SIMPLE algorithm, [15],
which is implemented in OpenFOAM. Preconditioned conjugate gradient methods are used
for iterative solutions for system of linear equations.

Three different meshes were used. First mesh had 36000 cells, second 72000 cells and
third had 200000 cells. In order to achieve faster convergence results from first mesh were
prescribed to mesh with greater density by usengpFields application, and after that
results from mesh with 72000 cells were prescribed to the mesh with 200000 cells. At the
end, simulation on mesh with 300000 cells gave the same results as the simulation on mesh
with 200000 cells, and solution independence of mesh resolution is obtained. We used non-
uniform mesh, by increasing the grading near the wall, in order to capture small vortices
which are formed in the corners of the inner and the end walls.
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4. Numerical results

From the simulation, we can see that flow is symmetric over,h@lane, which is expected,

and it's also confirmed by experiments. It can be seen the movement of the fluid away from
the inner radius wall towards the outer radius wall in bend. This movement progresses
throughout the bend and it's accompanied by secondary motion directed towards the side
walls and along the outer-radius wall and towards the symmetry plane along the inner-radius.

J_J

U/Ubulk p*/pref
4.000 5000 6.000 7.000 8.000
| IH IH‘HIII\HM
0 2.082905 3.580 8.783

Figure 3. Velocity and pressure magnitude in middle plane of the chanziel=-0.

U U
(b) (c) (d) (e)

(@)

Figure 4. Contours of velocity magnitude in various cross-sectionsf(&)0°; (b) 6 = 30°;
(c) 6 =60°; (d) 6 =90°; (e)x* = 12.5 after cross-section with = 90°

Also, upstream of the curved duct, the flow is accelerated in regions near the inner-radius
wall due to the favorable longitudinal pressure gradient. Conversely, the decelerated flow is
observed in regions near the outer-radius wall because of the developed adverse pressure
gradient downstream & = 0°.

The comparison between experimental results in [6] and results of numerical simulations
for axial velocity in (in direction of curvilinear coordinat€) is shown in Fig. 5. Results
of simulation have very good agreement with experimental results, and all trends are well
captured. We may argue that at cross-section of the benfd fo60° that agreement is not
good. Also, with comparing measured results of velocity for constaaliong the coordinate
Z" similar trend is visible for cross-section aroufie- 60°. Some explanation for that remains
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unclear. One of possible explanations can be that error of measurement results in that section
are too high.

2t 2t
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Figure 5. Comparison between measured and computed velocity profiles. Ordinate
corresponds to non-dimensional velodityV; left columnz* = 0.5, right columrz® = 0.

From Fig. 5 the shifting of axial velocity peak towards the outer wall is also clearly
visible. This is happening because of centrifugal effect. This degree of velocity skewness
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increases with the increasing turning angle of the flow and such a skewed axial velocity can
persist very far downstream. Our simulation showed that distance needed to obtain fully
developed profile after the bendlisz 50Dy .

U/Ubulk
£,973748

—;].6
E1.2

038
0.4
:

Figure 6. Some streamlines in the bend. It it visible that fluid particles are exhibited to
swirling motion.

It is also very interesting to show the streamlines in such flow. Figure 6 shows some
streamlines in 3D in the bend, and the presence of swirling motion is clearly visible. That
swirling flow, like skewness of velocity profile, is maintained far downstream.

5. Concluding remarks

In this paper we made a numerical simulation of laminar flow of incompressible fluid in a
curved duct with 90bend in OpenFOAM. OpenFOAM is open-source CFD software, written

in C++, and it's main advantage is that users can create their own applications and utilities.
Results of numerical simulation show very good agreement with experimental results given
in [6], which was used as validation tool for numerical results. They also give us a deeper
insight in complex flow structure which is formed in bend. Also, effect of centrifugal force
on flow structure is also spreading after the bend itself. We came to the conclusion that it
takesL ~ 50Dy after to bend to have fully developed velocity profile.
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Abstract. Harmonically excited oscillators with a purely non-linear non-negative real-power
restoring force and van der Pol damping are considered in this paper. The case of
entrainment of frequency is analyzed. It corresponds to the behaviour when the free
vibration frequency, which can be found from the energy conservation low of the related
conservative unforced oscillators, falls in synchronism with the excitation frequency. The
solution for motion is assumed in the form of a Jacobi cn elliptic function and a new elliptic
averaging method is developed. Frequency response curves of the harmonic entrainment are
determined. The validity and accuracy of the analytically obtained results are confirmed
numerically.

1. Introduction

In this paper harmonically excited generalized van der Pol oscillators are considered,
governed by the following non-dimensional equation of motion

2
8 o5 22t - s

dE (2 (\dE
f[é;j ~ (2 1),

(1a,b)

where & is the non-dimensional displacement; 7 is non-dimensional time; ¢ is a small
constant, i.e. £<<1; F and Q are the magnitude and frequency of harmonic excitation,

respectively, with the former being of order & (F =& F ); « is the power of the restoring

force that can be any non-negative real number.

The non-linear damping force defined by Eq. (1b) corresponds to van der Pol
damping, which dissipates energy for large displacements and supplies energy to the system
for small displacements. As such, it gives rise to limit cycle oscillations of free oscillators
modelled by Eqg. (1a,b) with F=0. When these systems are periodically excited, one can
expect that the steady-state forced response might include both the unforced limit cycle
oscillations as well as a response at the excitation frequency. However, if the magnitude of
the excitation force is chosen appropriately and the frequency of the unforced limit cycle
oscillations and the excitation frequency synchronize, then the response can occur only at
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the excitation frequency. This represents the entrainment (quenching) phenomenon, when
the excitation is said to have entrained the limit cycle oscillations or the limit cycle
oscillations are said to have been gquenched [1].

The phenomenon of entrainment was originally recognized and studied in a linear
oscillator, which corresponds to Eq. (1a,b) with a=1 [1,2]. Conditions for this phenomenon
to exist were determined by applying the method of multiple scales and the corresponding
frequency-amplitude curves were plotted. A pure cubic oscillator governed by Eqg. (1a,b)
with =3 was also investigated from this point of view in [3], where the first-order
harmonic balance method was used. The aim of this paper is to carry out quantitative
analysis of the non-linear oscillators governed by Eq. (1a,b) for any non-negative real
power of the restoring force « and to investigate the behaviour associated with the
entrainment phenomenon, which, as far as the authors are aware, has not been examined so
far. This study, thus, provides a general insight into the effect of the van der Pol damping
force on the behaviour of forced oscillators with a purely non-linear power-form restoring
force. This type of restoring force has recently attracted considerable attention, as it appears
in different physical and engineering systems [4]. Conservative oscillators with a fractional-
order restoring force have been the subject of extensive research in the last decade (see, for
example, [5] as well as the references citied therein), unlike non-conservative oscillators,
which have not been studied so extensively. In [4], a general method is provided to found
free oscillations of purely non-linear non-conservative oscillators. To that end, elliptic
functions are used and a new method of averaging developed. The limit cycle oscillations
of the oscillators modelled by Eq. (1a,b) with F=0 are also obtained. The study given below
is a natural continuation of the work presented in [4], for the case when these oscillators are
harmonically excited. A new elliptic averaging method is developed, enabling one to
investigate the entrainment phenomenon.

2. Novel elliptic perturbation method

2.1. Motion of conservative oscillators

According to the assumptions introduced, both the non-conservative term f (f,df/dr) and
the harmonic force F cosQz represent small perturbations of the conservative oscillators

2
S vsanle)el” <o @

Hence, the solution of Eq. (2) needs to be determined first, which will serve as a generating
solution for the motion of the forced non-conservative oscillators (1a,b).

In order to encounter for the non-linearity, i.e. the fact that the power « can take
any non-negative real value, the approximate solution for motion and velocity of Eq. (2) are
assumed in the form of the Jacobi elliptic functions instead of usual trigonometric functions

&(c)=acnly,m], (32)
95 4 wsnly,mldnly, m) (3b)
dr
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where « is a constant amplitude of motion, w is a complete phase and the parameter m is the
square of the modulus [6]. The complete phase  is defined by

w(e)= o7 +0lc), (4)

where ¢ and w are the phase and the frequency of the response, respectively.
To obtain the frequency @ and the square of the modulus m, the energy integral
corresponding to the oscillators (5) is considered

2 a+l a+l
1[£§j+Ei__:EL_ﬂ ©)
2\dr a+l a+l

where the initial velocity is assumed to be zero. It should be emphasized that by a proper
parameterization, the value of the amplitude a can always be made equal to unity (see [4]
for details), which will be used later on for simplification.

By using Eq. (5), the following expression for the period of oscillations can be
derived

adé

T__

a+l
[ a+1 a+1

with 7 being

VAT L+ i]
N , @)

M=+——
[2 1+a]
and T representing the Euler Gamma function [6].

Further, the fact that the period of the Jacobi elliptic function cn[y,m| is known
is used. It is given by T=4K(m), where K is the complete elliptic of the first kind [6]. Thus,
equating 4K(m) with Eq. (6) for the amplitude equal unity, i.e. with Eq. (7), the following
expression is derived

4K = 4K [m(a)]= 41/‘” fr[“““. 8)

l+a

This equation defines the parameter m implicitly as a function of the power «. Some of
these values corresponding to different « are calculated numerically and given in Table 1. It
can be seen that the values of this parameter are negative for « <1 and positive for « > 1.
This is in general agreement with the findings presented in [4], where the values of the
parameter m are calculated from Hamilton's variational principle. However, there are some
quantitative differences between the values calculated here and in [4], but the expression
(8) is considered to be more simple and convenient for the subsequently derived method
than the one given in [4]. It should be noted that in a special case « =0, i.e. when the
oscillator is linear, one has m=0, so that the elliptic cn function turns into the trigonometric
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Cosine function. For a pure cubic oscillator & = 3, the parameter m is equal to 0.5, which
agrees with some existing results from the literature [7].

The frequency of the elliptic function is @ =4K/T , which due to Egs. (6)-(8),
gives

a-1

w=a?. 9

This expression implies that there is a specific non-linear power-form relationship between
the amplitude of free oscillations and the frequency of the elliptic function.

Note that the solution defined by Egs. (3a,b) and (4) is the solution of the equation
of motion (2) provided that the following equation is satisfied

— o %acndn? + @*amsn® cn +a” sgn(cnen|” =0, (10)

where the arguments of the elliptic functions are omitted for brevity.

a m @ d, dg D P

0 —0.506160 | 1.138383 | 0.651587 0.15522 | 0.801715 0.92144

1/4 | -0.353627 | 1.1002 0.607119 | 0.14637 | 0.865627 | 0.907209

1/3 | -0.307134 | 1.088058 | 0.593378 | 0.143634 | 0.884476 | 0.94263

715 | —0.158067 | 1.04715 | 0.548666 | 0.134721 | 0.942677 | 0.965569

4/5 | -0.081307 | 1.02479 | 0.525209 | 0.130038 | 0.971148 | 0.980711

1 0 1 1/2 0 1 1

7/2 | 01921473 | 0.935912 | 0.438686 0.11271 1.03272 1.06463

2 0.3058305 | 0.893363 | 0.401005 | 0.105123 | 1.09159 1.12228

0.5 0.809093 | 1/3 0.091389 | 1.125626 1.28507

0.629107 0.740723 | 0.285029 | 0.081446 | 1.12668 1.4849

Table 1. Values of some parameters for certain values of the power ¢.

2.2. Motion of forced non-conservative oscillators

Using the analogy with the generating solution given by Eq. (3a,b), a trial solution of the
slightly perturbed oscillators (1a,b) can be assumed in the same form, but with the
amplitude, the complete phase and the parameter m slowly varying in time, i.e.

£(r)=a (e Jenly(c) m(c)]
L) _ e Yosnly (o) m(e)] anfy (o) me)].

dr

(11a,b)

This implies that the change of these parameters needs to be taken into account. However,
due to the fact that the parameter m and w are both related to the period, the variation of the
solution assumed is performed with respect to m only.
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Equating the period 4K(m) with the last expression in Eq. (6), differentiating it
with respect to time, the following time variation of the parameter m can be derived

dn_Bda 2
dr  adr’

with
B (1—m)(1—a)mK, 13)

E-(1-m)K

where E is the complete elliptic integral of the second kind, E=E(6m), and 8 is the elliptic
amplitude function 8= am[4K,m] [6].

Further, it should be noted that based on Eqg. (11a), the solution for the velocity has
the form given by Eq. (11b) if the following constraint is satisfied

ﬁcn—ad—(psndmrad—m@:o, (14)
dr dr dr om

where the arguments of the elliptic functions are again omitted for brevity, but are defined
in Eq. (11a,b).

Differentiating Eq. (11b) and substituting it into Eq. (1a), as well as substituting
Eqg. (12) into Eqg. (14), one obtains

_da, sndn+Bi(sndn) —aa)@cn(l—stnz):—gf §,ﬁ +FcosQr,  (15)
dr om dr dr
da cn+Baﬂ —a@sndnzo. (16)
dt om dr

The variations of the elliptic functions with respect to the parameter m that appear in Eq.
(15) can be expressed in the forms given in Appendix, Egs. (A1)-(A3). Using them and
solving Egs. (15)-(16) with respect to da/dz and dg/dz , one follows

—wD—=—gf(§,Z—§j sndn+ F cosQzsndn, 17)
T

—awD@:{—gf(§,£)+FCOSQT}[Cn +B@}, (18)
dr dr om

where

D =sn?dn? +cn2(1—2msn2)+ o-[—sn2 <:n2(1—2msn2)+sn2 dn?cn? —sn? anJ, (19)
and

m(l—a)[(

7" A -G-mk] “

Further, the term on the right-hand side of Eq. (18) can be written down as
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e fleds oxn)_
{ gf(g, de+FcosQr}(cn+B amj

(21)
—gf(cf,—dg]cn —gf(g,—dgjal[z sndn—msn? cn]+1F ¢, + 01(z, — ms, )|cos ¢,
dr dr 2

where oy = o /m and where the periodic Jacobi zeta function has been introduced as given
in Appendix, Eq. (A4).

In order to perform an averaging procedure, the elliptic function cn, the products
sn dn, Z sn and sn? dn are expanded into the Fourier series, and only the first terms of these
expansions are retained (see Appendix, Table Al). On the basis of that, the last term in Eq.
(21) can be approximated as follows

1 (o (7
FcosQrsndn==Fa|sinfl —uy —Qt |+Sin| —w + Q¢ | |. 22
> al{ (ZKI// J [ZKV/ H (22)

where a, is defined in Appendix, Table Al.
The form of the argument of the first Sin function in Eq. (22) is the motivation for
a new variable to be introduced

v
=—w-Qr, 23
b=V (23)
which represents a difference between the phase of the system response and the phase of
excitation.
Taking this into account and performing an averaging procedure over a period 4K,
the general equations for the amplitude and the new phase become

la

da e 1 x dé Faja 2
da & - ,—= |sndndy - ———sing, 24
dr oD 4K f(gdrj Y ¢ (24)
a-1
d_¢zia 2 _0_ il CoS ¢+ i g_i 4Kf f,ﬁ cndy +
dr 2K e 2K awD 4K *° dt
2KDa| 2 +Q
(25)
r oy 1k dé 2
_— ,—=||Zsndn-msn“cn|dy,
2K awD 4K *° f(f dr [ " ] v
where D is an averaged value of D given by Eq. (19)
D =2d; +0y(dy +d3 +d,), (26)

and where d;-d, stand for the non-zero averaged values of the products existing in Eq. (19),
and are defined in Appendix, Table A2. Besides this, the following notation has been
introduced in Eq. (25)

P=c¢+ O'l(Zl - msl), (27)
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where ¢y, z; and s; are the first Fourier coefficients given in Appendix, Table Al.

Also, while deriving Egs. (24) and (25), the fact that the frequency of the free
oscillation modelled by the Jacobi elliptic function is close to the excitation frequency
w ~Q has been used, which is due to the case of synchronization considered here. This

a-1
implies that 20~ w+ Q = 7ma 2 /ZK + Q. Hence, the response of the system defined in Eq.
(11a) has the form

£€0)= a(elen 2 @ )|, @)

where the amplitude a can be obtained from Eq. (24), the phase difference ¢ from Eq. (25)
and the parameter m from Eq. (8).
2.3. Motion of forced oscillators with van der Pol damping

For the case of the van der Pol damping force defined by Eq. (1b), the first order
differential equations (24) and (25) for the amplitude and the phase difference become

3 —a
ﬁzgadl_ga_de _lF_alalT

— sin g, 29
dr D D 2 D ¢ (29)
a-1
ﬁzia -Q- z £P CoS ¢, (30)
dr 2K al
_ 2
2kDd 7% "+

where the values of parameters a;, d;, dg, D and P are given in Table 1 for certain

values of the power «.
The steady-state motion occurs when da/dz =0 and d¢/dz =0. It corresponds

to the solutions of

3 v
cad, &ds _1Fa alT sin g, (31)
D D 2 D
a-1
T4 0= © FP
oK a Q= o COS ¢. (32)
o 2
2KD ”g +O

Squaring and adding these equations, the amplitude-frequency equation is obtained
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462 d, - a’dy | o +(Qza—(2’;<)2a“ ]2 2 (33)

af
Dividing Eq. (31) with Eq. (32), the expression for the steady—state value of ¢ is derived

a-1

7Z'P5(d1 —deaz)a 2

BKal[(ﬁ)z a“t-Q? } |

tan ¢ =

(34)

The local stability of the steady-state response can be checked by introducing small
perturbations & and # to the steady-state values a, and ¢, satisfying Egs. (31) and (32),

i.e. by letting a=ay +J and ¢ =4, +7n [2]. By keeping linear terms in 5and # in Egs.
(29) and (30), one derives

d, 3ed - Ka, ’
40 _| &y el a2+g(a—l)(d1—dea2) S| =g (”] a®t-Q%||n, (35
dr D D 2D P 2K

a+l a+l
A 47 4240 (L)Z a-1 QZ)
) a3 (21(“ tTagpa s+ j(ZK
dn _ (e 1)aT N S
dT 4K a 2
2a(2’;<a2 +«/an (36)

The stability of the steady-state response depends on the eigenvalues of the coefficient

matrix on the right-side of (35) and (36). The corresponding determinant det and the trace #
are

2+a

dot = & 2 {azaafﬁzaﬂ'4 +4aa+lﬂ'2[2d12(a +1)P2e? — 4a’d,dg(3+ )PP +

2 2[ 5
8a,D 2Pk (a T+ ZJZQKJ @7
+2a*d2(a+5)P%s? —afD?*(1+ a)Q? ]K2 + 16a2a1252£24K4}
*“7”( 2 2 2 )
= a — aldl +5a ald6 - aldla +a aldﬁa - 4d1P +4a d6P ' (38)

2a,K(d, —5a%dg + dya — a*dgar )
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Depending on the sign of the determinant, trace and the expression #%-4det, qualitatively
different eigenvalues can occur, which yield conclusions about the stability of steady-state
solutions [1].

3. Example

In this section the use of the equations derived previously for the study of the entrainment
phenomenon in the generalized van der Pol oscillator (1a,b) is illustrated. The case when
the power of the restoring force is « = 4/5 is considered. The corresponding values of the
parameters a;, d;, dg, D and P are given in Table 1 in a row which is highlighted for

the convenience of the reader.

In Figure 1, several frequency-response curves are plotted for a fixed value of the
ordering parameter ¢ = 0.2 and for different values of the magnitude of the force F. For the
sake of that, the amplitude-frequency equation (33) is used. For higher values of F, such as
for example £=0.3 shown in Figure 1, the frequency-response curve in continuous, with the
apparent maximum. As F decreases, the left and right branch become closer to each other,
as is plotted for F=0.2. There is a value of the magnitude F when they coalesce, and then
separate into two parts as plotted for F=0.1: one running near the frequency axis
corresponding to lower amplitudes, labelled by the points L and N, and the other one that is
detached and closed, surrounding the point (a*, Q*). This point, marked by a star in Figure
1, characterizes the free limit cycle oscillations. This point lies on the backbone curve

a-1
Q=rm ? /ZK , the expression for which was derived by equating the frequency-amplitude

relationship (9) with the frequency of the cn function in the steady-state response (28).

In order to define the parts of these frequency-response curves that are stable and,
thus, attainable, the use is made of the expressions for the determinant (37) and the trace
(38) [1]. If the determinant is negative, a saddle occurs, which is always unstable. This
region is shaded in the Q-a plane in Figure 1. When the determinant is positive (outside the
shaded region), unstable solutions can also occur, which happens for a positive trace.
Positive values of the trace are related to the part of the plane below a dotted, almost
horizontal line in Figure 1, corresponding to the zero value of the trace (38). There is also
one more regions of interest plotted in Figure 1: it is a tongue between the dotted lines #*-
der=0. Inside this tongue the values of #*-4der are negative. The region of this tongue with
the shaded part excluded is associated with unstable (stable) foci below (above) the zero-
trace line. Outside the tongue, a positive (negative) trace is related to unstable (stable)
nodes. Consequently, steady-state solutions are stable when der>0 and #<0 [1]. The line
dividing the frequency-amplitude plane into two parts with respect to this conclusion is
emphasized in Figure 1 and plotted as a thick solid line. Hence, all the parts of the
frequency-response branches that correspond to unstable steady-state solutions are below
this thick line and are shown as dotted or dashed lines; the parts with stable steady-state
motions are above it and are plotted as solid lines. This implies that along the frequency-
response curve A-B-C-D-E-H-J corresponding to £=0.2, for example, the parts A-B and H-
J are associated with unstable nodes, B-C with unstable foci, C-D with saddles, D-E with
stable foci and E-H with stable nodes. Therefore, only the part D-E-H is realizable. These
findings are checked numerically by carrying out direct integration of the equation of
motion (1a,b). Steady-state numerical results are depicted as dots, confirming very good
accuracy of the analytical results.
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Fig 1 Frequency-response curves of the oscillator governed by Eq. (1a,b) for « = 4/5, ¢ = 0.2 and
different values of F.

It can be concluded that the entrainment phenomenon can occur in a very narrow
range of the excitation frequency. For F=0.2, this region is between the frequencies
corresponding to the points D and H. This region becomes wider if the magnitude of the
force increases. Unlike in the linear systems with van der Pol damping, whose frequency-
amplitude plane consists of the curves symmetric with respect to the vertical axis, in the
systems with a non-negative power-form restoring force, these curves are bent to the left-
hand side for the powers lower the unity (as shown in Figure 1 for « = 4/5) and to the right-
hand side for the powers higher than unity, which is not shown here, but have been verified.
Thus, the corresponding behaviour is softening in the former case and hardening in the
latter, shifting slightly the entrainment frequencies accordingly and bringing asymmetry
into the frequency-amplitude plane.

Finally, in order to check the accuracy of the analytical approximate solution for
the steady-state solution given by Eq. (28), the case « = 4/5, £ = 0.2, F = 0.2, shown in
Figure 1 is considered, but for Q = 0.95. The approximate solution obtained is

&(r)=2.394¢n[0.98055(-1.915+0.957 )} (39)

This solution is plotted in Figure 2 together with the numerical solution of the equation of
motion (La,b) for £(0)=1 and &(0)=0. This comparison illustrates excellent accuracy of
the solution obtained.
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corresponding numerical solution (solid line) of the equation of motion (1a,b) for & = 4/5, £¢= 0.2, F
=0.2, Q =0.95, 5(0) =1 and 5(0) =0 ; dotted line depicts the steady-state amplitude calculated
from Eq. (33).

4. Conclusions

In this paper, oscillators with a non-negative real-power restoring force and van der Pol
damping have been considered. The entrainment phenomenon has been investigated, when
the frequency of the unforced limit cycle oscillations and the excitation frequency
synchronize, so that the response occurs only at the excitation frequency. A new elliptic
averaging method has been developed, which does not have any limitations regarding the
value of the power of the non-linear restoring force, as this power can be any non-negative
real number. The solution for motion is expressed in the form of the Jacobi cn elliptic
function and has excellent accuracy with respect to the numerical solution.

Frequency-response curves for the steady-state motion have been found and the
corresponding stability investigated. Parts of the frequency-response curves that are stable
are determined, which correspond to the case when the excitation entrains the limit cycle
oscillations. The frequency region associated with the entrainment is shifted to the lower
frequencies for the powers of the restoring force lower than unity, and to the higher
frequencies for the powers of the restoring force higher than unity. This region becomes
larger if the magnitude of the excitation is increased.

The application of the elliptic averaging method presented is wider than the case
reported for van der Pol damping, as the equations derived have a general form that
includes the influence of any type of non-conservative forces. Thus, these equations can
also be used to study other non-conservative forced non-linear oscillators, such as those
with a polynomial damping force (dry friction, linear and quadratic viscous damping, etc).

Appendix

This Appendix contains some expressions and approximations related to the elliptic
functions used in this paper.
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Variations of the cn, sn and dn Jacobi elliptic functions with respect to the
parameter m are given by:

acnly, m]  snly, m]dnly, mf(m 1)y + E(6, m)—msnly, m]|cdy, m]}

= » (A1)

om Zm(l—m)

6sn[y/, m] _ Cn[l//, m]dn[l//, m]{(l— m)y —E(0, m)+m Sn[l//, m]Cd[l//, m]} (A2)
om Zm(l—m) '

adn[!//, m] _ snly, m]en|y, m]{(m Dy +E(6,m)- dn[y, m]scly, m]} (A3)
om 2(1—m) '

The Jacobi zeta function is defined by

Z=E0,m)-(E0,m)l K(m))F,(6,m), (A4)

where E(6m) and F1(6m) are the incomplete elliptic integral of the second and first kind,
respectively, 6=am[4K(m),m] is the elliptic amplitude function and K=K(m) is the complete
elliptic integral of the first kind.

Fourier series expansions for certain elliptic functions and their products are given
in Table Al. The approximation for the cn function is given as infinite, while those for the
products of some elliptic functions are given in the first approximation only. The
corresponding Fourier coefficients are also tabulated.

Function Approximation of the function Fourier coefficient
ik
2z i q: cos| (2n+1) 22 7K (L—m)
cnly, m] JmK So1+ g2 ok | | 4=€XP| — K
snly mldnlym] | a sin(ﬂj+ o4
3
Z snly,m|dn|y, cos| —— j+ = id \/;q
linlyn] | zicof v S
oL me
Yom| 2dmK3(+q)
sn2[y, m]enfy,m] | 51008 ——w |+...
’ ! 2k 27q
\/;K(1+ q)

Table Al. Fourier series expansions (approximations and Fourier coefficients) for certain
elliptic functions and their products.
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Averaged values of the products of certain elliptic functions are presented in Table 2. These
products are defined as the integrands Z;, where i=1, 2, 3 and 4, and the domain of
integration corresponds to one period 4K.

Integrand Solution of the integral

i
I, d 1 uk

t:RO Itdl//

(2m—1)E(0,m)-4(m -1)K

1 | sn?[y,m|dn?[y,m]

12mK
2 snz[z//,m]cnz[z//,m](l— 2msn?[y, m]) - (4m2 +m— 6)E(67,m)+8(m2 +2m— S)K
60m°K
3 | sl mlen2ly. m]dnly.m] 20+ m(m —1)]5(2(,);:1)2;(4[2 +m(m -3)|K
[- 2+ m(em — 3)| E(0, m) + 8]+ m — 2m? |k
4 sn*[y, m]dn?[y, m| - 60m’K

Table A2. Averaged values d; (i=1, 2, 3, 4) of some integrands /; that are the products of
certain elliptic functions.
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