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Abstract. Dynamical systems admitting Morse functions that do not increase along 
trajectories with time are considered. The main relations between the indices of inertia of 
these functions and the instability degrees of the equilibria are indicated, and these results 
are supplemented with several new statements. The results are applied to two classes of 
mechanical systems.     

 
 

1. Introduction and some general results 
 
Consider the dynamical system 
  , ,                                                                                   (1)  )(xfx  nx 
for which  is an equilibrium point, i. e. 0x 0)0( f . Let the system possess a Morse 

functionV with critical pointn: 0x

0

 such that  (weak Lyapunov 

function). In the neighborhood of 

0),/(  fxVV

x  the vector field  and the function V  may be 

written as 

f

|)(|)( xoAxxf  ,
0




xx

f
A ,                                                               (2) 

and  

)|(|),(
2

1
)0( 2xoxBxVV  , *BB  , 0det B ,                                (3)                       

respectively. Assume that 0det A ; in particular, 0x  is an isolated equilibrium point. 
Obviously, the derivative of the quadratic form in (3) according to the linearized system       

Axx                                                                                                       (4) 
is also non-positive, i.e. 

SBABA  * , .                                                                           (5)        0S
The degree of instability, u , of the equilibrium 0x  is defined as the number of 
eigenvalues of A  with positive real part, counting multiplicities. This definition is a natural 
generalization of the definition of the degree of instability for equilibrium of natural 
mechanical systems, proposed by Poincare [1,2]. According to classical Lyapunov’s 
instability theorem based on the first approximation, if , then the equilibrium  of 
system (1) is unstable. 

1u 0x
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The degree of instability  can be related to the negative inertia index, , of the quadratic 
form .  

u i
),( xBx

First, we recall one result of Ostrowski and Schneider [3]. 
     (A) If , then . 0S  iu

In the more general case , the numbers  and  do not generally coincide with each 
other. However, the following important assertions have been formulated 

0S u i

     (B) , Kozlov [2]; )2(mod iu

     (C) , Kozlov [4];  iu

     (D) If the matrix A  has no eigenvalues on the imaginary axis, then , Carlson and 
Schneider [5]; 

 iu

     (E) If the pierced cone 
}0{\}0),(:{  xSxx n                                                                          (6) 

contains no closed trajectories of system (4), then the matrix A  has no pure imaginary 
eigenvalues, and consequently , Kozlov [4].   iu
The last condition resembles the Barbashin-Krasovski condition in well-known stability 
theorems. 
On the other hand, the absence of pure imaginary eigenvalues of A  can be established by 
means of the controllability matrix of *A  and . The controllability matrix  of S ),( * SAC

*A  and  is defined as the  matrix S 2nn
  .                                                                  (7) ),...,,(),( 1*** SASASSAC n

Let be . It is clear that if rSArankC ),( * nrankS  , then nr  . The converse is, 

however, generally not true. If nr  , the pair (  is said to be controllable in the 

control theory [6]. 

),* SA

The following assertion is due to Chen [7] (see, also, Wimmer [8]). 
     (F) If the pair (  is controllable, then ),* SA A  has no pure imaginary eigenvalues, and, 

according to result (D), .   iu

It is natural to ask what happens if the pair (  is not controllable. Several partial 

answers on this question we give in the next section.   

),* SA

 

2. The instability degree in the case  nSArankC ),( *

 

Let , and let nrSArankC ),( * Â  denotes the restriction of A  to  - the 

kernel of . Note that the subspace  is 

),( ** SAKerC

),( ** SAC )S,( ** AKerC A -invariant and 

. rnSAKerC )),( **dim(

 
Lemma 1. The purely imaginary eigenvalues of the operator A  coincide with the purely 

imaginary eigenvalues of the restriction Â . 
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Proof. Let  i  be a purely imaginary eigenvalue of A  with corresponding eigenvector 

X . By the definition of  , it follows that ),( ** SAC

  .                                                     (8) 

























































 SX

SX

SX

XSA

SAX

SX

XSAC

nn 11

**

.

.

.

.

.

.
),(





On the other hand, from (5) we have  
  ,             (9)  0),(),(),)((),( *  XBXiXBXiXXBABAXSX 
which yields 0SX because  is semi-definite. Now (8) implies . □ S ),( ** SAKerCX 
The following theorem is an immediate consequence of the result (D) and Lemma 1. 
 

Theorem 1. If the restriction Â  has no pure imaginary eigenvalues, then .  iu
 
Corollary 1. If , then .  1 nr  iu
 

It is follows from the fact that Â  is a real matrix. 
 
Example 1. Let 

   and  .                                                          (10) 










10

21
A 










10

01
B

Obviously, the eigenvalues of  A are 1 and -1, i. e., 1u . On the other hand, we have  

  ,                                                             (11) 0
22

22
)( * 








 BABAS

and 

  .                                                                    (12) 









2222

2222
),( * SAC

Since , , and , according Corollary 1, we conclude that 

. 

1),( *  SArankCr 2n 1i

1u
Let  denotes the  matrix whose columns are an orthonormal basis so that the first T nn

rn   columns of  are a basis of the subspace  and its last T ),( ** SAKerC r  columns are a 

basis of . Since  is )S,*(* AKerC ),( ** SAKerC A -invariant, 

  ,                                                                               (13) 









22

1211*

0 A

AA
ATT

where the  matrix  is the representation of the restriction )()( rnrn  11A Â  relative to 

the basis of . Also we have ),( ** SAKerC
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   and ,                                           (14) 









22

*

0

00

S
STT 










2212

1211*

BB

BB
BTT

T

where  and  are 22S 22B rr 

)22S

 matrices. It is easy to see that  

= r, i. e., the pair (  is controllable. 

),(),( 22

*

22

* SArankCSArankC 

,*

22A

Let  and denote the restriction of the form to the subspace  

and its signature, respectively. 

v ),( 
vv ii ),( xBx ),( ** SAKerC

 
Theorem 2. Let the quadratic form v  be non-degenerate. Then, the following is true: 

     (i)  is even and ; )( rn    iunri ),0max(

     (ii) if  is positive definite, then ; v  iu
     (iii) if  is negative definite, then ; v



nriu 
     (iv) if  ( ) is equal to unity, then  ( ). vi


vi  iu 2  nriu

 
Proof. Without loss of generality we can assume that  and B have the forms (13) and 

(14). Note that  is the representation of the matrix associated with the quadratic form  

relative to the basis determined by columns of T , and non-degeneracy of  implies 
. The matrix 

SA,

11B v

v
0det 11 B

                                                                                   (15) 






 




I

BBI
R

0
12

1

11

transforms B into block-diagonal form 

  ,                                                                               (16) 









22

11*
~

0

0

B

B
BRR

where 12

1

11

*

122222

~
BBBBB  . Also we have 

  ,                                                                                  (17) 









22

*

0

00

S
SRR

and  

  











22

12111

0

~

A

AA
ARR .                                                                              (18) 

From (5) we have  
  ,          (19) SRRBRRARRARRBRRRBABAR ***11*** )()())(()(  

which yields 
  ,                                                                                 (20)  011

*

111111  BAAB

  2222

*

222222

~~
SBAAB  , .                                                             (21) 022 S

Equation (20) implies that  is a skew-symmetric matrix. Since , it 

follows that n – r is even. In (21) the condition of result (F) is satisfied, therefore 
1111 AB 0)det( 1111 AB

)
~

()( 2222 BiAu  . Obviously, uBinri   )
~

(),0 22max( . Also, according to the 

estimation (C),  , which finishes the proof of part (i).   iu
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In (20) the definiteness of v  implies  is similar to a skew-symmetric matrix, hence all 

eigenvalues of  are purely imaginary, and, consequently, . If  is 

positive (negative) definite, then i

11A

B )

11A )
~

()( 2222 BiAuu  v
  i

~
( 22  ( nr iBi   )

~
( 22 ).We have thus proved 

parts (ii) and (iii). 
Under the condition of the part (iv) it follows from the congruence (B) that . On 

the other hand, 

1)( 11 Au

)
~

()( 2222 BiAu  , 1)
~

( 22   iBi  if , and  1
vi 1)

~
( 22  Bi  rni  if 

, which proves part (iv). □ 1
vi

 
Example 2. Let  

  .                                                                      (22)  



























1111

1111

1111

1111

A

If we choose 
  ,                                                                           (23) 2

4

2

32122 xxxxV 
then the derivative of this function, by virtue of system (4), (22), is 

   .                                                             (24) 0)()( 2

34

2

12  xxxxV

The matrix  associated with quadratic form (24) is  S

  ,                                                                         (25) 


























1100

1100

0011

0011

S

and the controllability matrix  can be written in the partitioned form  ),( * SAC

   ,                    (26) 










0804020

8040200
),( *

FFFF

FFFF
SAC

where 

  .                                                                                      (27) 












11

11
F

Obviously . Also, it is easy to see that , and  2),( *  SArankCr 3i

  .                                             (28) },:{),( 3412

4** xxxxxSAKerC 

The restriction  is negative definite and, according to part (iii) of Theorem 2,  

.   

2

3

2

1 xxv 
1u

By a review of the proof of result (C) given in [4], we see that  where 

s is the number of purely imaginary eigenvalues of 

},0max{ siui  

A . If those eiganvalues are simple, then 
, since the subspace spanned by their eigenvectors, according to proof of Lemma 

1, belongs to . Consequently , . Further, this inequality 

is also valid in the general case of multiple eigenvalues of 

rns 
),( ** SAKerC }n,0 riu  max{

A , as follows from a 
generalization of the inertia theorem [9]. Now we can formulate the following assertion.  
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Theorem 3.  
  .                                                                     (29)   iunri ),0max(

 
Remark 1. If we drop the assumptions 0det A  and 0det B , the left inequality in (29) 
remains true. It follows from [9].     

 

3. The instability degree of mechanical systems 
 
In this section the above results will be applied to two classes of mechanical systems with 
finite numbers of degrees of freedom. 
   
3.1 Non-conservative systems 
 
The equations of motion of a mechanical system with m degrees of freedom subjected to 
potential and non-conservative positional (circulatory) forces may be reduced in a 
neighborhood of the equilibrium position 0q  to the form 

  , ,                                                             (30) ),( qqNPqKqq   mq 

where *KK   and *PP  , and  is a collection of terms of no lower than second 

order in  [10]. The real matrices 

),( qqN 
qq , K  and P  are related to potential and circulatory 

forces, respectively. 
Equation (30) is equivalent to the first order equation (1), (2) with  and  }{}{ qqx mm 

  ,                                                                              (31)  










0)(

0

PK

I
A

where I  is the identity matrix of order m. The eigenvalues of A  are the roots of the 
polynomial 
  .                                                                       (32)  )det()( 2 PKI  
It is clear that mu 0 , since  )()(   .  

We put , i. e., ),(2 qqPV 

  .                                                                                      (33) 










0

0

P

P
B

Then  and rankPi 

                                                                                        (34) 
with 

SBABA  *

  , 









00

0D
S D KP PK 22P  .                                                       (35)                                    

Note that , since 02 P P  is a skew-symmetric matrix. On the other hand, it is easy to see 

that . Applying Theorem 3 to (34) we obtain the 

following result. 

),(2) DPKrankC ,( * SA rankC
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Theorem 4. If the matrix 
  22PPKKPD                                                                                 (36) 
is positive semi-definite, then  
  .                                     (37) }2),(2,0max{ mrankPDPKrankCu 
 
Corollary 1. If , then 0D mu  , i. e. the equilibrium state 0 qq   is completely 

unstable. 
 
Proof. requires . Also, in this case 0D 0det P mDPKrankC  ),( . □ 

 
Theorem 5. Suppose that . Then 0K
  )}(),,(max{ PKrankKPrankCum  .                                            (38) 

 

Proof. We assume that . Then  and , i. e. ),( qqV  mi  ),(),( qqqKqV  

  .                                                                                 (39)  0
0

0











I

K
S

Further we have , because of the 

given block structure of matrices (31) and (39). Hence, (38) follows from Theorem 3. □ 

)}(),,(max{),( * PKrankKPrankCmSArankr 

 
Corollary 2. If , then . 0K mu 
 
Theorem 6. Suppose that 0)det(  PK and . If the matrix 0K

  22 PKF                                                                                            (40) 
is negative semi-definite, then 
  mrankFrankKrankFum  },max{ .                                            (41) 

 
Proof. Assume that . Then , since ),)(( qqPKV  mi  0)det(  PK

),() qqKq 

. The derivative 

of V according to the linearized system of (30) is , because ,(FqV  PKKP   

is skew-symmetric. Consequently, the matrix S  has the block diagonal form 

                                                                                         (42) 









K

F
S

0

0

and, by assumptions and0K 0F

max{rankF

, its is positive semi definite. It is easy to see that 

. It remains to use inequality (29). □ },),( * rankKSArankCr  rankF 
The following corollary supplements one instability result in [11]. 
 
Corollary 3. If matrix (40) is negative definite, then mu  . 
 
3.2 Conservative gyroscopic systems 
 
The equations of motion of a system with gyroscopic and potential forces linearized in a 
neighborhood of the equilibrium position may be reduced to the form 
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  , ,                                                                      (43) 0 KqqGq  mq 

where  and *GG  *KK  . The skew-symmetric matrix G  is related to gyroscopic 
forces. 
The equations of motion have a first integral, namely, the energy integral  

. If , then  is non-degenerate quadratic form and 

 ),(2 qqV 
),( qKq 0det K V 0q

Ki

 is an isolated 

equilibrium position of the system. The instability degree of Poincare, , is negative 

inertia index of quadratic form , and, obviously, it is identical with the inertia index 

of . It follows from congruence (B) that if  is odd, then gyroscopic stabilization is 

impossible (Kelvin’s theorem, [1]). 



), qKq(

V 
Ki

  
Theorem 7. If the matrix 
                                                                                           (44) KGH 42 
is positive semi-definite, then 
  .                                                                                  (45) ),( HGrankCu 
 
Proof. Equation (43) is equivalent to the first order equation (4) with  

  .                                                                                   (46) 






 


0I

KG
A

The substitution , with  Ryx 

  ,                                                                                  (47) 






 


I

GI
R

0

2/

transform equation (4), (46) to the form , where  yAy
~



  .                                                      (48)   










 

2/

4/2/~ 2

1

GI

KGG
ARRA

Now we put  

  












0

0

2

1

I

I
B .                                                                                 (49) 

Then  and mi 

  .                                               (50) 0
4/0

0
)

~~
(

2

* 










KG

I
BAABS

~
One can readily see that . It remains to use 

inequality (29). □ 

)4,(),( 2* KGGrankCmSArankCr 

The following corollary supplements the well-known instability condition of Hagedorn 
[12].  
 
Corollary 4. If matrix (44) is positive definite, then mu  . 
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Abstract. In this paper a review on mechanical modeling of the human voice production 
systems is given. The basic model of the vocal cords/vocal tracts and vocal folds is a two-
mass non-linear oscillator system which is assumed to be the basic one for mechanical 
description in voice production [1]. The corresponding mathematical model is a system of 
two coupled second order non-linear differential equations. Usually, this system of equations 
does not have an exact closed form solution and various analytical and numerical solving 
methods are applied. The solutions describe the self-excited vibrations of the mechanical 
elements of voice production. The influence of air flow in glottis is additionally modeled 
and included into the previously developed mechanical system. Analyzing the corresponding 
mathematical models it is evident that beside the self-excited oscillations of vocal cords 
some additional vibrations appear. The vibrations may be regular but also irregular like 
bifurcation and chaos. The numerical simulation gives the parameter values for proper and 
improper voice production. Based on the results given in review the objectives for future 
investigation in the matter are given. 

 

1. Introduction  
 
For a long time the researchers are trying to simulate the human voice production. Various 
mechanical and mathematical models are developed for describing of the human organs 
which are connected with voice production but also of the process of phonation. In essence, 
voice is generated by movement of two lateral opposing vocal folds located in the larynx. 
Vibration of the vocal folds is produced by air flow through the trachea, generated by lung. 
Vocal folds vibrate, modulating the flow of air being expelled from the lungs during 
phonation. Sound is generated in the larynx by chopping up a steady flow of air into little 
puffs of sound waves.  
Complexity of vocal folds, their histology, shape, position, etc., give us a possibility to treat 
the problem in quite different manner. Same ability is evident for modeling of the process 
of phonation. It is the reason that a numerous aspects of the problem are investigated and a 
great number of results are published (more than 1000). 
For mechanical view of the human voice producing it is necessary to connect the dynamics 
of vocal folds and the aerodynamics of the vocal tract. Coupling between vocal fold 
dynamics and vocal tract acoustics attracts the interest in examining the voice quality of 
various kinds of vocalization and detecting of pathology of voice production system when 
there is no visual evidence for morphological laryngeal abnormalities. The studies of vocal 
fold biomechanics give an insight into voice production and also provide important 
information about laryngeal pathology development. In this paper some of the essential 
investigation will be shown. 
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2 Basic two-mass model of the vocal fold 
 
Two-mass model, developed and analyzed by Ishizaka and Flanagan [1], evolved to a 
standard for exploring the voice producing system through the years. The basic principle of 
modeling is intimately related to the observed phase difference between the lower and the 
upper edge of the vocal fold. This effect can be modeled by representing each fold by two 
coupled oscillators (Fig.1). For normal voice, the oscillators are bilaterally symmetric.  

   
 
Fig.1 Two-mass model of voice folds [1]    Fig.2 Air flow through glottis [2] 
 
The displacing tissue of each cord is considered to be approximated by two stiffness-
coupled masses. The masses are permitted displacement in both the lateral (x) direction and 
the longitudinal (y) direction. Motion in both directions is opposed by nonlinear restoring 
stiffness s and viscous damping r, shown explicitly only for the x direction. The x and y 
motions are assumed independent and uncoupled and represent the generalized coordinates 
for the two-degree-of-freedom system. Lateral displacement of masses m1 and m2 is 
conditioned by the internal coupling stiffness kc which permits realistic phase differences in 
the lateral displacements. For motion in the longitudinal direction, masses m1 and m2 are 
assumed to be locked together and move cophasically. The characteristics of all mechanical 
elements are based upon dates obtained by clinical observations (see [2]-[4]) and measuring 
[5],[6]. 
The main goal of the model was to synthesize voice by a self-oscillating mechanism. The 
oscillations are driven by the lung pressure. The driving Bernoulli force which is influenced 
by the subglottal pressure and the time-varying glottal geometry induces self-sustained 
oscillations. The induced phase difference of the upper and the lower mass enables the 
energy transfer from the airstreams to the vocal folds. For a sufficiently large subglottal 
pressure the dissipative losses can be compensated and phonation sets in.  
Gunter [7] believes that the oscillating vocal folds maintain their motion by deriving energy 
from the flow of air through the glottis. To oscillate, the vocal folds are brought near 
enough together such that air pressure builds up beneath the larynx (Fig.2). The folds are 
pushed apart by this increased subglottal pressure, with the inferior part of each fold leading 
the superior part. Under the correct conditions, this oscillation pattern will sustain itself. 
Maximum area declination rate affects the maximum air flow declination [8]. Varying of 
the area the vocal folds vibrate and generate a sound rich in harmonics [9]. The harmonics 
are produced by collisions of the vocal folds with themselves, by recirculation of some of 
the air back through the trachea, or both.  
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Finally, it is important to be said that the air flow – mechanical structure model of the 
human voice producing has an important role in acoustic integration [10],[11].  

REMARK: Suggested mechanical model is convenient not only for voice folds 
vibration but also for their posturing. Namely, vocal fold dynamics for phonation can be 
treated in two parts [12]:  

1. large and relatively slow deformation occurring when the vocal folds are 
positioned for voicing, coughing and breathing by moving laryngeal cartilages 
with muscle forces – this part is referred as vocal fold posturing which is 
subdivided into: 

a) adducting or abducting the medial surfaces of the vocal folds and 
b) elongating or shortening of the vocal folds; 

2. small and relatively fast deformations occurring when the tissue is driven into self-
sustained oscillation by aerodynamic and acoustic pressures – this part is referred 
as fold vibration. 

The posturing occurs in a nonperiodic but ultimately always cyclic fashion at frequencies 1-
10 Hz, but the vocal fold vibration occurs at 100-1000 Hz. Although vocal fold posturing 
and vocal fold vibration is often thought to be separate mechanical processes, many 
parameters of vibration (for example, fundamental frequency, amplitude of vibration and 
voice onset time) are dependent on posturing. Analyzing the model simulating the 
adduction of the medial surface of the vocal cord during posturation it is concluded that it 
affects the intensity of vocal folds vibration and involves into fundamental frequency 
regulation [13]. This result is previously obtained by clinical observation [14], too. 
During last forty years, the two mass-model of Ishizaka & Flanagan [1] was the basic one 
for the most of investigations in physical properties of human voice production. Due to its 
simplicity the model was convenient for application: the authors applied it for investigation 
of excitation in vocal-cord/vocal-tract speech synthesizer [15], to obtain effect of air 
volume displace by the vibrating vocal cords [16], and also for analyzing of the influence of 
the oral airflow in men and woman on vocal folds dynamics [17], for example. Nowadays, 
the model is used for clarifying of the phenomena in voice production due to nonlinear 
properties of the system but also to explain and detect the anomalies and diseases which are 
not visible with apparatus for clinical observation. It requires another types of mechanical 
models to be developed. 
 
3. From one- to finite-element vocal fold models 
 
3.1 One-mass one-degree-of-freedom model of the vocal cord 
Fulcher et al. [18] assumed another type of energization of the vocal folds than the 
previously mentioned one (see Sec.2). Namely, they stated that the action of the 
aerodynamic forces on the vocal folds is captured by negative Coulomb damping which 
causes the vibration of the vocal cords (Fig.3). Effective one-mass model with negative 
Coulomb damping force is introduced. This force adds energy to the oscillator instead of 
removing it. Adding a viscous damping term makes steady state motion possible. In the 
long-time limit the analytical solutions approach a limit cycle and the amplitude and 
velocity lose their dependence on the history of the motion. An elevated lung pressure gives 
rise to a flow of air through the glottis and produces a series of alternating converging and 
diverging shapes of the vertical dimensions of the vocal folds. The pressure distributions in 
the glottis resulting from the series of shapes are alternately higher and lower than the 
pressures in the vocal tract. These pressure variations are in phase with the motion of the 
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vocal folds and add energy to the oscillator in the same way as negative Coulomb damping 
does. Limit cycle of the oscillator with negative Coulomb damping provides a natural 
explanation of the self-oscillation property of the model. 

  
Fig.3 Model with Coulomb damping [18] Fig.4 One-mass with two-degrees-of-

freedom model of the vocal cord [20] 
 
Simple, one-degree-of-freedom vocal fold model was developed to investigate whether 
kinematic features of vocal fold movement confirm increased muscle stiffness [19]. Model 
simulations verified that increases in stiffness were associated with changes in kinematic 
parameters, suggesting that increases in gesture rate would affect kinematic features during 
phonation. This conclusion was proved experimentally in individuals with trans-nasal 
endoscopy during a simple vocal fold abductory-adductory task.  
 
3.2 One-mass vocal cord model with two-degrees-of-freedom  
An acoustic tube generally yields an inductive load in the fundamental frequency bellow a 
resonance peak, while the load turns out to be capacitive in the formant frequency above 
the peak. The two-mass model can simulate self-excited oscillation with a capacitive 
acoustic load because it can represent the phase difference between the upper and lower 
parts of the vocal fold. Unfortunately, the model is not correct for the case when the 
frequencies meet. Then the low frequency suddenly jumps to a value much larger than 
resonance peak. Adachi and Yu [20] show that the one-mass model with two-degrees-of-
freedom (parallel and perpendicular to the airflow) can eliminate this lack. Due to the two-
dimensional motion of the vocal folds the model can successfully simulate self-excited 
oscillation in a wide frequency range with no discontinuity of vibration. The model yields a 
smooth transition between oscillations with an inductive load and a capacitive load of the 
vocal tract with no sudden jumps in the vibration frequency. Self-excitation is possible both 
below and above the first formant frequency of the vocal tract. By taking advantage of the 
wider continuous frequency range, the model can successfully be applied to the sound 
synthesis of a high pitched soprano singing, where the fundamental frequency sometimes 
exceeds the first formant frequency. Geometry of the vocal fold is represented by a 
parallelogram (Fig.4). As the mass moves the parallelogram is deformed and the vocal fold 
simultaneous executes both swinging and elastic motions. The motions are coupled and 
mathematically described with a complex function. Comparing the suggested model with 
the usual two-mass model among other similar features, the similarities in the amplitudes of 
the glottal area and the glottal volume flow velocity, the variation in the volume flow 
waveform with the vocal tract shape and the dependence of the oscillation amplitude upon 
the averaging opening area of the glottis, are found.  
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3.3. Three-degree-of-freedom vocal cord models 
Story and Titze [21] extended the previous two-mass model of the vocal fold by 
introducing of the cover-body model as a three-degree-of-freedom system. Cover-body 
model represents the three mass version: cover is modelled with two masses and three 
springs and the body connected to the thyroid cartilage is modelled as one mass with 
compressible spring. In the paper of Titze and Story [22] the modification of the cover-
body model is done: the cover is modelled with a rotating plate which substitutes the two 
mass system, while the body remains as previously included mass a compressible spring 
(Fig.5). 

        
Fig.5 Three-degree-of-freedom model [22]  Fig.6 Three-dimensional model [23] 
 
The following assumptions throughout the body-cover derivations are made:  
1. The two vocal folds move symmetrically with respect to the glottal midplane.  
2. There is no vertical displacement of tissue.  
3. The glottal area varies linearly from the bottom to top of the vocal folds.  
4. For glottal aerodynamics it is assumed the Bernoulli flow from the lungs to the point of 
flow separation, at which point jet flow continues and the pressure remains constant in the 
jet from flow detachment to glottal exit.  
Motion of the cover – body system is described with three coupled differential equations. 
The case when the aerodynamic torques and forces act and also when they are omitted are 
considered. For the first case the model is focused on vocal fold tissue characteristics. 
When the driving forces are not zero the equations of motion are coupled by the fact that 
both the driving torque and the driving force on the cover are dependent on a common 
glottal flow. The oscillation regions are affected by acoustic loading of the vocal tract both 
subglottal and supraglottal. The results obtained by using of the bar-plate model are 
compared with three-mass lumped model.  
Recently, Yang et al. [23] extended the two-dimensional model of the vocal fold into a 
three-dimensional one by including the vertical vibration (in the two-dimensional model 
only the lateral and longitudinal displacements of the vocal cord were discussed). Vocal 
fold is assumed to consist of five horizontal layers (planes) arranged from inferior to 
superior (Fig.6). The anchor forces, which connect the masses to fixed body, and the 
vertical and longitudinal coupling internal forces between masses are supposed to be 
nonlinear deflection functions. The collision impact force is included into the model, too. 
The influence of the aerodynamic force, which causes the three-dimensional mass elements 
of vocal fold to oscillate, is investigated. The driving force is of Bernoulli type produced by 
the glottal flow originating from the lung and acting on the vocal folds from inferior to 
superior through the whole larynx. The driving force depends not only on the subglottal 
pressure but also the geometric dimensions (thickness and length of the vocal folds and on 
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the rest positions). The resulting model enables visualization of the three-dimensional 
dynamics of the human vocal folds during phonation for both symmetric and asymmetric 
vibrations. 
 
3.4 Finite-element model 
Finite-element model of vocal fold vibration was introduced by Alipour-Haghighi et al. 
[24]. Suggested model is modified into a self-oscillating finite-element one capable of 
simulating vocal fold vibration and airflow [25]. Model is suitable for investigation of the 
vocal fold impact. The calculated airflow pressure is applied on the vocal fold as the 
driving force. The interaction between airflow and the vocal folds produces a self-
oscillating solution. Lung pressures between 0.2 and 2.5 kPa were used to drive the self-
excited model. Tissue collision during phonation produces a very large impact pressure 
which correlates with the lung pressure and glottal width. Larger lung pressure and a 
narrower glottal width increase the impact pressure. In the inferior-superior direction the 
maximum impact pressure is related to the narrowest glottis. In the anterior-posterior 
direction the greatest impact pressure appears at the midpoint of the vocal folds.  
 
7. Conclusions and directions to future investigation 
 
Based on the published results it is concluded that mathematical models, based on the 
physical model of human voice production, give very good qualitative description of the 
phenomena, but in spite of the fact that the clinically observed and measured parameters are 
used for modeling, the obtained results quantitatively differ from real one. It requires the 
improvement of the accuracy of models. The following is suggested: 
1. Although simulation of vocal fold vibration is clearly more realistic with a model having 
a large degree of freedom, a model with a small degree of freedom still has its merits. 
Namely, more than ten coupled ordinary differential equations with many parameters are 
necessary to solve the mechanical and the aerodynamical problem. In comparison with 
more realistic models, such as those based on partial differential equations simulations, or 
systems of more than two coupled oscillators, the two-mass model appears to be quite 
simple. Such a minimal model highlights the self-excitation mechanism by abstracting the 
essence from the actual complex vocal fold vibration. The two-mass model has actually 
been devised as such a minimal model to simulate self-sustained oscillation with a 
capacitive acoustic load of the vocal tract, which cannot be replicated with the one-mass 
model. We suggest to apply the two-mass model as a basic one, but to include the nonlinear 
properties of the system. Analytical solving procedures used for analysing two mass 
systems and corresponding system of two second order nonlinear differential equations 
have to be applied. 
2. One of the most severe restrictions of low-dimensional models is the exclusion of 
vertical movement of the tissue. Much more variability in the medial shaping of the glottis 
e.g., more convergence and divergence is possible if the tissue is simultaneously driven 
upward and outward, forming elliptic trajectories. But this would double the degrees of 
freedom and would minimize the interpretive power that nonlinear dynamics can offer. To 
investigate many aspects of vocal quality and for modelling pathology higher dimensional 
models and fewer rules are necessary. 
3. In the three-mass model the vocal tract simulation is not included. Vocal fold vibration 
can be profoundly affected by the acoustic load of the vocal tract, but this have to be 
investigated in future. 

1136



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 M2-03 

 
4. Further improvement is possible by analyzing of the vocal fold as a two-mass system 
where each mass has two-degrees-of-freedom. The inclusion of the degree of freedom 
along the length of the vocal fold (in vertical direction) will help in more accurate 
simulation of the phase difference between the upper and lower parts of the vocal folds 
which is observed in actual vocal fold vibration. Vibration of a mass with two-degree-of-
freedom would be described with the complex deflection function.  
5. Results obtained by modeling the vocal ligament as a beam with linear longitudinal 
tension and bending stiffness (without shear) are qualitatively correct, but quantitatively 
differ from real one. Existing model has to be modified by introducing the nonlinear 
properties of the system and of the shear effect. Obtained partial differential equation with 
nonlinearity has to be solved and discussed. 
6. In the model of vocal cord the negative Coulomb damping is assumed to be a linear one. 
To improve the model we suggest introducing the nonlinear damping of the integer or 
noninteger order which is obtained empirically by clinical measuring. We believe that such 
models would give more accurate. 
7. Non-stationary vocal-fold oscillations are typical for many voice disorders. Inclusion of 
the time variable parameters and the reactive force, which acts due to parameter variation in 
time, gives an additional influence on the vibration of the fold. Dynamics of the system 
with time-variable parameters is widely developed and we suggest its application. Besides, 
the stability of non-stationary vocal folds vibration has to be more intensively analyzed. 
Known stability analysis of time-variable systems may be applied. 
8. Simplified asymmetric two-mass model encompasses the minimum number of degrees of 
freedom and of parameters. However, Mergel and Titze (2000) show that it allows the 
reconstruction of very complex laryngeal mechanisms with high accuracy. Vocal fold 
oscillations are representative for the class of pathologies characterized by: 
- laryngeal asymmetry without morphological changes i.e. asymmetric vocal fold tension 
- increased glottal rest area 
- abnormally increased subglottal pressure which are the characteristics of many forms of 
laryngeal paralyses. 
These diseases are accompanied by instabilities and irregular motion of the vocal folds, as it 
is obtained analyzing the corresponding voice cord model. New results would be expected 
by investigating of the chaotic motion and bifurcation in the model which is closer to the 
real system (one-mass model with two-degrees-of-freedom). 
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Abstract. In this paper we present the nonholonomic mechanical systems studied from
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nonholonomic mechanical systems using the geometry of tangent bundle and one obtains
the Lagrange equations.
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1. Introduction

In classical mechanics one naturally encounters different kinds of constraints on the motion,
mostly holonomic and linear nonholonomic constraints (integrable or non-integrable).
Nonholonomic constrained systems have a long subject of research since the first times of
Mechanics and they have received a lot of attention in recent years especially, from the
geometrical point of view.Surveys of nonholonomic systems can be found in [1], [9], and
[7]. A major thrust of present research is to give a complete description of the Hamiltonian
[8], [10], [11] and Lagrangian [2], [3] geometry of nonholonomic systems.

This work develops the geometry and dynamics of mechanical systems with
nonholonomic constraints from the perspective of Lagrangian geometry. The main idea is
to determine the canonical semispray S, whose integral curves give the evolution curves. The
geometry of the canonical semispray will determine on the phase space the geometry of the
dynamical system associated to the mechanical system.

The part 2 of this article is an overview of the geometry of the tangent bundle T M (phase
space), who furnishes the basic tools that have an important role: the Liouville vector field
C, the almost tangent structure J, the concept of semispray and the concept of non-linear
connection. The theory presented in this section has good applications for a geometric study
of the dynamical system determined by a nonholonomic mechanical Lagrangian system.

In part 3, one gives a geometrization of the non-holonomic mechanical systems using
the geometry of tangent bundle T M and one obtains the Lagrange equations. The canonical
semispray S∗, the non-linear connection N∗ generated by the mechanical system and the
N∗−linear connection for a nonholonomic mechanical system are studied in this section.
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2. Geometric structures on tangent bundle

In this section we introduce the geometric structure that live on the total space of tangent
bundle: Liouville vector field, semispray, non-linear connection.

Let M be a smooth C∞ manifold of finite dimension n. One denotes by (T M,π,M) its
tangent bundle. The total space T M of the tangent bundle is a 2n−dimensional, real manifold,
and will be the phase space of the coordinate velocities of the mechanical system.

In a domain of a local chart U ⊂ E, the points (x,y) ∈ T M have the local coordinates
(xi,yi). A change of local coordinates on T M has the following form:

x̃i = x̃i(x1,x2, ...,xn), det
(

∂ x̃i

∂x j

)
6= 0 (1)

ỹi =
∂ x̃i

∂x j y j.

The canonical projection π : T M →M is defined by:

π(x,y) = x, ∀(x,y) ∈ T M. (2)

The linear map π∗,u : TuT M → Tπ(u)M induced by the canonical submersion π is an
epimorphism of linear spaces for each u ∈ T M. Therefore, its kernel determines a regular,
n−dimensional, integrable distribution

V : u ∈ T M →VuT M := Kerπ∗,u ∈ TuT M

which is called the vertical distribution.

For every u ∈ T M,
(

∂
∂y1 ,

∂
∂y2 , ...,

∂
∂yn

)
is a basis of VuT M.

The natural basis of tangent space Tu(T M) at the point u = (x,y) ∈U ⊂ T M is given by(
∂

∂xi ,
∂

∂yi

)

|u
. (3)

The coordinates transformation (1) determines the transformations of the natural basis
as follows

∂
∂xi =

∂ x̃ j

∂xi
∂

∂ x̃ j +
∂ ỹ j

∂xi
∂

∂ ỹ j ;
∂

∂yi =
∂ ỹ j

∂yi
∂

∂ ỹ j , (4)

where
∂ ỹ j

∂yi =
∂ x̃ j

∂xi ;
∂ ỹ j

∂xi =
∂ 2x̃ j

∂xi∂xh yh.

Denote by F (T M) the ring of real-valued functions over T M and by χ(T M) the
F (T M)-module of vector fields on T M.

We also consider χv(T M) the F (T M)-module of vertical vector fields on T M. An
important vector field is

C = yi ∂
∂yi

which is called the Liouville vector field.
The mapping J : χ(T M)→ χ(T M), given by:

J
(

∂
∂xi

)
=

∂
∂yi ; J

(
∂

∂yi

)
= 0, i = 1,2,··· ,n (5)
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is called the tangent structure and it has the following properties:

KerJ = ImJ = χv(T M);

rankJ = n, J2 = 0.

A vector field S ∈ χ(T M) is called a semispray, or a second-order vector field, if

JS = C.

In local coordinates a semispray can be represented as:

S = yi ∂
∂xi −2Gi(x,y)

∂
∂yi .

A non-linear connection in T M is an n−dimensional distribution:

N : u ∈ T M → Nu ⊂ TuT M, (6)

which is supplementary to the vertical distribution V:

TuT M = NuT M⊕VuT M, ∀u = (x,y) ∈ T M. (7)

The local basis adapted to the decomposition (7) is
(

δ
δxi ,

∂
∂yi

)
, where

δ
δxi =

∂
∂xi −N j

i (x,y)
∂

∂y j . (8)

The real functions N j
i (x,y) are locally defined on T M and subject to the following

transformation rule under (1):

Ñ j
m

∂ x̃m

∂xi =
∂ x̃ j

∂xm Nm
i −

∂ ỹ j

∂xi . (9)

The coordinate transformation (1) determines the transformation of the local basis
adapted to the decomposition (7) as follows:

δ
δxi =

∂ x̃ j

∂xi
δ

δ x̃ j ;
∂

∂yi =
∂ x̃ j

∂xi
∂

∂ ỹ j . (10)

3. Nonholonomic Mechanical Systems

The term nonholonomic system was introduced in mechanics by H.Hertz [6]. It means that a
material system is subjected to such kind of constraints that restrict the velocities of particles
composed the system, but not their position (configuration of the system).

A sclerhonomic nonholonomic mechanical system is a quadruple

Σ = (M,g,F,Qσ ),

with M the configuration space, a real n−dimensional manifold, (M,g) is a Riemannian
space, F = (Fi) is the external forces vector field on M and Qσ ≡ (aσ i), σ = p + 1, ...n are
supplementary forces determined by the nonholonomic constraints given by the relations

Qσ (x)dx = aσ i(x)dxi = 0. (11)
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The vector field of the forces is given by F +λ σ Qσ , where λ σ : R→ R,σ = p+1, ...,n
are Lagrange multipliers and λ σ Qσ are the components of the so-called nonholonomic
constraint force .

Let consider the Riemannian manifold (M,g) and ∇ its Levi-Civita connection.
A trajectory of nonholonomic mechanical system Σ is a differentiable curve c in M,

c : t ∈ I → (xi(t)) ∈ V ⊂ M (I ⊂ R, V is a domain of a local chart of M), who verify the
following Lagrange equations:

∇ċċ = F ◦ c+λ σ Qσ ◦ c. (12)

Using the local coordinates on M, the equations (12) may be written

d2xk

dt2 +Γk
i j(x)

dxi

dt
dx j

dt
= Fk(x)+λ σ ai

σ (x), (13)

with {Γk
i j} the Christoffel symbols of the connection ∇ of the Riemannian metric tensor g,

Fk(x) = gki(x)Fi(x),ai
σ (x) = gi jaσ j(x), and

Qσ (x)dx≡ aσ i(x)dxi = 0,(σ = p+1, ...,n).

For the nonholonomic mechanical system Σ one studies the Lagrange space L∗n =
(M,L∗(x,y)), with the fundamental function

L∗(x,y) = L(x,y)+λ σ aσ i(x)yi, (14)

where L(x,y) is the regular Lagrangian, given by kinetic energy:

L(x,y) = gi j
dxi

dt
dx j

dt
.

In order to determine the multipliers λ σ (which, in general depend on the material points
xi) we adopt the following postulate:

The Lagrangians L(x,y) and L∗(x,y) are equivalent.
So, the Lagrangians L(x,y) and L∗(x,y) satisfy the Euler-Lagrange equations:

d
dt

∂L∗

∂yi −
∂L∗

∂xi =
d
dt

∂L
∂yi −

∂L
∂xi = 0. (15)

Using eqs. (15), one obtains:
(

∂λ σ

∂xi aσ j− ∂λ σ

∂x j aσ i +λ σ
(

∂aσ i

∂x j −
∂aσ j

∂xi

))
y j = 0,

and deriving with respect to y j we obtain:

∂λ σ

∂xi aσ j− ∂λ σ

∂x j aσ i +λ σ
(

∂aσ i

∂x j −
∂aσ j

∂xi

)
= 0. (16)

Let consider the 1−form, [4]

λ σ (x)Qσ (x)dx = λ σ (x)aσ i(x)dxi. (17)

This 1−form is clossed if and only if the equations (16) hold.
Indeed, it is not difficult to see that the equations (16) are equivalent to the exterior

equations

d [λ σ (x)Q(x)dx] = 0. (18)
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The Lagrange equations of the nonholonomic mechanical system Σ are:

d2xk

dt2 +Γk
i j(x)

dxi

dt
dx j

dt
= Fk(x)+λ σ (x)ak

σ (x); (19)

λ σ (x)aσ i(x)dxi = 0; d
[
λ σ (x)aσ i(x)∧dxi] = 0.

3.1. Canonical semispray and canonical non-linear connection of Σ

The Lagrange space Ln = (M,L(x,y)) has a canonical semispray

S = yi ∂
∂xi −2Gi(x,y)

∂
∂yi ,

where

2Gk(x,y) = Γk
i j(x)y

iy j.

Looking at the Lagrange equations (19) we remark that the system of functions

G∗i(x,y) = Gi(x,y)− 1
2

(
F i(x)+λ σ (x)ai

σ (x)
)

determines the coefficients of a semispray on the phase space T M.
The semispray S∗ on the phase space T M, [11]

S∗ = yi ∂
∂xi −2G∗i(x,y)

∂
∂yi (20)

with the coefficients given by

2G∗k(x,y) = Γk
i jy

iy j−
(

Fk(x)+λ σ (x)ak
σ (x)

)
(21)

and the multipliers λ σ (x) satisfying the equations

d
(
λ σ (x)ai

σ (x)
)∧dxi = 0

is called the canonical semispray of the mechanical system Σ.
The semispray S∗ depend only on the nonholonomic mechanical system Σ.
Therefore: The geometrical theory on nonholonomic mechanical system is the Lagrange

geometry of the triple
(T M,S∗,d

(
λ σ ai

σ
)∧dxi = 0).

The integral curves of the canonical semispray S∗ are given by the Lagrange equations
of the mechanical system Σ, eqs. (19) .

So, the non-linear connection N∗ determined by the canonical semispray S∗, called
canonical non-linear connection of Σ, has the coefficients

N∗i
j =

∂G∗i

∂y j = Γi
jk(x)y

k. (22)

The canonical non-linear connection N∗ of nonholonomic mechanical system Σ does not
depend on the forces Fi and Qσ .

A linear connection D on T M is called an N∗−linear connection if:

5
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1.D preserves by parallelism the horizontal distribution N∗;
2.J is absolute parallel with respect to D, that is DX J = 0, ∀X ∈ χ (E).

In the local basis
(

δ
δxi ,

∂
∂yi

)
adapted to the decomposition (7), an N∗−linear

connection can be uniquely written in the form:

D δ
δxk

δ
δx j = Li

jk(x,y)
δ

δxi ; D δ
δxk

∂
∂y j = Li

jk(x,y)
∂

∂yi (23)

D ∂
∂yk

δ
δx j = Ci

jk(x,y)
δ

δxi ; D ∂
∂yk

∂
∂y j = Ci

jk(x,y)
∂

∂yi . (24)

The system of functions Lk
i j(x,y),C

k
i j(x,y) are called the coefficients of the N∗−linear

connection D. It is important to remark that Ck
i j(x,y) are the coordinates of a d−tensor field

of type (1,2).
In our case, G∗i(x,y) are the coefficients of the semispray S∗, eq. (20), it is easily to

see that
(

∂ 2G∗i

∂yi∂y j ,0
)

are the coefficients of an N∗−linear connection on T M, N∗ having the

coefficients N∗i
j =

∂G∗i

∂y j .

There exists a unique N∗−linear connection D on ˜T M verifying the axioms

gi j|k = 0; gi j|k = 0
T k

i j = 0; Sk
i j = 0,

(25)

where ”|” and ”|” are the h−covariant derivation and v− covariant derivative and

T k
i j = Lk

i j−Lk
ji, Sk

i j = Ck
i j−Ck

ji.

This connection has the coefficients

Li
jk =

1
2

gim
(

δgmk

δx j +
δgm j

δxk − δg jk

δxm

)

Ci
jk =

1
2

gim
(

∂gmk

∂y j +
∂gm j

∂yk − ∂g jk

∂ym

)
.

(26)

The previous connection depend only on the fundamental function L∗(x,y) of the
Lagrange space and will be called canonical metrical connection on the space L∗n.

Now, we consider, more general the case when the equations of movement for the
nonholonomic, sclerhonomic system are given by

∂L
∂xi −

d
dt

∂L
∂yi +

(
∂λ σ

∂xi aσ j− ∂λ σ

∂x j aσ i +λ σ
(

∂aσ i

∂x j −
∂aσ j

∂xi

))
y j = Fi(x,y)

yi =
dxi

dt
(27)

and the multipliers λ σ verify eqs. (18) , where Fi(x,y) is a d−tensorial field on T M.
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The equations (27) may be written in equivalent form

d2xk

dt2 +Γk
i j(x)

dxi

dt
dx j

dt
=

1
2

gk j(x)Fj(x,y)+λ σ (x)ak
σ (x)

yi =
dxi

dt
.

(28)

One denotes

2Ğk(x,y) = Γk
i jy

iy j− 1
2

gk j(x)Fj(x,y) (29)

and the equation (28) give us the integral curves of the semispray

S̆ = yi ∂
∂xi −2Ği(x,y)

∂
∂yi . (30)

This semispray S̆ determine the non-linear connection N̆ with the coefficients

N̆i
j =

∂ Ği

∂y j =
∂Gi

∂y j −
1
4

∂F i

∂y j , (31)

where F i(x,y) = gi j(x)Fj(x,y) and 2Gk(x,y) = Γk
i j(x)y

iy j.
The study of the nonholonomic, sclerhonomic mechanical system will be made in

Lagrange space L∗n = (M,L∗(x,y)), with the fundamental function L∗(x,y) from eq. (14)
and the non-linear connection N̆ with the coefficients given by eqs. (31) .

Using the non-linear connection N̆, we can consider the adapted basis
(

δ
δ x̆i ,

∂
∂yi

)
to

the decomposition
Tu(T M) = N̆u⊕Vu, ∀u = (x,y) ∈ T M,

with
δ

δ x̆i =
∂

∂xi − N̆ j
i (x,y)

∂
∂y j . (32)

We may construct the N̆−linear connection D, which preserves by parallelism the horizontal
distribution N̆ and the tangent structure J is absolute parallel with respect connection D.

If DΓ(N̆) = (L̆i
jk(x,y),C̆

i
jk(x,y)) are the coefficients of D in the adapted basis, denoting

by gi j|h and gi j|h the h− and v− covariant derivatives, then we have:

gi j|h =
δgi j

δxh − L̆m
ihgm j− L̆m

jhgim;

gi j|h =
∂gi j

∂yh −C̆m
ihgm j−C̆m

jhgim.
(33)

In a nonholonomic Lagrange space L∗n = (M,L∗(x,y)) the following properties hold:
a) There exists a unique N̆-linear connection D on T M satisfying the axioms:

gi j|h = 0; gi j|h = 0; (34)

and

T i
jk = 0, Si

jk = 0. (3.34’)
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b)The coefficients (L̆i
jk(x,y),C̆

i
jk(x,y)) of this connection are:

L̆i
k j =

1
2

gih
(

δghk

δx j +
δgh j

δxk −
δgk j

δxh

)
= Li

k j−
1
4

Ci
kr

∂Fr

∂y j

C̆i
k j =

1
2

gih
(

∂ghk

∂y j +
∂gh j

∂yk −
∂gk j

∂yh

)
= Ci

k j (35)

where (Li
jk(x,y),C

i
jk(x,y)) are the coefficients of the metrical connection N, from eqs. (26).

In conclusion: The Lagrange space L∗n endowed with the non-linear connection N̆ gives
us a geometrical model for the nonholonomic mechanical system Σ.
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             ABSTRACT.  
 

DNA transcription process is well described at biochemical level. During 
transcription double DNA interacts with transcription proteins; part of double DNA 
is unzipped, and only one chain helix is used as a matrix for transcription.  

For better understanding the DNA transcription process and its behavior 
through biomechanical point of view, we consider double DNA (dDNA) as an 
oscillatory system that oscillates in forced regimes. In this paper analytical 
expressions of the forced oscillations of the dDNA helix chains are presented for 
both introduced models, ideally elastic as well as fractional order model. On the 
basis of previous results (DNA mathematical models published by N. Kovaleva, L. 
Manevich in 2005 and 2007, and multipendulum models by Hedrih (Stevanović) and 
Hedrih) where we obtain main chain subsystems of the double DNA helix, new 
results analysis of the forced vibrations is done. There are different cases of the 
resonant state in one of the main chains, and there are no interactions between main 
chains.  

The possibilities of appearance of resonant regimes only in one of the two 
main chains is proved, as well as dynamical absorption under external one 
frequency forced excitations is considered.  

 
Keywords: Double DNA helix chain, forced vibrations, eigen main chains, 

resonant state, dynamical absorption, fractional order model.  
 

1 Introduction - DNA-structure and function 
 

DNA is a biological polymer which can exist in different forms (A, B, Z, E …) 

but only B form can be funded in live organisms. Chemically, DNA consists of two 

long polymers of simple units called nucleotides, with backbones made of sugars 

and phosphate groups joined by ester bonds. To each sugar is attached one of four 

types  of molecules  called  bases. (Adenine-A, thymine-T guanine-G and cytosine-C). 
Two  bases  on  opposite  strands  are  linked  via  hydrogen  bonds  holding  the  two 
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strands of DNA together.  It is the sequence of these four bases along the backbone 

that encodes information.  
The basic function of DNA in the cell is to encode the genetic material. For using that 

information to make proteins, DNA molecule has to interact with other molecules in the 
cell. DNA molecule is moving, changing its position and shape during the interactions. 
DNA molecules can be considered to be a mechanical structure on the nanolevel.  

The mechanical properties of DNA are closely related to its molecular structure and 
sequence, particularly the weakness of hydrogen bonds and electronic interactions that hold 
strands of DNA together compared to the strength of bonds within each strand. Every 
process which binds or reads DNA is able to use or modify the mechanical properties of 
DNA for purposes of recognition, packaging and modification. It is important to note the 
DNA found in many cells can be macroscopic in length - a few centimeters long for each 
human chromosome. Consequently, cells must compact or "package" DNA to carry it 
within them (Bryant et al, 2003). 

Single-molecule biomechanics of DNA extension, bending and twisting; protein 
domain motion, deformation and unfolding; and the generation of mechanical forces and 
motions by bimolecular motors is another approach to explain the biological function of 
DNA in the cell (Bao, 2002). Knowledge of the elastic properties of DNA is required to 
understand the structural dynamics of cellular processes such as replication and 
transcription.  

There are different approaches to studding the mechanical properties of the DNA 
molecule (experimental, theoretical modeling).  

 
2 Mechanical properties of DNA achieved experimentally. 
 
 Experimental evidence suggests DNA mechanical properties, in particular intrinsic 
curvature and flexibility, have a role in many relevant biological processes. 
For small distortions, DNA overwinds under tension (see Ref. [13] by Jeff Gore, Zev 
Bryant, Marcelo (2006)). Lowering of the temperature does increase the DNA curvature. 
The DNA double helix is much more resistant to twisting deformations than bending 
deformations; almost all of the supercoiling pressure is normally relieved by writhing (see 
Ref. [1] by Javier Arsuaga, Robert K.-Z. Tan , Mariel Vazquez , De Witt Sumners , Stephen 
C. Harvey (2002)). The twist angle of the helix has been shown to depend on sequence 
when the molecule is in solution, both by the effects on supercoiling parameters when short 
segments of known sequence are inserted into closed circular DNA (see Refs.  [28] by 
Peck, L.J. and Wang, J.C. (1981) and [31] by Chang-Shung Tung1 and Stephen C.Harvey 
(1984). 
 Under low tension, DNA behaves like an isotropic flexible rod. At higher tensions, the 
behavior of over- and underwound molecules is different. In each case, DNA undergoes a 
structural change before the twist density necessary for buckling is reached (see Refs. [5] 
by Zev Bryant,  Michael D. Stone,  Jeff Gore, Steven B. Smith and Nicholas R. Cozzarelli 
(2003)). 
Mg2+ can induce or enhance curvature in DNA fragments and helps stabilize several types 
of DNA structures (see Ref. [4] by Brukner, S. Susic, M. Dlakic, A. Savic, S. Pongor 
(1994) ).  DNA length varied in solution with different ionic force.  It is significantly longer 
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in solution with lower ionic force (see Ref. [10] by C. Frontali, E. Dore, A. Ferrauto, E. 
Gratton, A. Bettini, M.R. Pozzan, E. Valdevit  (1979)). 
 
3. Mechanical models of the DNA 
 
 A number of mechanical models of the DNA double helix have been proposed till 
today. Different models are focusing on different aspects of the DNA molecule (biological, 
physical and chemical processes in which DNA is involved). A number of models have 
been constructed to describe different kinds of movements in a DNA molecule: asymmetric 
and symmetric motion; movements of long and short segments; twisting and stretching of 
dsDNA, twist-opening conditions. We are going to mention some of the models that may 
explain twist-opening conditions. 
Bryant et al (see Ref. [5] by Bryant et al, 2003) have shown that an over- or underwound 
DNA molecule behaves as a constant-torque wind-up motor capable of repeatedly 
producing thousands of rotations, and that an overstretched molecule acts as a force–torque 
converter. The production of continuous directed rotation by molecular devices has 
potential applications in the construction of nanomechanical systems (see Ref. [2] by Bao, 
2002). Polymer models are used to interpret single-molecule force-extension experiments 
on ssDNA and dsDNA. They show how combining the elasticity of two single nucleic acid 
strands with a description of the base-pairing interactions between them explains much of 
the phenomenology and kinetics of RNA and DNA ‘unzipping’ experiments” (see Refs. [7] 
by Cocco et al,2002; and [33] by Zhou and Lai, 2001). Eslami-Mossallam and Ejtehadi, 
(see Ref. [9] by Eslami-Mossallam and Ejtehadi, 2009) proposed the asymmetric elastic 
rod model for DNA. Their model accounts for the difference between the bending energies 
of positive and negative rolls, which comes from the asymmetric structure of the DNA 
molecule. The model can explain the high flexibility of DNA at small length scales, as well 
as kink formation at high deformation limit. Specially type of DNA models are soliton -
existence supporting models. One of the first of this kind was Yakushevich model of 
DNA and models based on it (see Ref. [11] by Gaeta, 1992). Dynamics of topological 
solitons describing open states in the DNA double helix are studied in the framework of a 
model that takes into account asymmetry of the helix. Yakushevich, et al (see Ref. [32] by 
Yakushevich, et al, 2002) investigated interaction between the solitons, their interactions 
with the chain inhomogeneities, and stability of the solitons with respect to thermal 
oscillations and have shown that three types of topological solitons can occur in the DNA 
double chain. González and Martín-Landrove (see Ref. [12] by González and Martín-
Landrove, 1994) gave the complete qualitative analysis of soliton interaction in DNA 
torsional equations. The model emphasizes the importance of the solitons for opening of the 
double DNA helix. Thee region of the chain where there is a maximum opening is larger 
for the general case, since the asymptotical behavior for the kink type solitons is smoother 
than the one corresponding to the solutions in the particular case. There is possibility that 
an enzyme take charge for the opening of the chain. The supersonic solutions, since they 
represent states that are totally open, could contribute significantly to the fusion of the DNA 
chain to the enzymatic activity. The presence of a propagating soliton along the chain could 
contribute to its opening through the interaction among different types of open states. The 
composite model for DNA is also based on Yakushevich model (Y model). The 
mechanism for selecting the speed of solitons by tuning the physical parameters of the non-
linear medium and the hierarchal separation of the relevant degrees of freedom are decribed 
in this model (see Refs. [8] by De Leo and Demelio, 2008; [6] by  Cadoni et al, 2008). In 
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the symmetric twist-opening model of DNA the small amplitude dynamics of the model 
is shown to be governed by a solution of a set of coupled nonlinear Schrödinger equations. 
Conditions for modulation instability occurrence are presented and attention is paid to the 
impact of the backbone elastic constant K. It is shown that high values of K extend the 
instability region. This model can be reduced to a set of coupled discrete nonlinear system 
equations. The growth rate of instability has been evaluated and increases with the coupling 
constant K. The kink-bubble soliton, made of two part of different size, has been shown to 
be mobile. Authors supposed that the kink-bubble solution can be used the describe the 
internal dynamics which usually consists of long-range collective bending and twisting 
modes of the bases, short-range oscillations of individual bases, and the reorientation of the 
spin label (see Ref. [30] by Tabi et al, 2009).  

Binding of proteins and other ligands  on DNA, induces a strong deformation of the 
DNA structure.  

The aim of our work was to model the DNA dynamics (vibrations of DNA chains) as a 
biological system in a specific boundary condition that are possible to occur in a life system 
during regular function of DNA molecule. We consider double DNA (dDNA) as an 
oscillatory system that oscillates in forced regimes during the DNA transcription process.  

For mathematical descriptions we use References by Kovaleva and Manevich (see 
Refs. [26-27]), Hedrih (see Refs. [14-22]), Bačlić and Atanacković (see Ref. [3]), Hedrih 
and Filipobski (see Ref. [23]),  Hedrih and Hedrih (see Refs. [24-25]) and Rašković P. 
Danilo see Ref. [29]). 
 
4   DNA models by N. Kovaleva and L. Manevich  

 
To model oscillation of dDNA in forced regimes we use as a basic approach 

model of dDNA proposed by  N.Kovaleva, L.Manevich, V.Smirnov (see Ref [26]). They 
show that in a double DNA helix localized excitation (breather) can exist which 
corresponds to predominant rotation of one chain and small perturbation of second chain 
using coarse-grained model of DNA double helix. 

 

   
Figure 1. a*    Figure 1. b*     Figure 1. c*  

 
 Figure 1. a* “Toy mechanical” model of DNA. a, DNA is modeled as an elastic rod (grey) 
wrapped helically by a stiff wire (red). see Ref. [9] by Jeff Gore, Zev Bryant, Marcelo (2006) 

Figure1. b* The model scheme of a double helix on six coarse-grained particles [10]. 
Figure 1.c*  Fragment of the DNA double chain consisting of three АТ base pairs. 

Longitudinal pitch of the  helix  ; transverse pitch  [11]. 
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Reference [26] by N.Kovaleva, L.Manevich, V.Smirnov presented  8th conference 
on DSTA  2007, point out that solitons and breathers play a functional role in DNA chains. 
In a model, the DNA backbone is reduced to the polymeric structure and the base is 
covalently linked to the center of sugar ring group, thus a DNA molecule with N 
nucleotides corresponds to 3N interaction centers. Starting from a coarse-grained off-lattice 
model of DNA and using cylindrical coordinates, authors derive simplified continuum 
equations corresponding to vicinities of gap frequencies in the spectrum of linearized 
equations of motion. It is shown that obtained nonlinear continuum equations describing 
modulations of normal modes, admit spatially localized solitons, which can be identified 
with breathers. Authors formulated conditions of the breathers existence and estimate their 
characteristic parameters. The relationship between derived model and more simple and 
widely used models is discussed. The analytical results are compared with the data of 
numerical study of discrete equations of motion. See Figure 1.b*. 

Ref. [27] by N.Kovaleva, L.Manevich (2005)) presented at the 8th conference on 
Dinamical  systems theory and applications, presented a simplest model describing opening 
of DNA double helix. Corresponding differential equations are solved analytically using 
multiple-scale expansions after transition to complex variables. Obtained solution 
corresponds to localized torsional nonlinear excitation – breather. Stability of breather is 
also investigated. 
 In this Reference [27] N.Kovaleva, L.Manevich (2005)) consider B form of the 
DNA molecule, the fragment of which is presented in Fig.1. b*. The lines in the figure 
correspond to skeleton of the double helix, black and gray rectangles show the bases in 
pairs (AT and GC). Let us focus our attention on the rotational motions of bases around the 
sugarphosphate chains in the plane perpendicular to the helix axis. See Figure 1.c* 

Authors deal with the planar DNA model in which the chains of the 
macromolecule form two parallel straight lines placed at a distance  from each other, and 
the bases can make only rotation motions around their own chain, being all the time 

perpendicular to it. Authors accepted as generalized (independent) coordinates 

h

1,k  that are 

the angular displacement of the -th base of the first chain, and as generalized 

(independent) coordinates 

k

2,k is the angular displacement of the -th base of the second 

chain. Then, by using accepted generalized coordinates

k

1,k  and 2,k  for -th bases of 

both chains in the DNA model, authors derived a system of differential equations 
describing DNA model vibrations in the following forms: 

k

      

    0sin1
4

1

sinsinsin
2

2,,
2

1

2

,,1,,,1
,

,,













 

k1k

1k1k1k1k1k
1k

1k1kJ















rrK

rrrK
K


   

      

    0sin1
4

1

sinsinsin
2

2,,
2

1

2

2,2,12,2,2,1
2,

2,2,













 

k1k

kkkkk
k

kkJ















rrK

rrrK
K


                (1) 
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Here  is the axial moment of mass inertia of the -th base of the first chain; 

 is the axial moment of mass inertia of the -th base of the second chain, and the 

point denotes differentiation in time t. For the base pair the axial moments of mass inertia 

are equal to , . The value of the base mass , the length , 

and the corresponding axial moment of mass inertia for all possible base pair 

authors accepted as in the Reference  [19]. The fourth terms in previous system equations 
describe interaction of the neighboring bases along each of the macromolecule chains. 

Parameter , characterizes the energy of interaction of the -th base with the 

( )-th one along the i -th chain 

1kJ ,

, 1k

ik , i

k

2
r

2,kJ

k

k

2
rmJ

K 2,1

2
2,  rm1kJ

1

m

k

r

, m1kJ

1 2,i

]mol

. There are different estimations of rigidity. 

For the calculation that the most appropriate value is close 

. /[3 kJ 106,K ik K
 

5 Consideration of the basic DNA model - linearized Kovaleva-Manevich‘s DNA 
model  

Let us investigate an oscillatory model of DNA, considered in the Reference [27] 
by N.Kovaleva, L. Manevich, (2005) and presented in the previous chapter III, by a system 

of differential equations (1) expressed by generalized (independent) coordinates 1,k  and 

2,k  for k -th bases of both chains in the DNA model. 

For the beginning, it is necessary to consider a corresponding linearized system of 
the previous system of the differential equations in the following form: 

      

    trrK

rrrK
K

k.,k 1,.1,02,,
2

1

2

,,1,,,1
,

,,

cos1
4

1

2













 

Mk1k

1k1k1k1k1k
1k

1k1kJ














       (2) 

      

    trrK

rrrK
K

k.,k 2,2,02,,
2

1

2

2,2,12,2,2,1
2,

2,2,

cos1
4

1

2













 

Mk1k

kkkkk
k

kkJ














                       (3) 

or in the following form: 

      

    t
K

rr
K

K

K

rrrK

K

k
.,k

1,
,

1,0
2,,

2

1

2

,

,
,

,1,,,1,
,

,

cos1
2

22
















 

1k
k1k

1k

1k
1k

1k1k1k1k1k
1k

1kJ

M













             (2*) 
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      

    t
K

rr
K

K

K

rrrK

K

k
.,k

2,
2,

2,0
2,,

2

1

2

2,

2,
2,

2,12,2,2,12,
2,

2,

cos1
2

22
















 

k
k1k

k

k
k

kkkkk
k

kJ

M













                  (3*) 

For the case of homogeneous systems we can take into consideration that are 

 and  JJJ 2k1  ,,k KKK kk  2,1, . 

By using change of the generalized coordinates 1,k  and 2,k  for -th bases of 

both chains in the DNA model into following new 

k

k  and k  by the following dependence 

(see Hedrih and Hedrih [17, 24, 25]): 

2,1, kkk      and   2,1, kkk       (4) 

Previous system of differential equations (3) obtains the following form: 
          

    t
K

t
K

rr
K

K

K

rrrK

K k
,k

k
.,k

2..0
2,0

1..0
1,0

1
2

1

2 coscos1
2

12
2



























 

MM
kk1kk

J 



 




          (5) 

     
 

t
K

t
KK

rrrK

K k
.,k

k
.,k

2..0
2,0

1..0
1,0

1 coscos12
2








 
 

MM
kk1kk

J   , 

nk ,.....,3,2,1        (6) 

 
First series of the previous system equations are decoupled and independent with 

relations of the second series of the equations. Then we can conclude that new coordinates 

of k  and k  are main coordinates of DNA chains and that we obtain two fictive 

decoupled eigen single chains of the DNA liner model. This is the first fundamental 
conclusion as an important property of the linear model of vibrations in a double DNA 
helix.   

Systems of differential equations (5)-(6) contain two separate subsystems of no 

autonomous differential equations expressed by coordinates of k  and k  which are main 

coordinates of a double DNA chain helix system  and separate linear DNA model of forced 
vibrations  into two independent chains. 

 
 

6. Consideration of the forced vibrations of a basic DNA model - linearized Kovaleva-
Manevich‘s DNA model  

 
For obtaining general solutions of the both systems (5)-(6) of no autonomous 

differential equations which correspond to forced regimes of the main chains vibrations, for 
beginning it is necessary to find particular solutions of this system. Taking into account 
denotation 

   2
1

21
2 








 rr
K

K

K

rrrK














       (7) 
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 2
1

21
2 








 rr
K

K











 .  

 
K

rrrK 


                 (8) 

 
2

K
u

J
        (9) 

previous systems (5)-(6) of no autonomous differential equations is possible to express in 
the form: 
 

  thth
K kkkk 2.2,,01.1,,01 coscos12
2

  kk1kk
J

  

nk ,.....,3,2,1                                           (10) 

  thth
K kkkk 2.2,,01.1,,01 coscos12
2

  kk1kk
J  , 

nk ,.....,3,2,1                  (11) 

 

where 
K

h
.,k

k
1,0

1,,0

M
    

K
h .,k

k
2,0

2,,0

M
 , nk ,.....,3,2,1 , educed amplitude od external 

excitations.. 
Next, taking into account that this system is linear, for simplifications of the 

calculation procedure, without loosing generality, we can solve system of no autonomous 
differential equations describing main chains forced vibrations of double DNA helix chain 
system under one frequency external excitation, with frequency 1,1  and reduces amplitude  

applied 
K

h
.,k

k
1,0

1,,0

M
  applied to one mass particle to the first real chain from he coupled 

chains.  For that reason we take for find particular solutions which correspond to forced 
vibrations with frequency  in the following form (see Figure 2): 1,1

 







  10

1cos
12

2 1.11,1,0
1 k

kth

K kk1kk
J  , nk ,.....,3,2,1  

        (12) 

 







  10

1cos
12

2 1.11,1,0
1 k

kth

K kk1kk
J

 , 

nk ,.....,3,2,1                                                                      (13) 

Particular solutions for first and second system (12)-(13), we propose in the forms: 
tNkkport 1,1, cos   nk ,.....,3,2,1    (14) 

tNkkport 1,1, cos
~

   nk ,.....,3,2,1    (15) 

and introducing following denotations: 

2
K

u
J

  2
1,1, kk K

v 
J

  2
12,2, kk K

v 
J

  (16) 

 
and introducing proposed particular solutions (14)-(16) into system (12)-(13), we obtain the 
following system of algebra no homogeneous system::  
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 







  10

1
12 1,1,0

11,1 k

kh
NvNN kk1k   nk ,.....,3,2,1  

         (17) 

 







  10

1~~1
~

2
~ 1,1,0

11,1 k

kh
NvNN kk1k   nk ,.....,3,2,1   

        (18) 

where   2
1,11,11,1

~ 
K

vv
J

. 

Using Cramer low, for the amplitudes of the particular solutions we obtain the 
following: 

   
 1,1

1,1
1,1 v

v
vN k

k 


   nk ,.....,3,2,1    (19) 

   
 1,1

1,1
1,1 ~~

~~
~~

v

v
vN k

k 


   nk ,.....,3,2,1    (20)  

where, for example, two system determinates,  1,1v  and  1,1
~~
v  are in the following 

forms(for the coupled chains each with four degree of freedom): 
 

 
 

 
 

 
0

121

1121

1121

112

1,1

1,1

1,1
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1,1 



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



v
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v

v

v
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
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         (21) 
 

 
 

 
 

 
0

~121

1~121

1~121

1~12

~~
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1,1 
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






v

v

v

v

v







      

         (22) 

For same example other determinants  1,1vk  and  1,1
~~
vk , nk ,.....,3,2,1 , we 

obtain from corresponding two system determinates,  1,1v  and 
 1,1

~~
v

 introducing into 

corresponding column, column with free members from right sides of the no homogeneous  
algebra equations (17)-(18): 

   
 

 

  3
1,1

3

1

14
1,1,0

1,1

1,1

1,1
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
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

 
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

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s

s
s

uvh

v

v

v

h

v


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         (23) 
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
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         (24) 
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2

1
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
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1
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
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
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 
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




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         (27) 
 

 
 

 

 

  1
1,11,1,0

1,1

1,1

1,1,01,1

1,13
~~2

~12

11

~121

1~12

~~ 







 n
ruvh

v

v

hv

v






                

         (28) 
 

 
 

 
  1,1,0

1,1

1,1

1,1,01,1

1,14

1

121

1121

112

h
v

v

hv

v 













                

         (29) 
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 
 

 
  1,1,0

1,1

1,1

1,1,01,1

1,14

1

~121

1~121

1~12

~~
h

v

v

hv

v 













  (30) 

 
 

1,km  

2,kc  2,1kc
 

2,kc  

2,kc  

1,1km  
1,1km  

1,1kc  1,1kc  1,kc  

 2,11,1  kkc  

2,km  2,km  2,1km  

 2,11,1  kkc   2,1,kkc  
t1.1cos0,1,1M

 

 
Figure 2. Double DNK Chain helix d model in the form of multipendulum system  with 

fixed ends 

 
Particular solutions of the considered examples with eight degree of freedom 

double DNA helix chain system containing two coupled chains each with four degree of 
freedom and excaited bey one frequency external excitation are in the following forms: 

  
  

t

uv

uvh

tN

s

s

s

n
s

s
port

s

1,1
4

1,1

4

1

3
1,1

3

1

1,1,0

1,111, cos

2

cos 

















    (31) 

  
  

t

uv

uvh

tN

r

r

r

n
r

r
port

r

1,1
4

1,1

4

1

3
1,1

3

1

1,1,0

1,111, cos
~~2

~~

cos
~



















    (32) 

  
  

t

uv

uvh

tN

s

s

s

n
s

s
port

s

1,1
4

1,1

4

1

2
1,1

2

1

1,1,0

1,122, cos

4

cos 

















    (33) 

  
  

t

uv

uvh

tN

r

r

r

n
r

r
port

r

1,1
4

1,1

4

14

2
1,1

2

1

1,1,0

1,122, cos
~~4

~~

cos
~



















    (34) 
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  
  

t

uv

uvh
tN

n
s

s

s

n

port
s

1,1

1,1

4

1

1
1,11,1,0

1,133, cos

8

cos 













    (35) 

  
  

t

uv

uvh
tN

n
r

r

r

n

port
r

1,1

1,1

4

1

1
1,11,1,0

1,1221 cos
~~8

~~
cos

~














    (36) 

  
t

uv

h
tN

s

s

s

port 1,1
4

1,1

4

1

1,1,0
1,144, cos

16

cos 










    (37) 

  
t

uv

h
tN

r

r

r

port 1,1
4

1,1

4

1

1,1,0
1,144, cos

~~16

cos
~












    (38) 

Solutions of the homogeneous system for considered example are: 

 





4

1
, cossin

s

s
sssskfree tkC  , 4,3,2,1k                  (39) 

 ,  





4

1
,

~cossin
r

r
rrrrkfree tkD  4,3,2,1k    (40) 

General solutions are: 

  kpart

s

s
sssskpartkfreek tkC ,

4

1
,, cossin   





, 4,3,2,1k  (41) 

 ,  kpart

r

r
rrrrkpartkfreek tkD ,

4

1
,,

~cossin   




4,3,2,1k      

        (42) 
or in the form 

    tvNtkC k

s

s
sssskpartkfreek 1,11,1

4

1
,, coscossin  





 ,   

         (43) 

4,3,2,1k

 ,  

        (44) 

    tvNtkD k

r

r
rrrrkpartkfreek 1,11,1

4

1
,, cos~~~cossin  





 4,3,2,1k

For the system of double DNA helix chain system with  degrees of freedom  

previous two system determinates 

n2

 1,1v  and  1,1
~~
v  are not difficult to express in the 

similar forms. 

Then taking into account that determinates  1,1v  and  1,1
~~
v  are analogous as  

determinates, which describe frequency equations of the free vibrations of the double DNA 
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helix chain system, which  is possible express in the following forms   and 

, and that we have roots of these frequency equations in the forms (21)-(22) then 

we have roots of the two system determinates, 

  0 u

  0
~

 u

 1,1v  and  1,1
~~
v  in the forms: 

      
 

2
sin2 22

1,11,1
s

s
n
s

ss   
K

J
u

K

J
v ,  n,.....,3,2,1s                       

         (45) 

      
2
r  sin2~~~~ 22

1,11,1 r
n

r
rr

K

J
u

K

J
v  .  n,.....,3,2,1r                   

         (46) 
By use previous characteristic numbers of the previous two system determinates, 

these determinants  1,1vk  and  1,1
~~
vk  are possible express in the forms of products: 

    n
s

ns

s

n uvv  



1,1

1

1,1 2 



       (47) 

    n
r

nr

r

n uvv ~~2~~
1,1

1

1,1  




      (48) 

By same way, it is possible to fined expressions for amplitude of the particular 
solutions depending of the number of degree of freedom . For example it is visible 

without calculations that amplitude ,  and  ,   of the particular solutions of the 

first and second normal coordinates, 

n2

1N 1
~
N

1,part

2N 2
~
N

 ,  and , 1,part 2,part 2,part  of the both main 

chains are in the following forms: 
 

  
  n
s

ns

s

n
ns

s

uv

uvh

N
s



















1,1

1

1
1,1

1

1

1,1,0

1

2

 and    

  
  n

nu
r

~ 1

r

nr

r

nr

r

uv

v

~~

~

~

1,1

1

1,1

1

1
















h

2

1,1,0

1 N  

         (49) 

  
  n
s

ns

s

n
ns

s

uv

uvh

N
s



















1,1

1

2

2
1,1

2

1

1,1,0

2

2

 and       

  
  n
r

n

u

u
r

~

~ 2



 

n,.....,3

nr

r

nr

r

v

v

~2

~

1,1

1

2

1,1

1

1

1,1












k ,2,1

h

N
~

,0

2 

kpart ,

 

         (50) 
Then general solutions are in the following forms: 

 
ns

s
ssskpartkfreek kC

1
,, sin   




stcos   ,    

         (51) 
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 ,   kpart

nr

r
rrrrkpartkfreek tkD ,

1
,,

~cossin   




nk ,.....,3,2,1     

        (52) 
or in the form 

      ,    tvNtkC k

ns

s
sssskpartkfreek 1,11,1

1
,, coscossin  





 nk ,.....,3,2,1        

         (53) 

     ,     tvNtkD k

nr

r
rrrrkpartkfreek 1,11,1

1
,, cos~~~cossin  





 nk ,.....,3,2,1    

         (54) 
For the case that one frequency external excitation, with reduced amplitude 

K
h ., 2,10

1,2,0

M
  is with frequency 1,2 , applied to the other first material particle n the 

other of the coupled real chains, then two subsystems of the main eigen chains are 
described by following subsystems of differential equations: 

 







  10

1cos
12

2 1,21,2,0
1 k

kth

K kk1kk
J       

        (55) 

 







  10

1cos
12

2 1,21,2,0
1 k

kth

K kk1kk
J  ,    

         (56) 
Particular and general solutions of these previous equations is not difficult to 

obtain analogous by previous procedure and changing corresponding indices of the kinetic 
parameters of the main chains. 

 
 

7. Consideration of the forced vibration regimes of a basic DNA model - linearized 
Kovaleva-Manevich‘s DNA model  

 
From expressions (21) and (22) is possible to consider possibilities of appearance 

resonant regimes in eigen main chains.  

For the case that determinants (21) and (22),      and 

 are equal to zero, then we obtain two sets of external excitation 

frequencies for which in the system appear resonant regime. But taking into account that 
eigen main chains have different sets of eigen circular frequencies as well as different sets 
of the resonant circular frequencies of external excitation, then we can conclude that if in 
one eigen main chain appear resonant regime in other no resonant regime. This is important 
fact to consider in the light of the real double DNA helix chain system.  

     02 1,1

1

1,1  




n
s

ns

s

n uvv

     0~~2~~
1,1

1

1,1  




n
r

nr

r

n uvv

Also by use expressions for amplitudes of the particular forced solutions is 
possible appearance of dynamical absorptions at corresponding main coordinate of main 
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eigen chain. To obtain external excitation frequencies at which appear dynamical 
absorption at first or second  main coordinate of the main chains are equal to zero: 
     

 

  
  

0

2 1,1

1

1
1,1

1

1

1,1,0

1 



















n
s

ns

s

n
ns

s

uv

uvh

N
s

 or   

  
  

0
~~2

~~

~

1,1

1

1
1,1

1

1

1,1,0

1 



















n
r

nr

r

n
nr

r

uv

uvh

N
r

 

         (57) 

  
  

0

2 1,1

1

2

2
1,1

2

1

1,1,0

2 



















n
s

ns

s

n
ns

s

uv

uvh

N
s

 or       

  
  

0
~~2

~~

~

1,1

1

2

2
1,1

1

1

1,1,0

2 



















n
r

nr

r

n
nr

r

uv

uvh

N
r

   

         (58) 
and next. 

   01
1,1

1

1

 



 n

ns

s
s

uv   or                     

         (59) 

  0~~ 1
1,1

1

1

 



 n

nr

r
r

uv 

   02
1,1

2

1

 



 n

ns

s
s

uv   or                         

         (60) 

  02
1,1

2

1

 



 n

ns

s
s

uv

 From the last conditions (59) and (60), we can conclude that: 
 * Dynamical absorption on the first pair of the main coordinates of the main 
chains appear on the resonate circular  frequencies  of the set of the double DNA helix 
chain system with one less pair of the material particles in comparison with the considered 
real system. 

* Dynamical absorption on the second pair of the main coordinates of the main 
chains appear on the resonate circular  frequencies  of the set of the double DNA helix 
chain system with two less pairs of the material particles in comparison with considered 
system. 

This mathematical fact is important to considered in the light of the interruption or 
break  of the double DNA helix chain system into finite parts. 
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8. The double DNA fractional order chain model on the basis of the linearized 
Kovaleva-Manevich‘s DNA models for free and forced vibrations 

 
8.1.  Constitutive relation of the standard light fractional order creep element.  
 

Basic elements of multi mathematical pendulum system or multi coupled chain system 
are: 

1* Material particles with mass , with each particle having one degree of motion 

freedom, defined by following coordinate 

km

k , when k  changes by Nk ,....,4,3,2,1 . 

2* Standard light fractional order coupling element of negligible mass in the form of 
axially stressed rod without bending, and which has the ability to resist deformation under 
static and dynamic conditions. Standard light creep constraint element for which the 
stress-strain relation for the restitution force as the function of element elongation is given 
by fractional order derivatives in the form  

 
       txctxctP t


D 0     (61) 

 

where  is operator of the  derivative with respect to time in the following 

form: 

 
tD th t

               
 

 





 





 d

t

x

dt

d
tx

dt

txd
tx

t

t  


01

1
D   (62) 

where  are rigidity coefficients–momentary and prolonged one,  and cc,   a rational 

number between 0 and 1, 10  . 
 

 

1,km  

2,kc  2,1kc
 

2,1kc  

 

1,1km  
1,1km  

1,1kc  1,1kc  1,kc  

 2,11,1  kkc  

2,km  2,km  2,1km  

 2,11,1  kkc   2,1,kkc  

 
Figure 3. Double DNK fractional order chain helix in the form of  multipendulum model with free 

ends 
 

1,km  

2,kc  2,1kc
 

2,1kc  

 

1,1km  
1,1km  

1,1kc  1,1kc  1,kc  

 2,11,1  kkc  

2,km  2,km  2,1km  

 2,11,1  kkc   2,1,kkc  

 
Figure 4. Double DNK fractional order chain helix d model in the form of multipendulum 

system  with fixed ends 
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8.2. The double DNA fractional order chain forced vibration model on the basis of the  
linearized Kovaleva-Manevich‘s DNA model 

 
 

For the fractional order forced vibrations of a fractional order double DNA chain 
model on the basis of the linearized Kovaleva-Manevich‘s DNA model, we accept a two 
chains as it is presented in Figure 3 or 4, in the form of the double chain fractional order 
system containing two coupled multi pendulum subsystem, in which corresponding 
material particles of the corresponding multi-pendulum chains are coupled by series of the 
same standard light fractional order elements.  

Let’s suppose that both  coupled chains from system of the fractional order  DNA 
model are excited  by the system of external excitation containing  two series of the one 

frequency excitations in the forms tk.,k 1.1,0 cosM

2,0 .,kM

 and , 

, where  and      are amplitudes, 

tk.,k 2.2,0 cosM

1.knk ,.....,3,2,1 1,0 .,kM   and     

frequencies  of the external forced couples each applied to one of the mass particles of the  
double DNA model coupled chains. Then, corresponding system of the nonlinear forced 
vibrations of the double DNA model coupled chains are in the following forms: 

2.k

Then, we can use system of the coupled fractional order coupled  differential 
equations extended by terms containing external excitation forces or couples.  Then, we can 
write corresponding system of the fractional order differential coupled equations in the 
form: 

 

        

 



   

     trrK
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k.,kt

t
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2

1

2
,

2,,
2

1

2
,
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,,
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,

,,
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4

1

1
4

1
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



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
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
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























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        
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
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t
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2
,

2,,
2

1

2
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4
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1
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

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


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


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
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
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
        (63) 

 
Previous system is possible to rewrite in the following form: 

 

        

 



   

     t
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,
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
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
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
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        
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

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





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

(64) 

 
 As our intention is to use previous double DNA fractional order chain model for 

the case of the homogeneous system parameters, we take into account that: = 

=K. and =  and taking into account that, we introduce notation (7) and 

(8) then the precious system of coupled fractional order differential equations is possible 
write in the following form: 

,,1kK

,2,kK  ,K  ,K

         

     t
K

K

k
.,k

t

t
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        
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





             

        (65) 

where 
K

K 


, . 

By using change of the generalized coordinates 1,k  and 2,k  for -th bases of 

both chains in the DNA model into following new 

k

k  and k  by the following 

dependence: 2,1, kkk      and   2,k1,kk   , previous system of 

differential equations (65) obtains the following form: 

     
   

t
K

t
K

K

k
.,k

k
.,k

tkkktkkk

2,
2,0

1,
1,0

1,111

coscos

22222
2



 

MM

DD kkkk

J  






 

         (66) 

 

t
K

t
K

K

k
.,k

k
.,k

kkktkkk

2,
2,0

1,
1,0

1,11,1

coscos

222
2



 

MM

D kk

J  


, k n,.....,3,2,1  

        (67) 
First series (66) and second series (67) of the previous system (64)-(65) of the 

fractional order differential equations are decoupled and independent. Then, we can 

conclude that new coordinates k  and k  are main coordinates of fractional order double 
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DNA helix chain model system for forced vibration regimes and that we obtain two fictive 
decoupled eigen single fractional order chains of the double DNA fractional order model. 
This is also one of the fundamental conclusion as an important property of the fractional 
order homogeneous model of forced vibrations in a fractional order double DNA 
homogeneous  helix.   

Systems of fractional order differential equations (66)-(67) contains two separate 

subsystems of fractional order differential equations expressed by coordinates of k  and 

k  which are main coordinates of a fractional order double DNA chain helix forced 

vibration model and separate DNA fractional order  model into two independent fractional 
order chains.  

 
8.3. Analytical solutions of the subsystems of the main chains fractional order 
differential equations for forced regime oscillations 

 
  We solve previous subsystems (66) and (67) through the use of Laplace 
transformations. After conducting Laplace transformations of the previous systems (66) and 
(67) of differential equations with fractional order derivative and having in account that we 
introduced notations   tk L  and   tkL  for Laplace transformations, as well as having 

in mind, that we accepted the hypothesis that the initial conditions of fractional order 

derivatives of the system are given through the use of:  
0

0

1

1








t

k

dt

td


    and  
0

0

1

1








t

k

dt
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

   

,  as well that is 

    
2
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

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
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MMMM

L    

         (68) 

where  k0  and    as well as k0 k0 and  k0  are initial angular positions and angular 

velocities defined by initial conditions of system material particles dynamics in the chains 
at initial moment, we can write the following system of the equations with unknown 
Laplace transforms: 

   
               
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         (69)  
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J  
 LDLLLLL 

,

              (79) nk ,.....,3,2,1
Previous system is possible to rewrite in the following form: 
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         (80) 
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         (81) 
Now, we have two separate, uncoupled non homogeneous subsystems of the 

algebraic equations in the following forms: 
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         (82) 
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         (83) 
or in the following forms: 

            2,01,0
2

2,
2

1,0011 ,,,,,,2 kkkkpkkkhkkkk hhphphtv     LLL   

         (84) 

           2,01,0
2
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         (85) 
where  
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         (86) 
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2
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         (87) 
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k
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         (88) 
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       





  pp

p
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p
hhhph

k
k
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2

2,
2
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         (89) 
Both subsystems are same form and it is necessary to solve one of the subsystems 

and by use analogy is easy to solve other of the subsystem equations. For that reason we 
can use method proposed in the papers [14] amd [20]. Determinate of the previous 
subsystem (84) as well as (85) are in following form (21) as well as (22) by similar way as 
for the subsystems of algebra equations in paragraph 5.. 

Determinates of the previous algebra subsystem (84) as well as (85) are in the 

same form as it is presented in (21)-(22). 

Next consideration we focus to  the case: 

            

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
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10

1,,,,,,,
2 2,011,01

2
2,1

2
1,1101011

11
k

khhphph
tv ph

kkk
 


LLL           

         (90) 

           









 
10

1,,,,,,
2 2,011,01

2
2,1

2
1,1101011

1,1
k

khhphph
u ph

kkk
 


LLL           

         (91) 

By introduce the notation    2,01,0
2

2,1
2

1,101011 ,,,,,, kkh hhphph      and 

   2,011,01
2

2,1
2

1,1101011 ,,,,,, hhphph ph   

 

 defined by (86)-(87), for the 

determinants  hvk ,
~
 , we can write similar expressions as defined by (21)-(22) changing 

expressions   0101,, 
ph  by expressions    2,01,0

2
2,1

2
1,101011 ,,,,,, kkh hhphph      as 

well as by    2,011,01
2

2,1 ,, hh2
1,1101011 ,,,, phph ph    . 

For solving the system of the algebraic no homogeneous equations (90) or (91) 

with respect to unknown Lapalce transforms   tkL  or   tkL   of the time function 

main coordinate   tk  and  tk - unknown normal chain coordinates of the system main 

chains for forced vibrations, we can use Cramer approach by similar way as in the 
paragraph 5. 
  

8.4. Forced eigen modes of the subsystems of the main chains of a fractional order 
double DNA helix chain system forced vibrations 
 

In this part we start by two subsystems of fractional order differential equations 

(66) and (67) expressed by eigen normal chains coordinates 2,1, kkk      and  

2,1, kkk   , and we can rewrite these subsystems in the following form: 
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    

thth
K

kkkk

kkkt

2.2,,01.1,,0

1,11

coscos

1212
2



   
 Dkk1kk

J 
,      

                                           

         (92) 
nk ,.....,3,2,1

   
thth

K

kkkk

kkkt

2.2,,01.1,,0

1,11

coscos

212
2



   
 Dkk1kk

J  ,

                                                        

         (93) 
nk ,.....,3,2,1

Without loosing generality, we focused our next interest to consider two 
subsystems of the fractional order differential equations in the following form: 

    







  10

1cos
1212

2 1.11,1,0
1,11 k

kth

K kkkt  
Dkk1kk

J 

                              

         (94) 

nk ,.....,3,2,1

   







  10

1cos
212

2 1.11,1,0
1,11 k

kth

K kkkt  
 Dkk1kk

J 

                                 

         (95) 

nk ,.....,3,2,1

Previous two subsystems are for the case of fractional order  forced vibrations of a 
double DNA helix chain system excited by one single frequency external couple 

, with amplitude  and frequency t., 1,11,10 cosM 1,10 .,M 1,1 , applied to the first  mass 

particle in the first chain of a double DNA helix chain system.  
First series (94) and second series (95) of the previous system (94-(95) of the 

fractional order differential equations for forced vibrations are decoupled and independent. 

Then, we can conclude that new coordinates k  and k  are main coordinates of fractional 

order double DNA helix chain model system for forced vibration regimes and that we 
obtain two fictive decoupled eigen single fractional order chains of the double DNA 
fractional order model. This is also one of the fundamental conclusion as an important 
property of the fractional order homogeneous model of forced vibrations in a fractional 
order  double DNA homogeneous  helix.   

Systems of the fractional order differential equations (94)-(95) contains two 
separate subsystems of fractional order differential equations expressed by coordinates of 

k  and k  which are main coordinates of a fractional order double DNA chain helix 

forced vibration model and separate DNA fractional order chain  model into two 
independent fractional order main chains.  

For first main chain of the double DNA chain helix  (94), the eigen amplitudes for 

free vibrations are in the form  
ss

s
k kCA sin  and generalized coordinates  tk  of 

the first main chain for forced vibrations is possible to express by set of this eigen main 

chain main coordinates  s  for free vibrations in the following form: 
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  



n

s
ssk kt

1

sin                                           (96) 

nk ,....,3,2,1  

as well as for other main chain of the double DNA chain helix  (95) generalized coordinates 
 tk  of the second main chain for forced vibrations is possible to express by set of this 

eigen main chain main coordinates  s  for free vibrations in the following form: 

  



n

s
ssk kt

1

sin                              (97) 

Normal coordinates  s  or normal modes of the first main chain for forced 

vibrations is possible to express in the similar form as for free vibrations, but introducing 

suppositions that unknown amplitudes   and phase sC s  depend of initial conditions are 

not constant, but functions of time,  tCs  and phase  ts , and for fractional order system 

main coordinate are in the form 
      tttCt sss    cos , ns ,....,3,2,1       (98) 

with known frequencies (see Refs. [25] by Hedrih and Hedrih , [29] by  Rašković P. 
Danilo) and unknown time functions - amplitudes  tCs  and phase  ts  depending of 

time and initial conditions.  
Then, we introduce expressions (96) and (97) and their corresponding second and 

fractional order derivative into subsystem of the fractional order differential equations (94) 
and (95), we obtain the following systems:  
          

     

     































10

1cos
1sinsin121sin

1sinsin121sinsin
2

1.11,1,0

111

1111

k

kth
kkk

kkkk
K

n

s
ss

n

s
ss

n

s
sst

n

s
ss

n

s
ss

n

s
ss

n

s
ss












D

J

                                      

         (99) 
nk ,.....,3,2,1

        

     

   


































10

1cos

1sinsin21sin

1sinsin121sinsin
2

1.11,1,0

111

1111

k

kth

kkk

kkkk
K

n

s
ss

n

s
ss

n

s
sst

n

s
ss

n

s
ss

n

s
ss

n

s
ss












D

J

       

         (100) 
                         nk ,.....,3,2,1

After made a group sublimations of the some terms in previous equations (99), we 
obtain the following subsystem: 
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     
















 



10

1cos

sincos12
2

cos1
2

2
2

1.11,1,0

1

k

kth

k
KK

K

n

s
sstsss  


 D

JJ

J 

       

         (101) 
nk ,.....,3,2,1  

Then taking into account denotations      
         (102) 







    2

sin2
2

2 s
s

K

J
, ns ,....,3,2,1   







    2

sin2
2

22 s
s

K

J
, ns ,....,3,2,1                  

         (103) 







    2

sin2
2

22 s
ss

KK

JJ
, ns ,....,3,2,1                    

         (104) 
previous subsystem of fractional order differential equation (101) is possible to rewrite in 
the following form: 

 













 


10

1cos
sin

2

2 1.11,1,0

1

2

k

kth
k

K

K

n

s
sstssss  


 D

J

J  ,

                       

        (105) 

nk ,.....,3,2,1

Taking into account that it is possible to develop (to express) right hand side into 
series according to  sksin  in the following series:  

 

















 


10

1cossin
2

10

1cos
1

1.11,1,01.11,1,0

k

ktkh
Kk

kth
n

s
ss J

               

        (106) 
where  

  

  10

1

sinsin

sin

2

1,1,0

1 1

1
1,1,0

1,1,0





 







kh

k

kk

kh
K

h

s

sr

n

s

n

r
rs

n

s
s

s





J                   

         (107) 
equations (101) is possible to rewrite in the following form: 

                 0sincos
2

1
1.11,1,0

22 


n

s
ssstssss kth

K
 


 DJ

, nk ,.....,3,2,1   

         (108) 
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Then, taking into account that  0sin sk in general case, from (108) is possible 

to obtain the following subsystem of fractional order differential equations: 

    th sstssss 1.11,1,0
22 cos 


  D , ns ,....,3,2,1                 

        (109) 

where  are square of eigen circular frequencies determined by expression (103) and 

 corresponding eigen characteristic  numbers expressing fractional order subsystem 

properties, determined by expression (104).  

2
 s

2
 s

In analogous way, taking into account denotation  







   

22
2 ss K

J  , ns ,....,3,2,1      

         (110) 

 





    2

sin2
2

22 s
s

K

J
, ns ,....,3,2,1      

         (111) 

2
sin

2
4 22 s

s

K   J
 , ns ,....,3,2,1      

         (112) 
and by use (100), is possible to obtain the second subsystem of fractional order differential 
equations in the following form: 

    th sstssss 1.11,1,0
22 cos 


  D , ns ,....,3,2,1                 

        (113) 

where  square of eigen circular frequencies determined by expression (111) and  

corresponding eigen characteristic numbers expressing fractional order subsystem 
properties, determined by expression (112).  

2
s

2
s

Then we have system of fractional order differential equations (109)-(1113) 
describing system of  fractional order oscillators, containing two subsets of the main 
fractional order forced oscillators, each described by n  fractional order differential 
equations. Each of these  fractional order differential equations, contain only one main 

eigen coordinate 

n2

n2

 s  or  s   of the system. 

The system (109)-(1113) represent the main fractional order forced oscillators 
along  independent system main coordinates   s  or  s  , ns ,....,3,2,1  each with one 

circular frequency of external excitation and one eigen circular frequency  and one eigen 

characteristic number from one of the two sets of:  or  eigen circular frequencies 

determined by expression (103) or (111)  and  or   corresponding eigen 

characteristic  numbers expressing fractional order subsystem properties, determined by 
expression (104) or (112). 

s

2
 s

s

2
s

  All of fractional order differential equations of the system (109)-(1113) are same 
type and is possible to solve by same way by use Laplace transform   tsL  and   tsL . 

Applying Laplace transform to the system (109)-(1113) of the fractional order differential 
equations, we obtain the following system of the equations: 
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           tht sstssss 1.11,1,0
22 cos LDLLL 


  ,       

         (114) 

ns ,....,3,2,1

            tht sstssss 1.11,1,0
22 cos LDLLL 


  ,      

         (115) 

ns ,....,3,2,1

 Taking into account that  

      
 


sss

s ptp
dt

td
00

2
2

2














LL , ns ,....,3,2,1                  

         (116) 

      
 


sss

s ptp
dt

td
00

2
2

2














LL , ns ,....,3,2,1      

        (117) 

 
2

1,1
21,1cos




p

p
tL                          

        (118) 

   

















s

t

s
s

s p
dt

d
p

dt

d
LLL 


















0

1

1

, ns ,....,3,2,1                 

        (119) 

   

















s

t

s
s

s p
dt

d
p

dt

d
LLL 


















0

1

1

, ns ,....,3,2,1                          

         (120) 
and after introducing into system (118)-(119) for Laplace transform   tsL  and   tsL  

of system double DNA helix chain eigen main coordinates  s  and  s   we obtain: 

              
 

 
  2

1,1
2222

1,1,0
222
00









p

p

pp

h

pp

p

ss

s

ss

ss
s 







 





L , ns ,....,3,2,1   

         (121) 

              
 

 
  2

1,1
2222

1,1,0
222
00









p

p

pp

h

pp

p

ss

s

ss

ss
s 







 





L , ns ,....,3,2,1   

         (122) 
Then, for obtaining system double DNA helix chain eigen main coordinates 

 ts  and  ts   is necessary to applied inverse of Laplace transform to the expressions 

(121)-(122). 
Then, we can write the following: 
 

     ttt partsss ,hom,         (123) 

 and  
     ttt partsss ,hom,           (124) 

where  
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a*  ts hom,  and  ts hom,   are terms correspond to solutions of the 

homogeneous fractional order differential equations and solutions are in the following 
forms (see Appendix (A.1)-(A.3) and (B.1)-(B.16)): 
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 b*  tpars ,  and  tpars ,   are terms correspond to particular solutions 

of the no homogeneous fractional order differential equations system (121)-(122) and 
solutions must to obtain as a inverse transform of the following expressions: 
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or in developed form 
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. Concluding remarks  
 

at new coordina

9

At the end, we can conclude th tes of k  and k  composed to 

generalized coordinates by the way 2,1, kkk    and 2,1, kkk   . These 

coordinates  are main coordinates of the main eigen chains of a double DNA helix chain 
system. Also we can conclude that it is possible to obtain two fictive decoupled and 
separated eigen single chains of the double DNA chain helix liner model as well as 
fractional order model. This is important fundamental conclusion as an important property 
of the lin

inear system but under certain condition its behavior can be describe 
by linear

ossible to extend to the fractional order double helix DNA chain system 
forced vi

art of DNA chain witch is template has to make more movements than the 
other ch

ith one less pair of the material particles in comparison with the considered real 
system.  

n resonate circular frequencies different 
from the

stem with two less pairs of the material particles in comparison with considered 
system. 

helix chain system on the specific places where the transcription 

Acknowledgements 

ear model of vibrations in a double DNA helix.  
Considered as a linear or fractional order mechanical system, DNA molecule as a 

double helix chain system has its eigen circular frequencies and that is its characteristic. 
Mathematically it is possible to decuple it into two chains with their eigen circular 
frequencies which are different. This may correspond to different chemical structure (the 
order of base pairs) of the complementary chains of DNA. We are free to propose that each 
specific set of base pair order has its eigen circular frequencies and it changes when DNA 
chains are coupled in the system of double helix. DNA as a double helix in a living cell can 
be considered as nonl

 dynamics.  
By use superposition’s of these solutions for the case that external excitations are 

with same amplitudes and frequencies from system differential equations, we can see that 
for this case external one frequency excitations in one eigen main chain appear pure free 
vibrations with eigen subset of circular frequencies of its free vibrations, and in other 
appear forced vibrations. This conclusion is possible to generalize for same multi-
frequency external excitations applied in which of the pair material particle in both chains. 
This conclusion is p

brations. 
This solutions may correspond with process of binding the enzyme to the specific 

part of the DNA molecule. Enzyme has a role of inducer of forced vibrations. In the 
transcription process only one chain is used as a template for transcription other chain is 
control. The p

ain.  
Dynamical absorption on the first pair of the main coordinates of the main chains 

appear on the resonate circular  frequencies  of the set of the double DNA helix chain 
system w

Resonant state that appear only in one main chain may be important for 
selecting the specific sequence for transcription and we suggest that every sequence of 
DNA that encodes the specific protein has its ow

 sequences that encode other proteins.  
Dynamical absorption on the second pair of the main coordinates of the main 

chains appear on the resonate circular  frequencies  of the set of the double DNA helix 
chain sy

This mathematical fact is important to consider in the light of the interruption or 
break of the double DNA 
process starts and ends. 
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NOMENCLATURE  

 DNA – Deoxyribonucleic acid (DNA) 

1,k [ rad ] - generalized coordinate – angles of the -th base of the first chain of the 

double DNA chain helix;  

 k

2,k [ d coordinate – angles of the k -th f the second chain of the 

double DNA chain helix;  

J  [ 2kgm ]- is the axia

rad ] - generalize base o

a

1k , l moment of mass inertia of the -th base of the first chain of the 

double DNA chain helix; 

J [ 2kgm ]- is the axial mo

k

2,k ment of m ss inertia of the k -th base of the second chain of 

the double DNA chain helix;  

1,k [rads-1] - angular velocity of the k -th base of the first chain of the he double DNA 

chain helix;   

base pair the axial moments of mass inertia ; 

 of the base mass  

] - the length 

base uthors acce

[KJm rs characterize the energy of interaction of the -th 

2
r1 , 2

2,  rm1kJ  [ 2kgm ] -  the , mkJ

 kg ]- the valuem  [

r [ m
2m  [ 2kgm ] - the corresponding axial mo, r1kJ ment of mass inertia for all possible 

pair a pted as in the  Reference  [17].  

ikK , , 2,1i ol-1]- paramete 

with the (

k

base k 1) h one alon-t g  

the -th chain i i 2,1 .  

K 1]-KJmol[106 3
, Kik - for the calculation that the most appropriate value is 

close / 
 

k ,  k  [ rad ], k ,.....3,2,1 n,  - main orthogonal coordinates of the eigen main chains 

of the double DNA chain helix; 
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2,1, kkk       and  2,1, kkk   , nk ,.....,3,2,1  - functional dependence 

between main orthogonal coordinates k and  k  of the eigen main chains and generalized 

coordinates 1,k  and 2,k  [ ] of the double DNA chain helix; rad

2 [ ] - are frequencies of rotational motions of the bases,  in similar and opposite 

directions accordingly, of the k -th base of the first chain of the  

1sec

double DNA chain helix; 

1  [ ] - are frequencies of rotational motions of the bases, in similar and opposite 

directions accordingly, of the k -th base of the first chain of the  

1sec

double DNA chain helix; 

KKK kk  2,1,  - for the case of homogeneous double DNA chain helix; 

JJJ 2k1  ,,k   [ ] - for the case of homogeneous double DNA chain helix; 2kgm

kA - amplitude 

  u=JK-1ω2- eigen characteristic number of the homogeneous double DNA chain helix; 

  k= 2K-1{1- 
K 2 1 -1)  2 rr  - parameter of the homogeneous double DNA 

chain helix; 

μ=   rrrK  K-1 - parameter of the homogeneous double DNA chain helix; 

2
s [ ], 2sec

ns ...,4,3,2,1 - set of the  eigen circular frequencies of the first eigen main 

chain of the homogeneous double DNA chain helix; 

n

2
s [ ],2sec

ns ...,4,3,2,1  - set of the  eigen circular frequencies of the first eigen main 

chain of the homogeneous double DNA chain helix; 

n

2
s  and ,  -two subsets of the set of the homogeneous double DNA 

chain helix; 

2
s ns ...,4,3,2,1

 
APPENDIX  A*  

Expansion of the Laplace transform into series. 
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APPENDIX  B* 

  Solution of a fractional order differential equation of a fractional order creep 
oscillator with single degree of freedom 

The fractional order differential equations obtained and considered cases of eigen 
fractional order partial oscillators of the hybrid fractional order multichain system are in 
mathematical analogy same fractional order differential equation with corresponding 

unknown time-functions. We can use notation  tT  and  all previous derived fractional 

order differential equations of eigen fractional order partial oscillators with one degree pf 
freedom, correspond to the hybrid fractional order multi-chain  system dynamics with sixth 
degree of freedom, we can rewrite it  in the following form: 

         02
0

2  tTtTtT  


           (B.1) 

This fractional order differential equation (B.1) on unknown time-function ,  

can be solved applying Laplace transforms (see Refs. [3] by Bačlić and Atanacković 
(2000), [23] by Hedrih (Stevanović)  and Filipovski (2002)). Upon that fact Laplace 
transform of solution is in form:  

 tT

 
        

 












pp

TpT
tTp

R
2
0

2
2
0

2 1

00




 


LT

      (B.2) 

where          tTLL ptTt RD  is Laplace transform of a fractional derivative  




dt

tTd for 

10  . For creep rheological material those Laplace transforms the form: 

               00 1

1

1

1

T
dt

d
tTpT

dt

d
tTptTt 







 







 LLL RD       (B.3) 

where the initial value are: 

  
0

0

1

1








t
dt

tTd



       (B.4) 

so, in that case Laplace transform of time-function is given by following expression:  

    2
0

22
00

 
 



pp

TpT
tT


L                     (B.5) 

For boundary cases, when material parameters   take following values: 0  i 1  we 
have the two special simple cases, whose corresponding fractional-differential equations 
and solutions are known. In these cases fractional-differential equations are:  

1*         0~ 2
0

02
0  tTtTtT  

  for  0                    (B.6) 

where  , and      tTtT 0

2*        02
0

12
1  tTtTtT  

  for 1     (B.7) 

where     tTtT 1 . 

The solutions to equations (B.6) and (B.7) are: 
1*   2

0
2
02

0
2
0

02
0

2
00

~sin
~

~cos 



 


 


 t
T

tTtT
        (B.8) 

for 0 . 
2* a. 
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 


























4

sin

4

4
cos

4
12

04
12

0

0
4

12
00

2

2
1






 







 t

T
tTetT

t 

          (B.9) 

for  1  and for  2
10 2

1
  . (for soft creep) or for strong creep: 

2* b.   

 

























 2
0

4
1

2
0

4
1

02
0

4
1

0
2

4

4

4

2
1








 




 

tSh
T

tChTetT
t 

        (B.10) 

for  1  and for 2
10 2

1
  . 

For critical case: 

2* c.  








 t
T

TetT
t

2
1

0
0

2
2

2
1







   for 1    and  2
10 2

1
  .   (B.11) 

 
Fractional-differential equation (B.1) for the general case, when   is real number from 
interval 10    can be solved by using Laplace's transformation. By using that is:  

         tTp
dt

tTd
tTp

dt

tTd

t

LLL 























0

1

1

                   (B.12) 

and by introducing  for initial conditions of fractional derivatives in the form (B.3), and 
after taking Laplace's transform of the equation (B.1), we obtain a corresponding equation. 
By analyzing previous Laplace transform (B.12) of solution we can conclude that we can 
consider two cases. 

For the case when  , the Laplace transform solution can be developed into series by 

following way: 

02
0 

  












2222
  pp


































2
0

2

0
02

0
2

2

00

1

11

1  
p

pp

T
T

pp

TpT
tT


L

     (B.13) 

    
























0
2

2
0

2

2
0

0

11

k

k

k

kk

p
ppp

T
TtT








L
                   (B.14) 

        

 


 





















0 0
2

2

2

2
0

0

111

k

k

j
j

o

kjjj

k

kk p

j

k

ppp

T
TtT


 


 

L          (B.15) 

In writing (B.15) it is assumed that expansion leads to convergent series. The inverse 
Laplace transform of previous Laplace transform of solution (B.15) in term-by-term steps is 
based on known theorem, and yield the following solution of differential equation (B.1) of 
time function in the following form of time series: 
    

     
 

   
   



 






 



























0 0
2

2
122

0
0 0

2

2
22

0

1

22

1
1

12

1
1

k

k

j
j

o

jjj
kkk

k

k

j
j

o

jjj
kkk

jk

t

j

k
tT

jk

t

j

k
tTtT

tTtT





















LL
      

          
(B.16) 
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ABSTRACT. Angular velocities of the basic vectors of tangent 
spaces of the position vectors of mass particles of the discrete 
rheonomic mechanical system are obtained in different 
coordinate systems. Starting from real three dimensional 
coordinate systems of Descartes orthogonal three dimensional 
system type with fixed coordinates axis as a reference, by 
different coordinate transformations for each position vector of 
corresponding mass particle in discrete rheonomic mechanical 
system, basic vectors of position vector tangent three 
dimensional spaces are obtained in different curvilinear 
coordinate systems suitable to the corresponding geometrical 
scleronomic or rheonomic constraints applied to the considered 
rheonomic system. For each basic vector of the basic triedar of 
position vector tangent space of each mass particle of the 
discrete rheonomic mechanical system, angular velocity vectors 
of basic vector rotations are determined.  
Then, after consideration and analysis of the number and 
properties of the geometrical scleronomic and rheonomic 
constraints applied to the mass particles of the considered 
discrete rheonomic mechanical system, number of system degree 
of mobility as well as number of system degree of freedom are 
determined. Corresponding number of independent coordinates 
are chosen and corresponding rheonomic coordinates are 
introduced. By use extended set of the generalized coordinates 
contained corresponding number of independent coordinates and 
corresponding number of rheonomic coordinates,   position 
vectors of the mass particles of the discrete rheonomic 
mechanical system,  are separated into two subsets. 
First subset contain position vectors of the mass particle, keep 
their three dimensional tangent space each with three basic 
vectors.  
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Second subset contain position vectors of the mass particle, each 
depending, in general case, of the all generalized coordinates, 
independent and rheonomic. Then, each of the position vectors 
are with -dimensional tangent spaces and with  basic 

vectors.   

p p

 
Keywords: Position vectors, tangent space, basic vectors, 
angular velocity, rheonomic constraint, mobility, velocity of 
basic vector extension, -dimensional tangent spaces. p

 
1. Introduction 
 

Let consider a discrete system with mass particles wirh mass , and  with 

corresponsing position in real three dimensional space determined by geometrical point 
,

N m

 N N,...,3,2,1 (see Figure 1). For begining we take that positions of the material 

points, as well as corresponding geometrical points coordinates are determined by 
coordinates in fixed orthogonal Descartes coordinate system with three coordinates as 
denoted by          zy ,, xN . N,...,3,2,1 , where O  is fixed coordinate origin, and 

,  and  Oz  fixed oriented coordinate strain lines-coordinate axes. Coordinates of 

the position vector of each material point are equal to coordinate of the geometrical point 
which determine mass particle position in the space. For Descartes coordinate system for 
position of the each mass particle  we can write: 

Ox

 

Oy

      zyx   yix    kzj


   ,, , N,...,3,2,1 . 

Let, now,  to consider previus discrete system with mass particles wirh mass 
, and  with corresponsing position in real three dimensional space determined by same 

geometrical points ,

N

m

 N N,...,3,2,1  in generalized coordinate system of curvilinear 

coordinates       3
 ,...,3,2,12, q1, qq  N  corresponding to mass particle positions. For 

same geometrical points coordinates in considered two coordinate systems are:  

         z, yx ,N . N,...,3,2,1  and         321 ,,  qqqN  N,...,3,2,1 .. Formule of 

coordinate transformation from previous coordinate system with fixed axes and ne 
curvilinear coordinate system are: 

          321 ,,  qqqxx   

          321 ,,  qqqyy        (1) 

          321 ,,  qqqzz   

Position vectors of each mass particle and corresponding geometrical points are 
invariant geometrical objects in both coordinate systems, but their coordinates in 
considered coordinate systems are not equal to coordinates of the corresponding 
geometrical point. In generalized coordinate system  eometrical points 

,

g

 N N,...,3,2,1  have following coordinates:       321 ,,  qqq  N,...,3,2,1 and 
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coordinate of position vectors of these geometrical points are 

      321 ,,   , N,...,3,2,1 . For position vectors we can write: 

                       321
.

,,   qqqkzjy
vektorinvdef 

,  ixz, yx
 

  (2) 
 

                                         3
3213

2
3212

1
3 ,,,,,   gqqqgqqqgq

211 ,  qq321 ,,  qqq
 



N,...,3,2,1


         
 (3) 
 For first example in polar-cylindrical coordinate system geometrical points have 
the following coordinates:          N,...,3,2,1  and position vectors N  zr ,,

          zr ,,


 of corresponding geometrical point are:  and we can write:   zr ,0,  

    r       rrz o           kzrrkzc o


 (4)  ,

N,...,
  ,

3,2,1
  00

 
 

where , and  or


 0c


k


, N,...,3,2,1  are basic unit vectors of tangent space of  

corresponding position vector in polar-cylindrical coordinate system. 
 

For second example in spherical coordinate system geometrical points have the 
following coordinates:         N  N,...,3,2,1  and position vectors   ,,

          ,,


 of corresponding geometrical point are:  , 0,0  and we can write: 

                     


0000 00


,,  c   (5) 
N,...,  3,2,1

 0


  0


 0c


, N,...,3,2,1where , and   are basic unit vectors of tangent space of  

corresponding position vector in polar-cylindrical coordinate system. 
 

 tT2


 

 tv


 

km  

1q  

2q  

 tF


fgradFw 
  

 tT1


 

  0,, zyxf  

 zyx ,,  

S  

sd


 

kr


 

 

1m  

O  

2m  

im  
km  

Nm  

1r

N


 

2r


 

kr


 

ir


 

Nr


 

kiF


 

1kF


 
2kF


 

kNF


 

12F


 

iF2

z
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iNF

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
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Figure 1. Disrete material system with  mass particles and gepmetrical 

rheonomic constraints 
N
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2. Basic vectors of the position vector three-dimensional tangent space in 
generalized curvilinear coordinate systems 
 
 In real two-dimensional coordinate systems, position vector tangent spaces are tro-
dimensional and the basic vectors of the tangent spaces of each position vector of each 
mass particle we denote with ,  ig 


N,...,3,2,1 , 3,2,1i  (see Figure 2). These vectors 

are in tangent directions to the corresponding curvilinear coordinate line and I general are 
not unit vectors. Basic vectors is possible to obtain by following way (for detail see Refs. 
[2], [3] and [4]): 

  
 

 
ii

q
g
















, N,...,3,2,1 ,  3,2,1i     (6) 

or by formula coordinate transformation and by following expressions: 

 
 

 

        
 

        
 

        
 

k
q

qqqz
j

q

qqqy
i

q

qqqx

q
g




1

321

1

321

1

321

11

,,,,,,






































     

 
 

 

        
 

        
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 Contravariant coordinates of the position vectors is possible to obtain by following 
formulas: 
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Figure 2. A position vectors and its three-dimensional space with corresponding 

curvilinear coordinate system and tangent space with corresponding three basic vectors of 
the position vector tangent spaces along mass particle motion through time 

 
3. Change of the basic vectors of the position vector three-dimensional tangent space in 
generalized curvilinear coordinate systems 

 
 Without loosing generality, we consider change of basic vectors of the a position 
vector of one mass particle during mass particle motion through real space and described in 
three-dimensional space. Also we focused our attention to the orthogonal curvilinear 
coordinate system. For that case change (first derivative) with time of the basic vectors of 
tangent space of a position vector are: 
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         (8) 
 After analysis of the obtained derivatives of the basic vectors of position vector 
tangent spaces in three-dimensional orthogonal curvilinear coordinate systems we can 
separate two sets of the terms in obtained expressions (8).  First set correspond to the 
relative derivative of the corresponding basic vectors in the following forms: 
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These vectors present vector forms of extensions of the 
corresponding basic vectors and in scalar form is possible to express relative 
change of the intensity – dilatation of the basic vectors in direction of its 
previous kinetic state. In differential form is possible to write: 
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From analysis of the obtained derivatives of the basic vectors of position vector 
tangent spaces in three-dimensional orthogonal curvilinear coordinate systems we can 
separate second set of the terms in obtained expressions (8).  Second set correspond to the 
rotation  change of the corresponding basic vectors in the following forms: 
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where we introduce notation 1p


, 2p


 and 3p


 for vectors of the angular velocities of the 

corresponding basic vectors of the position vector  tangent space. When curvilinear 
coordinate system is not orthogonal and angles between three basic vectors are changeable 
with time these angular velocities are different for each basic vector. When basic vectors 
are orthogonal and without change orthogonal relation, all three angular velocity are same.     
 For the case of the discrete mechanical system mass particles for each vector 
position of each mass particle is necessary, by analogous way as presented in previous part, 
is possible to determine change of the basic vectors of tangent space of position vectors.  
For that case for first basic vector of each position vector tangent space, we can write: 

N
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 
                             
              33

13
23

12
13

113

32
13

22
12

12
112

31
13

21
12

11
111

1






qqqg

qqqgqqqg
dt

gd










 
N,...,3,2,1        (12) 

After analysis of the obtained derivatives of the basic vectors of position vector 
tangent spaces for each mass particle, in three-dimensional orthogonal curvilinear 
coordinate systems, we can separate two sets of the terms in obtained expression (11) and 
corresponding for other two sets of the basic vectors.  First set correspond to the relative 
derivative of the corresponding basic vectors in the following forms: 

                31
13

21
12

11
111

*

1  qqqgg 
 , N,...,3,2,1  

                32
23

22
22

12
212

*

2  qqqgg 
 , N,...,3,2,1  (13) 

                33
33

23
32

13
313

*

3  qqqgg 
 , N,...,3,2,1  

These vectors present vector forms of extensions of the 
corresponding basic vectors and in scalar form is possible to express relative 
changes of the intensities – dilatations of the basic vectors in direction of 
their previous kinetic state. In differential form is possible to write: 

 
 

 
           

31
13

21
12

11
11

1

1
1 




 qqq

g

gd
d 


 , N,...,3,2,1  

 
 

 
           

32
23

22
22

12
21

2

2
2 




 qqq

g

gd
d 


 , N,...,3,2,1  (14) 

 
 

 
           

33
33

23
32

13
31

3

3
3 




 qqq

g

gd
d 


 , N,...,3,2,1  

From analysis of the obtained derivatives of the basic vectors of position vector 
tangent spaces for each mass particle in three-dimensional orthogonal curvilinear 
coordinate systems, we can separate second sets of the terms in obtained expressions (8).  
Second set correspond to the rotation  change of the corresponding basic vectors in the 
following forms: 

                                  33
13

23
12

13
113

32
13

22
12

12
11211,  qqqgqqqggp 



 

                                  33
23

23
22

13
213

31
23

21
22

11
21122,  qqqgqqqggp 



                                



 

32
33

22
32

12
312

31
33

21
32

11
31133,  qqqgqqqggp 

N,...,3,2,1         (15) 
where we introduce notation   1p


,   2p


 and   3p


 for vectors of the angular velocities 

of the corresponding basic vectors of the position vector  tangent spaces. When basic 
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vectors are orthogonal and without change orthogonal relation, all three angular velocity are 
same.     
 For example 1*: in polar-cylindrical curvilinear coordinate system by expressions 
(8), (9), (10)  and (11) we can write (see Figure 3.a*): 

   r
r gg

r
c

dt

rd
ji

dt

gd

dt

gd 





,
1

cossin Pr0
01     

  
  ggrrcr

dt
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dt

gd

dt

gd
P





,00

0
0

2 


 

 03 
dt

kd

dt
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dt

gd z


 

0rg


,   
r

dr

g

gd
d r 



 


,   k



 Pr  

 g
r

r
crg






0 ,  kP



   ,  0



zg


,   0Pz


 

Angular velocities of the basic vectors of each position vector tangent space of 

mass particle motion in polar-cylindrical curvilinear coordinate systems are:    kP



   , 

N,...,3,2,1 . 
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Figure 3. A position vectors and its three-dimensional spaces with corresponding curvilinear 
coordinate system and tangent space with corresponding three basic vectors of the position vector 

tangent spaces along mass particle motion through time 
a* polar-cylindrical curvilinear coordinate system; b* spherical curvilinear coordinate system 

 
For example 2*: in spherical curvilinear coordinate system  by expressions (8), 

(9), (10)  and (11), we can write (see Figure 3.b*): 


 





 ggc

dt

gd

dt

gd 


11
cos 00

1   

    cossincossincos 000
2 


 c

dt

gd

dt

gd  
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 000
3 sin  
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Angular velocities of the basic vectors of each position vector tangent space of 
mass particle motion in spherical curvilinear coordinate systems are: 
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4. Dimensional extension of the position vector tangent spaces of the reheonomic 
mechanical system in generalized curvilinear coordinate systems 
 
 Considered discrete mechanical system is constrained by  geometrical stationary  
constraints in the form: 

G

                   0,,,........,,,,,, 3213
2

2
2

1
2

3
1

2
1

1
1 NNN qqqqqqqqqf , G....3,2,1     

(16) 
and by geometrical rheonomic constraints in the form (see ref. [3]): R

                     0,,,,........,,,,,, 3213
2

2
2

1
2

3
1

2
1

1
1 tqqqqqqqqqf NNN   , R....3,2,1

 (17) 
Considered system is rheonomic system with GNp  3  degree of the system mobility, 

and with  degrees of the freedom. For the n generalized independent 

coordinates we take  , .  Also we introduce additional subsystem of the  

rheonomic coordinates 

RGNn  3
iq i

n

n,....,3,2,1 R

 tqn


  q0 , R....3,2,1 which correspond to number of 
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rheonomic constraints. Then we have extended system of the generalized curvilinear 

coordinates , iq Rnnni  ,......,,...,,....,3,2,1  . Then we know that subsystem of  

rheonomic coordinates 

R

 tqq n


  0 , R....3,2,1 contain known rheonomic 

coordinates as functions of the time. But, force of the rheonomic constraints change are 
unknown (see Ref. [1]).  
 Let now taking into account that first  coordinates of the position vectors of the 
mass particles are independent generalized coordinates. Extended system of the generalized 

coordinates containing independent coordinates  , 

n

iq i n,....,3,2,1  and rheonomic 

coordinates q , tqn


   R....3,2,10   is possible to list in the form: 
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








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 (18) 

q0 ,                    (19) 
On the basic of the listed system (19) we can conclude that  in considered case, we 

use coordinates of the positions vectors of the first  RGN
n

K  3
3

1

3
  mass particle as 

generalized independent coordinates. 
Then on the basic of previous for the coordinates of the geometrical point which 

correspond to the mass particle positions at arbitrary moment of the motion, we can write: 
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      

      3321312

3
2

62
2

51
2

3
1

32
1

21
1

,,

.........,..........

,,,

,,,

K
K

K
K

K qqqqq

qqqqq

qqqqq









   

3

4

1

..........
Kq

q

q





2

1

KN

N

N



                (20) 

       Rn
n

n
jK

Rn
n

n
jKjK qqqqqqqqqqqN 




 ,,.......,,,........,, 1
213

1
1

j
jK

Rn
n

n qqqqqq 


 ,.......,,,........,,,....... 212
1

 KN ,...,3

q, 21

 ,2,1

,........,

  

 

1190



 
 
 
 
 
 
 
 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011                 M2-07 
 

      

      
      

      
   KNjqqqqq

qqqqqq

qqqqqq

qqqqqq

Rn
n

n
jK

K
K

K
K

K
K

K














,...,3,2,1,,........,,,.......,

,,

.........,....................

,,,

,,,

1
21

33213123

3
2

62
2

51
2

4
2

3
1

32
1

21
1

1
1

















             (21) 

 We cam see that in extended system of generalized coordinates we can 
identified two sets of the position vectors of the mass particles, one  set contain the K , 

 RGN
n

K  3
3

1

3
  position vectors of the mass particles depending of three 

generalized coordinates, and second  set contain the
3

RG
KN  , 

 RGN
n

K  3
3

1

3
   position vectors of the mass particles depending of all 

 generalized coordinates in general case, or more then of three generalized 

coordinates. 

GNp  3

 Also we can conclude that in extended system of generalized coordinates, we 
can identified two sets of the position vectors of the mass particles, one  set contain the K , 

 RGN
n

K  3
3

1

3
  position vectors of the mass particles with three-dimensional 

tangent space and each with three basic vectors of this tangent spaces, and second  set 

contain the
3

RG
KN


 ,  RGN

n
K  3

3

1

3
   position vectors of the mass particles 

with  extended dimension of the tangent space and to each tangent space correspond  
 basic vectors in general case, or more then three basic vectors of the tangent 

space.. 

GNp  3

 
5. Concluding remarks  
 
 By introducing system of generalized independent coordinates, or extended system 
of generalized curvilinear coordinates depending of numbers of geometrical scleronomic 
and rheonmic constraints in the mathematical description of the discrete mechanical system 
motion we reduce total number of the system coordinate, but we introduce extension of the 
position vector tangent spaces fro three dimensional into more dimensional the three but 
maximal dimensional is equal to the total numbed of the coordinates accepted in extended 
system of the coordinates. 
 Also, we show that each position vector of the mass particle described by 
coordinates in curvilinear coordinate system have in tangent space basic vectors  which 
rotate with angular velocity depending of the functional dependence position vector 
coordinates with respect to time.  
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First set of the basic vectors  ig 


, 
3

,...,3,2,1
n

K  , 3,2,1i  of the position 

vectors of corresponding firs  RGN
n

K  3
3

1

3
  mass particles  correspond to three-

dimensional tangent spaces, and are same as before coordinate restriction. 

Second set of the basic vectors   jg 


, 
3

;,......,2.1
n

KNKK  , 

,  of the ,pnj ,.....,,.....,3,2,1 KN   RGN
n

K  3
3

1

3
  position vectors of 

corresponding second sets of the  mass particles  correspond to  ( GNp  3 )- -

dimensional tangent spaces, and are new in comparison with these obtained before 
coordinate restriction. For position vectors from this second set, we can write  

 Rnnn
jK qqqqq 

 ,........,,,......., 121


,  KNj  ,...,3,2,1  

and for  corresponding basic vectors of the tangent space  

 
 

jj
q

g



 






, 

3
;,......,2.1

n
KNKK  , pnj ,.....,,.....,3,2,1 ,   

Also, by use previous obtained results for angular velocity of the basic vectors of 
position vector tangent space and corresponding vectors of the mass particle velocity and 
acceleration on the generalized coordinate system is possible to analyze present Coriolis 
force present in the mass particle motion in curvilinear coordinate system, Some 
presentation for polar-cylindrical system and spherical system are presented in Figure 4. a* 
and b*. 
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Figure 4. a*     Figure 4.b* 
 

Figure 4.a* Description of the material particle mass  motion in the cylindrical polar 
coordinate system by use coordinate transformation: Presentation of the Coriolis’ inertia forces 

m

  0, 2,2 crmvmamFF rpCCtrjcir


   induced by rotation motion of the cylindrical-polar 

coordinate system in comparison with fixed – no moving reference Descartes’s coordinate system: 
relative motion of the material rarticle along radii v 0rrvrrel


 and precession motion of the 

coordinate system in the form of rotation motion with angular velocity k


   .  
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Figure 4.b*. Description of the material particle mass  motion in the spherical 
coordinate system by use coordinate transformation. Presentation of the Coriolis’ inertia forces 

m

 00, cos2   
 cmF Cptr  induced by rotation motion of the spherical coordinate system 

in comparison with fixed – no moving reference Descartes’s coordinate system: relative motion of the 
material particle along radii 0


 rrel vv  and precession motion of the coordinate system in the 

form of rotation motion with angular velocity   

  cos00  sin00





 kc  c . 
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   ABSTRACT. Vector expressions, based on the mass moment vectors for axis and pole, 
introduced by Hedrih (Stevanović) K., for linear momentum and angular momentum of a 
heavy rigid body dynamics  about two axes without section  are derived, as well as their 
derivatives. In the vector expressions of the derivatives of linear momentum and angular 
momentum appear members with component vector multiplications in the form of pure by  
kinematical vectors named by us rotators. These vector rotators are orthogonal to the 
corresponding axis of rigid body coupled rotations and are functions of corresponding 
angular velocity and angular accelerations. Vector rotators rotate around corresponding 
axis with angular velocity different then component angular velocity of the rigid body 
component rotation in general case. In this paper a series of the research results according 
vector rotators are presented analytically and graphically. For the special case that heavy 
rigid disk is eccentrically and skew positioned on the self rotation axis which rotate in the 
horizontal plane around vertical axis with constant angular velocity on a distance, the 
nonlinear differential equation of the system dynamics in the gravitational field and 
corresponding equations of the phase trajectory as well as expressions of the kinematical 
vector rotators and expression of their relative angular velocity are expressed in the 
function of angular coordinate of disk self rotation. By use these derived expressions, series 
of graphical presentation of vector rotators and their properties transformation with 
changes of distance between axes, disk eccentricity and angle of skew disk position are 
presented.   

 
   Keywords: Rigid body, coupled rotation, axes without section, mass moment vectors, 
rotators, gravitational field, angular velocity, angular acceleration, graphical presentation.   

 
1. Mass moment vectors for the axis to the pole 
  

The monograph [1], IUTAM extended abstract [3] and monograph paper [5] as 
well as series of the published papers [2], [4], [7] contain definitions of three mass moment 
vectors coupled to an axis passing through a certain point as a reference pole.  The 
References [8]. [9] and [10] contain results of nonlinear dynamics of gyro-rotors which 
dynamics contain coupled rotations around two axes without intersections.  

Now, we start with necessary definitions of mass momentum vectors.  
Definitions of selected mass moment vectors for the axis and the pole, which are 

used in this paper are: 

1* Vector )(O
n


S of the body mass linear moment for the axis, oriented by the unit 

vector n


, through the point – pole O , in the form (see Figure 1): 
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   Mndmn C

V

def
O

n 


 ,,)(  S ,          dVdm  ;           (1 )  

where 


 is the position vector of the elementary body mass particle dm  in point N , 

between pole O and mass particle position N . 

2* Vector )(O
n


J of the body mass inertia moment for the axis, oriented by the unit 

vector n


, through the point – pole O , in the form: 
 

  dmn
V

def
O

n  


 ,,)(J       (2) 

For special cases, the details can be seen in [1-7]. In the previously cited 
references, the spherical and deviational parts of the mass inertia moment vector and the 
inertia tensor are analysed. In monograph [1] knowledge about the change (rate) in time 
and, the derivatives of the mass moment vectors of the body mass linear moment, the body 
mass inertia moment for the pole and a corresponding axis for different properties of the 
body, is shown, on the basis of results from the first author’s Reference [1]. 
 This expression  

       M,,,,M, )()()()( 111
OOO

O
C

O
nO

O
n

O
n nn 


  SJJ             (3) 

is the vector form of the theorem for the relation of material body mass inertia moment 

vectors, )(O
n


J  and )( 1O

n


J , for two parallel axes through two corresponding points, pole O  

and pole 1O . We can see that all the members in the last expression have the same 

structure. These structures are:   M,, Co rn


 ,   M,, oC nr 
  and    M,, oo n 

 .  

 In the case when the pole 1O  is the centre C  of the body mass, the vector Cr


 (the 

position vector of the mass centre with respect to the pole 1O ) is equal to zero, whereas the 

vector O


 turns into C


 so that the last expression (3) can be written in the following 

form: 

   M,,)()(
CC

C
n

O
n n 


  JJ                       (4) 

 This expression (4) represents the vector form of the theorem of the rate change of 
the mass inertia moment vector for the  axis and the pole, when the axis is translated from 
the pole at the mass centre C  to the arbitrary point, pole O .  
 The Huygens-Steiner theorems (see Refs. [1] and [5]) for the body mass axial 
inertia moments, as well as for the mass deviational moments, emerged from this theorem 

(4) on the change of the vector )(O
n


J  of the body mass inertia moment at point O  for the 

axis oriented by the unit vector  n


 passing trough the mass center C , and when the axis is 
moved by translate to the other point O .  

Mass inertia moment vector )(O
n


J for the axis to the pole is possible to decompose 

in two parts: first  )(, O
nnn 

J  collinear with axis and second )(O

n


D  normal to the axis. So we 

can write:  

  )()()()()( , O
n

O
n

O
n

O
n

O
n nJnn 


DDJJ                         (5) 
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Collinear component  )(, O
nnn 

J  to the axis corresponds to the axial mass inertia 

moment )(O
nJ   of the body. Second component, )(O

n


D , orthogonal to the axis, we denote by 

the )(n
O


D , and it is possible to obtain by both side double vector products by unit 

vector n


with mass moment vector )(O
n


J  in the following form:  

       nJnnnnnn n
O

O
n

O
n

O
n

O
n

O
n

 
  )()()()()( ,,,, JJJJD                    (6) 

In case when rigid body is balanced with respect to the axis the mass inertia moment 

vector )(O
n


J is collinear to the axis and there is no deviational part. In this case axis of 

rotation is main axis of body inertia. When axis of rotation is not main axis then mass 

inertial moment vector for the axis contains deviation part )(O
n


D . That is case of rotation 

unbalanced rotor according to axis and bodies skew positioned to the axis of rotation.  
 

 

1O  

2O  

1B  

2B  

1  

2  

dm  

01u


  

Cr


 

r


C


 




 

C

N

0  

x

y  

z  

2  

1  

1  

1nR  

0R  

1n


 

2n


 

rR  

CnR
2
  

1  

2  

2  

2  



02u


  

012R


 

0r


 

 
  Cn

C

C n
n

n
u

2,

,

2

2
02








 

01R


 

01u


 

01v


 

012u


  
  C

C

nn

nn
u






,,

,,

21

21
012   

02u


  02v


 

  
  C

C

nn

nn
v






,,

,,

22

22
02   

2n


 

02u


 

1n


 

CnR
1
  

1n


 

022R


 

 
 C

C
Cn n

n
n






,

,

1

1
1

  

  
  C

C
Cn nn

nn
v






,,

,,

11

11
1
  

Cnv
1
  

Cnn
1
  

011R


 

022R


 

012R


 

 
Figure 1.  Arbitrary position of rigid body coupled rotations around two axes without intersection. 
System is with two degrees of mobility (two freedom or one degrees of freedom and one rheonomic 

constraint) where 1  and 2 are generalized coordinates Fixed coordinate system  and two moveable 

coordinate systems zOO 1111111    and 22222222 zOO    that are rotating with 
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component angular velocities of rigid body coupled rotations: independent generalized (/or 

rheonomic) coordinates are 1  coordinate of precission rotation and 2  coordinate around self 

rotation axis.  Vector rotators 01R


 ,  011R


and 022R


 are presented. 

 
 

2.  Derivatives of linear momentum and angular momentum of rigid body 
coupled rotations around two axes without intersection 

 
Let us to consider rigid body rotation around two axes first oriented by unit vector 

1n


 with fixed position and second oriented by unit vector 2n


 which is rotating around fixed 

axis with angular velocity 111 n


  . Axes of rotation are without intersection. Rigid body 

is positioned on the moving rotating axis oriented by unit vector 2n


and rotate around self 

rotating axis with angular velocity 222 n


   and around fixed axis oriented by unit vector 

1n


 with angular velocity 111 n


  . Then, axes of rigid body coupled rotations are without 

intersection. The shortest orthogonal distance between axes is defined by lenght 21OO and 

it is perpendicular to both axes that is to the direction of angular velocities 111 n


   and 

222 n


  . This vector is 210 OOr 


 (see Figure 1): 
 
  010

21

21
00 ,

,
ur

nn

nn
rr





  and it can 

be seen on Fig.1. Velocity of mass particle dm is:    


,, 2101  rv  . 
By using expressions for linear momentum (see Refs. [1], [11], [12] and [10]) and  

after taking in account derivatives of parts, the derivative of linear momentum of rigid body 
coupled rotations around two axes without intersection , we can write the folowing vector 
expression: 

         
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2

2

2

2
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11011

2
1011

O
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O
n

O
n

O
n

O
n

nn

nMrnnMrn
dt

d













SSS

SS
K








                

         (7) 
After analysis structure of linear momentum derivative terms, we can see that 

there are possible to introduce pure kinematic vectors depending on component angular 
velocitie and component angular accelerations of component coupled rotations that is useful 
to express derivatives of linear moment in following form 

        2

2

2

2

2

1
,2, 1210220110101

O
n

O
n

O
n nMrn

dt

d


SSRSRR

K                              

         (8) 
 
By using vector expressions for angular momentum after taking in account 

derivatives of parts, the derivative of angular momentum of rigid body coupled rotations 
around two axes without intersection and after analysis structure of angular momentum 
derivative terms, we can see, as in previous chapter for the derivatives of linear momentum, 
that there is possible to introduce pure kinematic vectors-rotators depending on angular 
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velocities and angular accelerations of component coupled rotations and that to express 
derivatives of angular momentum in following shorther form: 

   
    )(

2
)(

12
)(

221
)(

11

)(
121

2
011212121012

2

2

2

1

2

2

2

1

2

2

1

,,

,2,,,,,,,,

O
n

O
n

O
n

O
n

O
nC

O

nnnn

nMrnnnMr
dt

d










DRDRJ,J,

J
L








                  

         (9) 
where  
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are correspond body mass linear moment of the rigid body for the axes oriented by 
direction of component angular velocities of coupled rotations through the movable pole 

2O  on self rotating axis;  
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are corresponding rigid body mass inertia moment vectors for the axes oriented by 
directions of component rotations through the pole O2 on self rotating axes.  For detail see 
ref. [10]. 

In previous expressions (8) and (9) we introduce following notations: 01R


, 011R


, 

022R


, 1R


 and 2R


. These vectors are vector rotators which intensity depends 
of angular velocity and angular acceleration of corresponding component 
rotation. 

 
3.  Vector rotators of a rigid body coupled rotations around two axes without 
intersection 

 
We can see that in previous expressions (8) and (9) for derivative of linear 

momentum and angular momentum are introduced the vectors  01R
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Figure 2.  Vector rotators 1R


  (a*) and 2R


 (b*) in  relations to corresponding mass moment vectors 
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J ,  and their corresponding deviational components )( 2
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O
n


D as well as to 

corresponding deviational planes. 
 

 

Three vector rotators 01R


, 011R


 and 1R


 from the set (11) are orthogonal to the 

direction of the first fixed axis oriented by unit vector 1n


 and two vector rotators 022R


 and 

2R


 are  orthogonal to the self rotation axis. But, first vector rotator 01R


 is coupled for 

pole 1O  on the fixed axis and second and third vector rotators, 011R


and 022R


, are coupled 

for the pole 2O  at self rotation axis and for corresponding direction oriented by directions 

of component angular velocities of coupled rotations.  Intensities of three first rotators are 
equal and are expressed by angular velocity and angular acceleration of the first component 

rotation, and intensities of two vector rotators 022R


 and 2R


 are expressed by angular 
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velocity and angular acceleration of the second component rotation, and are in the 
following forms: 

 4
1

2
101101   RR  and 4

2
2
2022   R                  

         (12) 
 

Rotators from first set are rotated around axis through pole 2O  in direction of first 

component rotation angular velocity and depend of angular velocity 1  and angular 

acceleration 1 . There are two vectors of such type and all trees have equal intensity. 

Rotators from second set are rotated around axis in direction of second component rotation 

and depend of angular velocity 2  and angular acceleration 2 . There are two vectors of 

such type and they have equal intensity.  
 
4. Relative angular velocity of vector rotators of a rigid body coupled rotations around 
two axes without intersection 
 

Let’s introduce notation 1 , and 2  denote difference between corresponding 

component angles of rotation 1  and 2    of the rigid body component rotations and 

corresponding absolute angles of pure kinematics vector rotators 01R


, 011R


, 022R


, 1R


 

and 2R


, about corresponding axis oriented by unit vector 1n


, and 2n


 through pole 2O  

(see Fig. 2). These angles are determined by following relations: 
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Angular velocity of relative kinematics vectors rotators 01R


, 011R


, 022R


, 1R


 

and 2R


 which rotate about axes in corresponding  directions in relation to the component 

angular velocities of the rigid body component rotations through pole 2O  are: 
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5. Concluding remarks 
 
  First main result presented in  this paper is successful application the vector 
method by use mass moment vectors for investigation of the rigid body coupled rotation 
around two axes without intersections and vector decomposition of the dynamic structure 
into series of the vector parameters  useful for analysis of the coupled rotation kinetic 
properties.  

By introducing mass moment vectors and vector rotators we expensed linear 
momentum and angular momentum, as well as their derivatives with respect to time for the 
case of the rigid body coupled rotations around two axes without intersections.  
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Appearance, as it is visible, of the vector rotators, their intensity and their directions as 
well as their relative angular velocity of rotation around component directions parallel to 
components of the coupled rotations is very important for understanding mechanisms of 
coupled rotations as well as kinetic pressures on shaft bearings of both shaft. 

Special attentions are focused to the vector rotators, as well as to the absolute and 
relative angular velocities of their rotations.  
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Energy analysis of vibro-impact systems based 
on oscillator moving freely along curvilinear 
routes and non-ideal relations  
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

Abstract: This work is based on the analysis of vibro-impact system 
motion, moving freely along non-ideal lines-rough curvilinear paths in 
vertical plane in the shapes of: parabola, cicloid and circle.  Non-ideal 
caracter of the relation is due to the Coloumb’s type friction force with 
coefficient 0 tg . The oscilator is composed by one heavy mass 

particle ( the observed systems have one degree of freedom of motion) 
whose free motion was limited by one or two stabile elongation limiters. 
The analyitical-numerical results for certain kinetic parameters of the 
observed vibro-impact systems are basis for the visualization of the 
motion analysis and energy analysis, which are subject of this analytical 
research. In this paper the methodology of the energy transfer 
investigation among the elements of the observed vibro-impact system is 
presented.  

The Applied methodology : Free motion of the heavy mass particle was 
divided to the corresponding intervals. Each motion interval corresponds 
one differential equation from the group of ordinary homogenious non-
linear differential second order equations. This differential equation was 
solved in analytical form. The differential motion equation for 
corresponding motion conditions is matched to initial motions coditions, 
impact conditions to elongations limiters and conditions of alteration of 
motions directions causing the alternation of direction of friction force. 
By solving the differential equation of motion analyticaly we came to 
analytica; expression for phase trajectory equation in plane   , , that is 

neccessary for energy analysis of dynamics of vibro-impact systems 
together with the energy equation curves. The graphic visualization of the 
energy curves and motion analysis of representative  point of system 
kinetic state during the kinetic (dynamics) is done by using software 
package MathCad and user’s package CorelDraw. 
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Application:  Based on vibro-impact systems there are constructed 
various vibration machines, where working part has to perform periodic 
impacts for realization of technology processes. In general, vibro-impact 
systems are applied in transportation systems, construction machines, 
casting machines, vibro-devices etc.  

Keywords: Heavy mass particle, rough parabola, rough cicloid, rough 
circle, friction, impact limiters, vibro-impact, phase trajectory, singular 
points, large initial conditions, total energy, kinetic and potential energy, 
analytical expression, graphical presentation, representative point, 
differential equations. 



 

1. Introduction 

The investigation of vibro-impact 
processes to the dynamics of the systems 
and properties and specifications of non-
linear phenomena with discontinious 
conditions were made by many researcher 
all around the world. Based to the previous 
knoledge ablut the theory of vibro-impact 
systems, and to the original works by: 
František Peterka, Katica (Stevanović) 
Hedrih, Alz Nayfeh et al., Dimentberg M.F 
and Menyailov A.I., Foole S. and Bishop 
S., Lieber P. and Jensen, D., Luo G.W. and 
Xie J.H., Nordmark A.B., Pavlovskaia E. 
and Wiercigroch M., and other, it can be 
concluded that there is greater interest today 
for investigation of energy transfer within 
complex systems and non-linear modes. 
That is the reason of importance of energy 
analysis of the dynamics of vibro-impact 
processes in vibro-impact systems with one 
or more degrees of freedom as well as non-
ideal relations.   

The problems of dynamics of 
vibro-impact systems represent separate 
area of applied theory of oscilations. The 
theory of vibro-impact systems is specially 
important for engineering practice for wide 
application of vibro-impact astions, used 
for realization of the technology processes. 
The collisions occured in the procedure of 
kinemtaic couples oscilation motions cause 
increased dynamic impact loadings, 

decreasing durability and liability of the 
system, as well as alternating dissipative 
system features. The studies about vibo-
impact systems and vibro-impact actions 
are essential because of some very harmful  
impacts to the gaps and wearing in kinetic 
systems. The investigation of such vibro-
impact actions is important for achievement 
of expected motion regimes and system 
stability, i.e. regulation of the system 
motion.  

The introducing theory for this 
paper were taken from the nooks of D. 
Rašković, where the motion of mechanic 
system in ideal conditions and without 
limitations was analyzed, as well as the 
motion of curvilinear oscilator in the 
presence of sliding Columb’s friction, than 
from the papers by Katica (Stevanović) 
Hedrih referring to the movement of heavy 
mass particle along rough curvilinear path. 
In order to perform the analysis of the 
dynamics of vibro-impact system with 
curvilinear paths and non-ideal relations, an 
explanation of free oscilation of heavy mass 
particle along curvilinear paths and non-
ideal links must be done first.  
 
2.  Free mass particle oscilations 
along curvilinear paths and non-
ideal links  

Vibro-impact system represents 
the dynamic system with oscilation motion 
in the periods with impacts occurances. In 
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order to study the motion and energy 
analyze of the corresponding vibro-impact 
system, non-impact motion i.e. motion 
between the impacts, must be analyzed 
first.  Non-impact motion is described by 
differentail (double) motion equations and 
by double phase trajectories equations, free 
oscilations of heavy mass particle along 
curvilinear rough lines and vertical planes 
and with non-ideal links, as well as the 
particular examples of motions along the 
rough parabolic line, rough cicloid line and 
rough circle line, based on the results from 
prof.dr Katica (Stevanović) Hedrih [10-11]. 

 
2.1. Free motion of heavy mass 

particle along rough curbilinear line   
 
Let us study free motion 

(oscilation) of heavy mass particle M, mass 
m, along rough curvilinear line with sliding 
Coulomb’s friction force and coefficient 
type   (Fig.1). 

 
 

Fig. 1. Free motion of heavy mass particle 
along curvilinear path: a*  derived position 

of heavy mass particle;  b* force plan  
 

Curvilinear line equation situated 
in vertical plane  is written in a form 

.  By using the principle of 

dynamic equilibrium, with acting forces 
presented on Fig. 1 b*, the vector’s 
equation of motion of heavy mass particle 
along curvilinear path can be written in a 
form : 
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After scalar multiplication of this vector 

equation with unit vectors T


 and N


 and 

by completing of obtained scalar vectors 
equations one differential (double) equation 
of motion of heavy mass particle is 
obtained, as a function of curvilinear (arc) 

coordinate s , 




  21 zdxds , in a 

form: 
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BY solving of differential (double) equation 
of motion (1) we get (double) phase 
trajectory equation 
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  

    




 


   (2) 

  g    
 
 





 
The equations (1) and (2) are basis for 
formation of diffrential (double) motion 
equations and (double) phase trajectory 
equations for any shape of curvilinear line. 
In this papere there are considered rough 
parabolic, cycloid and circle lines. 

2.1.1. Free motion of heavy mass 
particle along parabolic rough line is 
presented on Fig. 2.  

Based on the theory conducted for 
motion of heavy mass particle along rough 
curvilinear line in general, the analysis of 
this motion is special case.  

 
 

Fig.2. a*  initial and derived position of 
heavy mass particle; b* force plan 

 
The general equation of parabola 

has a form , where  - is 

parabola parameter equal to quadric 
distance of focus from the top of parabola. 
The observed system has one degree of 

pz2x2  mp2
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freedom of motion. For generalized 
coordinate we take parameter    (the angle 

between tangence direction with the 
direction that is paralel to axis Ox ).  Based 
on equations (1) and (2) and the general 
parabola equation, using many mathematic 
operations, the differential (double) 
equation of motion and phase trajectory of 
heavy mass particle equation along 
parabolic rough line (as a function of 
generalized coordinate  ) were obtained.   

   
3

2 0cos
3 sin c 


 os

za

za
0,

0

vg
tg

vp

    


    
 (3) 


 

 
2 6 2

2

0
cos

0cos

za v

za v


g

p
 


  

  Ce

  

     (4) 

Where - integration constant depending 
of initial motion conditions (valid also in 
equations for cicloid and circle lines). The 
integral constant has some alternation in 
dependence of  period of motion of heavy 
mass particle along parabolic rough line, 
limited by points at phase trajectory where 
the the velocity is equal to zero. That 
alteration is related to the alternation of the 
direction of heavy mass particle motion, i.e. 
alternation of velocity direction of heavy 
mass particle causing the alternation of 
friction force.  

C

 
2.1.2. Free motion of heavy mass 

particle along cicloid rough line is 
presented on Fig.3. 

 
Based on the theory conducted for 

the motion of heavy mass particle along the 
curvilinear rough line in general, the 
analysis of this motion represents the 
special case. 

 
Fig.3. a*  the initial and derived position of 

heavy mass particle; b* force plan 

The observed system has one degree of 
freedom of motion. For generalized 
coordinate we adopt parameter   (angle 

between direction 0PM and vertical line), 

which defines the position of heavy mass 
particle M , positioned on the circle of seni 
diameter R, moving equaly along the axes  

.  Heavy mass particle in this case 
describes the line representing geometry 
clear cicloid path. Based on equations (1) 
and (2) together with parametrs of cicloide 
equation 

Ox

  sin Rx  and 

 cos1 Rz , and using chain of 

mathematic operations we get differential 
(double) equation of motion and (double) 
equation of phase trajectory of heavy mass 
particle along cicloid rough line ( as a 
function of generalized coordinate  ). 

2 1
0,

2 2 2 2

2 cos 0
2

2 cos 0
2

g
tg tg

R

za v R

za v R

    

 

 

        
   





 

  


  





         (5) 

   
2

2 2
2

2

1 12
3 sin 1 2 cos

1 4 2cos
2

2 cos 0
2 (6)

2 cos 0
2

g

R
Ce

za v R

za v R

24     

 

 

 
             

  

  








 where C - is integration constant 
 
2.1.3. Free motion of heavy mass 

particle along circle rough line is presented 
on Fig.4.  

The angle   represents 

generalized coordinate of the observed non-
conservative mechanical system with one 
degree of freedom of motion.  
By using the coordinate system of 
references with axes in direction of 
perpendicular and tangent, and based to the 
procedure conducted for the motion of 
heavy mass particle along rough curvilinear 
path (1), the differential ( double) equation 
of motion of heavy mass particle along the 
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circle rough line can be written in a form 
of:  

  0sin
cos 0

0
0

2  



R

g
tg








0

0






za

za

,                                     (7) 
 

 
Fig. 4. a*the initial and derived position of 
heavy mass particle , force plan;  b* and c* 
presentation of the „relative“ equilibrium 
positions with alternation properties 0  

 
By solving the equation (7) we get (double) 
phase trajectory equation of heavy mass 
particle moving along circle rough line  
        02

000
00

2

2 sin2cos
cos41

2 


 tgCetg
Rtg

g  


 
 








0

0






za

za

                                          (8) 

where C - integrating constant. 
 
3.  Vibro-impact system based on 
oscilator moving freely along 
curvilinear paths and non-ideal 
connections  

The dynamics of vibro-impact 
systems based on oscilator with free motion 
along non-ideal links-rough curvilinear 
lines, in shape of parabola and circle was 
analyzed by application of analytical 
method of „ adjustment“ and phase plane 
method. Also, for the part of oscilator there 
are used one or two heavy mass particles –
pellets, moving freely along rough 
curvilinear route with sliding  Coulomb’s 
type friction force.  The system becomes 
vibro-impact system when one or two 
elongation limiters for each are positioned 

and concerned as mobile and stabile 
limiters.  

 
3.1. Vibro-impact system based on 
oscillator moving freely along parabolic 
rough line    
 

Heavy mass particle moving along 
parabolic rough line in vertical plane, with 
sliding Coulomb’s type friction force 
coefficient 0 tg , with one elongation 

limiter on the right and one elongation 
limiter on the left side (Fig.5).  

 

 
Fig.5. The system with two stabile 
elongation limiters, based on oscilator with 
one pellet:  
a*  initial and derived position of the pellet;  
b* force plan 
 
The positions of the limiters are determined 
by arc coordinates  111, ssul   and 

 222, ssul   are measured from the 

equilibrium position of heavy mass particle. 
The arc (curvilinear) coordinates are given 
in as a function of the angle  . 

 For the complete description of the 
dynamics of heavy mass particle, the 
differential (double) equation of motion (3) 
is coupled to:   
a*  initial conditions 

     00)0(0  ss     and 

               000000000 ,,,   vsv  ; 

b*  angular elongation limitation 
conditions, and impact conditions  

 iiiul ss ,  ,       111,   iiiul ss  , 

   iuliulsk ,,iodliodls ,,    , 
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         1,1,1,1,   iuliuliodliodl kss  
ni ,...,3,2,1

,  

, 
where: k- impact coefficient in the range 
between , for ideal plastci impact, and 

, for ideal elastic impact; n- number of 
impacts until arrestment of heavy mass 
particle on the parabolic rough line, or until 
the interval where heavy mass particle 
continues to move without impact to the 
limiter.  

0k
1k

Free motion of heavy mass particle along 
parabolic rough line is divided to the 
corresponding intervals and subintervals of 
motion:  
The first; From the initial moment of 
motion to the impact into the right 
elongation limiter; The second; From the 
right elongation limiter to the impact to the 
left elongation limiter, until the direction 
alternation ( motion intervals limited by 
friction force direction alternation)  
The motion analysis is conducted by using 
the phase trajectory equation (4) with 
corresponding argument in dependance of 
motion interval.  
3.1.1 Grafic visualization of the phase 
portrait of heavy mass perticle in the 
observed vibro-impact system  
 Based on real values of kinetic and 
geometry parameters of the system, 

   1 2 0 0, , 0, 7
4 6

rad
rad rad ,

s

             
  

  0 2
1 , 0,05, 9,81

m
p m g

s
       

 

 0, 2m k g   i 

The phase portrait of heavy mass particle 
moving along parabolic rough line is 
showed (Fig.6). 

 
 

Fig. 6. Phase portrait of heavy mass 
particle moving along the parabolic rough 
line with sliding Coulomb’s type friction 
coefficient  0 tg with limited 

elongations in a plane   ,  

 

3.1.2 Graphic visualization of energy 
analysis of the observed vibro-impact 
system  

By using the analytical expressions 
for the peripendicular pressure force  , 

power originated of sliding Coulomb’s type 
friction force  to the heavy mass particle 

on the parabolic rough line, kinetic energy 
, potential energy  and total 

mechanical energy , 
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




2

2
2

2

cos2

1

cos2

1

)()()(

mgp
eC

p

g
mp

EpEkE

i

iii

















, 
For every separate branch of the phase 
portrait, there is a graphic of alternation of 

, , ,  and E from the initial 

moment of motion until the moment when 
heavy mass particles returns into 
equilibrium position (Fig.7-11). 

NF P kE pE

 

 
Fig.7.  Curve of 
pressure force 
alternation as a 
function of angle   

Fig. 8. Curve of 
power alternation 

as a function of 

angle  
P

  

 
 

Fig. 9. Graphic 
presentation of 
kinetic energy 
alternation in 
plane 
  ,Ek  

Fig. 10. . Graphic 
presentation of 
potential energy 
alternation in plane 
 ,Ep  

 

 
Fig.11.Graphic presentation of total 
mechanical energy alternation in plane  
 ,E  
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3.2. Vibroimpact system based on 
oscillator moving freely along cicloid 
rough line  
 
 Heavy mass particle is moving 
along cicloid rough line in vertical plane, 
with sliding Coloumb’s type friction 
coefficient 0 tg , with elongation 

limiter on the left and on the right side 
(Fig.12). The limiters positions are 
determined by arc coordinates 

 111, ssul   and  222, ssul   and 

measured from the equilibrium position of 
heavy mass particle. The arc ( curvilinear) 
coordinates are given as a function of the 
angle  . 

 For the complete description of the 
dynamics of heavy mass particle there are 
conditions matched to the differential 
(double) motion equation: 
a*  initial conditions 

     00)0(0  ss 

     

    and 

          00000 ,,0000 ,   v sv  ;

  
b*  angular elongation limitation 
conditions, and collision conditions  

 iiiul ss ,  ,       111,   iiiul ss  , 

   iuliulsk ,,iodliodls ,,    , 

         1,1,1,1,   iuliuliodliodl kss  
ni ,...,3,2,1

,  

, 
where: k- is impact coefficient within the 
range from , for ideal plastic impact, 
to , for ideal elastic impact; n- number 
of impacts until the heavy mass particle 
stopping on the parabolic rough line or to 
the interval where heavy mass particle 
continues to move without impact to the 
limiter. 

0k
1k

 
 

 
Fig. 12. System with two stabile elongation 
limiters, based on oscilator with one pellet: 
a* initial and derived position of the pellet;  
b* force plan  
 
Free motion of heavy mass particle along 
cicloid rough line is divided into 
corresponding  motion intervals and sub 
intervals: 
The first; From the initial moment of 
motion to the impact into the right 
elongation limiter; The second; From the 
right elongation limiter to the impact to the 
left elongation limiter, etc., until the 
direction alternation ( motion intervals 
limited by friction force direction 
alternation)  
The motion analysis is conducted by using 
the phase trajectory equation (6) with 
corresponding argument in dependance of 
motion interval.  
3.2.1 Grafic visualization of the phase 
portrait of heavy mass perticle in the 
observed vibro-impact system  
 Based on real values of kinetic and 
geometry parameters of the system, 

   

   .2,0,81,9,05,0,05,0

,8,0,
6

,
4

20

0021

kgm
s

m
gmR

s

rad
radrad















 

 
The phase portrait of heavy mass particle 
moving along cicloid rough line is showed 
(Fig.13). 
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Fig. 13. Phase portrait of heavy mass 
particle moving along thecicloid rough line 
with sliding Coulomb’s type friction 
coefficient  0 tg with limited 

elongations in a plane   ,  

 

3.2.2 Graphic visualization of energy 
analysis of the observed vibro-impact 
system  

By using the analytical expressions 
for the peripendicular pressure force  , 

power originated of sliding Coulomb’s type 
friction force  of the heavy mass 

particle on the parabolic rough line, kinetic 
energy , potential energy  and total 

mechanical energy , , 
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 is  g hi pre

turns 
into equilibrium position (Fig.14-18). 








mgR

For every separate branch of the phase 
portrait, there  a rap c sentation of 
alternation of NF , P , kE , pE  and E from 

the initial moment of motion until the 
moment when heavy mass particles re

 
Fig. 15. Curve of 

er alternation 

P as a un

Fig.14.  Curve of 
pressure force 
alternation as a 

pow
 f ction of 
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function of angle   angle     

 
 

Fig. 16. Graphic 
presentation of kinetic
energy alternat

 
ion in 

lane p
  ,Ek   

Fig. 17. . 
Graphic 
presentation of 
potential energy
alternation in 

 

plane  ,Ep   
 

Fig. otal 

mecha ical energy alterna n plane  

 
 

n

18.Graphic presentation of t

tion i
 ,E  

 
 
 
 

3.3. Vibroimpact system based on 
oscillator moving freely along circle rough 
line  
 
 Heavy mass particle is moving 
along circle rough line in vertical plane, 
with sliding Coloumb’s type friction 
coefficient 0 tg , with one elongation 

limiter on the right side (Fig.19). The 
limiter position is determined by the angle 
  measured from the equilibrium position 
of heavy mass particle i.e. from the vertical 
line driven through the center of the circle.   
 

 
Fig. 19. System with one stabile elongation 
limiter, based on oscilator with one pellet: 
a* initial and derived position of the pellet;  

b* force plan  
 

 For the complete description of the 
dynamics of heavy mass particle there are 
conditions matched to the differential ( 
double) motion equation: 
a*  initial conditions  0)0(   and     

0)0(    ; 

b* angular elongation limitation conditions, 
and collision conditions  

 
iul

i

 , , 

 
ii ulodl k  

n,...,3,2,1 , 
where: k- is impact coefficient within the 
range from 0k , for ideal plastic impact, 
to 1k , for ideal elastic impact; n- number 
of impacts until the heavy mass particle 
stopping on the circle rough line or to the 
interval where heavy mass particle 
continues to move without impact to the 
limiter. 
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Free motion of heavy mass particle along 
circle rough line is divided into 
corresponding  motion intervals and sub 
intervals limited by direction of the friction 
force alternation. 
The motion analysis is conducted by using 
the phase trajectory equation (8) with 
corresponding argument in dependance of 
motion interval.  
3.3.1 Grafic visualization of the phase 
portrait of heavy mass perticle in the 
observed vibro-impact system  
 Based on real values of kinetic and 
geometry parameters of the system, 

     

 .2,0,81,9,3

,5,0,8,3,
12

,
4

20

00

kgm
s

m
g

mR
s

rad
radrad















 

 
The phase portrait of heavy mass particle 
moving along circle rough line is showed 
(Fig.20.). 
 

 
Fig. 20. Phase portrait of heavy mass 
particle moving along the circle rough line 
with sliding Coulomb’s type friction 

coefficient 0 tg  with limited 

elongations in a plane   ,  
 
 
For the selected initial conditions and 
friction coefficient 3 (high degree of 
resistance), in the observed case there were 
one impact and one oscillation until the 
moment of arrestment.  
 The conditions needed for the 
heavy mass particle to have several impacts 
into angular elongation limiter in the 
observed vibro-impact system are: 

   0    and  

    cos12cos12 
R

g

R

g

R

g  40  

. 
It can be concluded that for the lower 
friction coefficient and larger initial 
velocity, there are larger number of impacts 
and oscilations before the arrestment of 
heavy mass particle along rough circle line.  
In order to get better graphic visualization 
of the motion analysis and energy analysis 
of the observed vibro-impact system the 
values for sliding friction coefficient will be 

changed (instead of 30   there is 
05,00  ) and also for initial velocity of 

heavy mass particle (instead of 





 8,30 s

rad

 there is 






s

rad
70

).  
The rest of kinetic and geometry parameters 
remained the same.  
 Fazni portret teške materijalne 
tačke koja se kreće po kružnoj hrapavoj 
liniji u ovom slučaju data je na (sl.21). 
 

 
 

Fig. 21. Phase portrait of heavy mass 
particle moving along  rough circle line 
with sliding Coulomb’s type friction 
coefficient  05,0 with limited 

elongations in a plane   ,  
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3.3.2 Graphic visualization of energy 
analysis of the observed vibro-impact 
system  

By using the analytical expressions for the 
peripendicular pressure force  , power 

originated of sliding Coulomb’s type 
friction force  of the heavy mass 

particle on the parabolic rough line, kinetic 
energy , potential energy  and total 

mechanical energy ,  

iNF ,
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 For every separate branch of the phase 
portrait, there is a graphic presentation of 
alternation of , , ,  and E from 

the initial moment of motion until the 
moment when heavy mass particles returns 
into equilibrium position (Fig.22-26). 

NF P kE pE

 
Fig.22.  Curve of 

pressure force 
alternation as a 

function of angle    

Fig. 23. Curve of 
power alternation 

as a function of 

angle  
P

  

 
 

Fig. 24. Graphic 
presentation of 
kinetic energy 
alternation in plane 
  ,Ek   

Fig. 25. Graphic 
presentation of 
potential energy 
alternation in 
plane  ,Ep   
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Fig. 26. Graphic presentation of total 
mechanical energy alternation in plane  
 ,E  

 
 
  

4.  The application of vibro-
impact systems to the construction 
of vibro-machines  

Vibro-impact motion is necessary 
for the technology process in many devices. 
In the next paragraph there are presented 
schematic presentations of vibro-impact 
machines () for the conducting the 
presented motion analysis and energy 
analysis of the observed vibro-impact 
systems with appropriate graphic 
visualization by the corresponding dynamic 
models. It should be mentioned that this 
paper represents the sequal of the paper in 
reference [14], but with difference that the 
paper referred to the straight line oscilator 
which can be also included as a special case 
of heavy mass particle motion along rough 
curvilinear route ( the oscilation motion is 
enabled by elastic spring force instead of 
gravity).  

 

        
Fig. 27.  Clock mechanism 

 

 
Fig. 28. Machine for ultra sound cutting 

 
 
 

 
Fig. 29.  Sieve Fig. 30. Measuring 

aparture 
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Fig. 31. Schematic presentation of the 
vibro-impact system with curvilinear 
motion of heavy mass particle   

Fig. 31. Schematic presentation of the 
vibro-impact system with curvilinear 
motion of heavy mass particle   

  
  

 
 

Fig. 32.  The example of the mechanism for 
technical realization in the constructions 

such as elevators,  holding tools etc.  

 
Fig. 33.  Plane analog mechanism  

 
 

 
Fig. 34. Vibro-transporter 

 
 

  
Fig. 35. Helicopter 

 
 

 
Fig. 36. Manual vibro-impact hammer 
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Fig. 37.  
Vibroimpact 

Hammer 

Fig. 38. 
Vibroimpact 

platform 
 
 

 
Fig. 39. Manual stroke-rotary hammer 

   
 

Fig. 40. Printer 
 

 
Fig. 41. Vibro-rammer 

 
 
5. Concluding remarks 

 Non-linearity of the observed 
vibro-impact systems originate by the 
discontinuity of heavy mass particle angular 
velocity moving along rough curvilinear 
routes. Discontinuities of the angular 
velocity occure at the moment of impact of 
heavy mass particle into angular elongation 
limiters set on the right and on the left side, 
at the moment of direction alternation of 
motion of heavy mass particle (when the 
alternation occures) causing angular 
velocity and friction force alternation. This 
non-linearity is described mathematically 
for heavy mass particle by regular 
differential equation, more precisly by the 
second member, representing square 
angular velocity of generalized 

coordinate . This corresponds to the case 

known in literature as a case of „turbulent“ 
damping.  

2

It should be pointed out that in 
observed vibro-impact systems there are 
trigger coupled singularities, i.e. 
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phenomena of bifurcation of equilibrium 
positions, because of the influence of 
sliding Coloumb’s type friction force and 
angular velocity direction alternation.  

For considered vibro-impact 
systems there is a common conclusion that 
non-impact motion represents free 
supressed oscilations of the dynamic system 
with one degree of freedom. Rough 
curvilinear lines are mutual detaining bond.  
Free oscillations of heavy mass particle 
along rough curvilinear lines, representing 
vibro-impact systems are divided into 
corresponding motion intervals and sub-
intervals. Each interval or sub-interval are 
matched to differential motion equation 
from the group of regular homogenous non-
linear differential equations. 

Differential (double) motion 
equations for correspponding interval and 
sub-intervals are coupled with initial 
motion conditions, imact conditions into 
elongation limiters and direction alternation 
conditions, which cause alternations of the 
friction force direction.   

By analytic solving of differential 
(doble) motion equations, the analytical 
expressions for phase trajectories in 
plane  ,,  are made, which are necessary 

for energy analysis, together with equation 
of curves of mechanical dependance for the 
energy analysis of the dynamics of vibro-
impact systems.  

The authors presented a good 
quality graphic visualization of the curves 
of alternations of  the components of 
mechanical energies of vibro-impact system 
dynamics and motion analysis of 
representative point of system kinetic state 
during the kinetic (dynamics), by 
application of the analytical expressions 
and software package MathCad and user’s 
package  CorelDraw. 

By the phase portraite analysis and 
graphic of kinetic energy , potential 

energy , total mechanical energy , 

Pressure force  and power originated of 

the sliding Coloumb’s type  friction force 
alternations, for all examples of free motion 
of heavy mass perticles along rough 
curvilinear lines, with one degree of 
freedom, it can be concluded: 

KE

PE E

NF

 The perpendicular pressure force 
on rough parabola, cicloid and circle line 
doesn’t change its value. 
 *  In the moment of impact of 
heavy mass particle into elongation limiter ( 
any position), when the impact is ideal 
eleastic, the intensity of motion velocity is 
not changed.  
 *  In the state of heavy mass 
particle direction alternation, the velocity is 
equal to zero.  . 

In the case of mutually retaining 
bond in the point of alternation pressure 
force has local minimum, and 
corresponding friction force alternates its 
direction.  
 The friction force direction is 
altered: in the point where angular velocity 
of heavy mass particle is equal to zero and 
at the point of impact of heavy mass 
particle into elongation limiter.  
Power alternation, due to sliding friction 
Coloumb’s type force follows the graphic 
of friction force alternation, but the power 
is always with negative argument and in the 
following representative points has lower 
values ( decreasing from the higher lewel to 
the lower level). In heavy mass particle 
motion along rough curvilinear lines with 
elongation limiters, assuming that the 
impact is ideal elasctic, from the initail 
moment to the moment when the particle 
returned into equilibrium position, 
maximum value of power of sliding 
Coloumb’s type force decreases constantly, 
no matter how many degrees of freedom are 
there in the observed system.  
 Kinetic energy, depending 
explicitely of angular velocity of heavy 
mass particle, permanently changed and its 
maximum value in the sequence motion 
intervals is decreased.   
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Potential energy  depends of 
elongation, identical for all identical motion 
intervals, due to the fact that it depends of 
heavy mass particle weight and generalized 
coordinates, and the impact doesn’t have 
influence to the potential energy, for it is 
due to the action of the conservative forces 
to the system.  

Total mechanical energy of the 
system is constantly decreasing, i.e. in 
every following motion interval, the total 
mechanical energy of the system dynamics 
has lower value ( at the point of impact into 
elongation limiter and point of angular 
velocity alternation).  
 In the fourth section of this paper, 
there is presented a series of models of 
technology processes, with real engineering 
constructions. The selected models are 
characteristic, presented in scientific 
monographies of the leading scientists and 
researchers from the field of vibro-impact 
dynamics. In every real model, the motion 
and energy analysis of the corresponding 
vibro-impact system can be done, by 
application of the methodology presented in 
this paper, being continuation of the 
author’s own research presented in 
reference [14].    
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Abstract. A direct time integration method is presented for the solution of the equations of 
motion describing the dynamic response of structural linear and nonlinear multi-degree of 
freedom systems. It applies also to equations with variable coefficients. The proposed 
method is based on the concept of the analog equation, which converts the coupled N  
equations into a set of single term uncoupled second order ordinary quasi-static differential 
equations under appropriate fictitious loads unknown in the first instance. The fictitious 
loads are established from the integral representation of the solution of the substitute single 
term equations. The method is simple to implement. It is unconditionally stable and 
accurate. Several examples are presented, which demonstrate the efficiency of the method. 
The method can be extended to equations of order higher than two. 

 
 
 

1. Introduction 
 
In dynamic analysis the equations of motion are obtained by considering the dynamic 
equilibrium of the external, internal and inertia forces, namely 

   + + =( ) ( ) ( ) ( )I D St t tf f f p t

u u u

u

Cu u

which may be written as  

  (1) + + = ( ) ( ) ( )D S tMu f u f u p

where  are the inertia forces,  the damping forces,  

the elastic forces and  are the external excitation forces;  is the displacement 

vector. The problem consists in establishing the time history , where 

, satisfying Eq. (1) with the initial conditions 

= ( )I tf M

Î >, ], 0t T T

= ( ) ( )D Dtf f =( ) ( )S Stf f

( )tu u

( )tp = ( )tu u

=
[0

 ,      (2) = 0(0)u u = 0(0)u

The forces  and  are in general non linear functions of their arguments. For 

linear problems they are given as  and  and Eq. (1) becomes 

( )Df u ( )Sf u

= ( )D tf =( )S tf K

  (3) + + =  ( )tMu Cu Ku p
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u

2

t

where ,  and K  are the mass, damping and stiffness matrix of the structure, 
respectively. 

M C

In the last fifty years, significant advances have been made in the development and 
application of numerical methods to the solution of the equations of motion governing the 
dynamic behavior of structural systems. Many methods have been proposed either in the 
time or in frequency domain. The reader is advised to relevant literature, where extensive 
surveys of the various numerical solution methods and computational procedures for linear 
and nonlinear structural systems subjected to dynamic loads are presented, e.g. Hughes [1], 
Dokainish and Subbaraj [2], Subbaraj and Dokainish [3]. 

In this paper a new direct time integration method is presented based on the principle of the 
Analog Equation [4]. According to this principle the system of the N  coupled equations of 
motion, linear or nonlinear, are replaced by a set of uncoupled linear single term quasi-
static equations each of which includes only one unknown displacement and are subjected 
to appropriate unknown fictitious external loads. These fictitious loads are established 
numerically from the integral representation of the solution and the requirement that the 
equations of motion are satisfied at discrete times. The method is easy to implement. 
Numerical examples, including linear as well as non linear systems, are treated and the 
results are compared with those obtained by exact or other numerical methods. The method 
is accurate and unconditionally stable. The solution applies also to equations with variable 
coefficients as it is the case of time dependent mass, damping or stiffness. 
 

2. The one-degree-of-freedom system 
 

2.1. The AEM solution 
 
For the linear one-degree-of-freedom system the initial value problem (2), (3) becomes 

  (4) + + =  ( )mu cu ku p t

 ,      (5) = 0(0)u u = 0(0)u

Let  be the sought solution. Then, if the operator  is applied to it we have = ( )u u t 2 /d dt

  (6) = ( )u q t

where  is a fictitious source, unknown in the first instance. Eq. (6) is the analog 

equation of (4). It indicates that the solution of Eq. (4) can be obtained by solving Eq. (6) 
with the initial conditions (5), if the  is first established. This is achieved as following. 

( )q t

( )q t

Using the Laplace transform method we can obtain the solution of Eq. (6) in integral from 

 
0

( ) (0) (0) ( )( )
t

u t u u t q t dt t= + + -ò  (7) 

Thus the initial value problem of Eqs (4), (5) is transformed into the equivalent Volterra 
integral equation for . ( )q t
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( )u t

t

1u
2u

3u
0u

Nu

T Nh=
h h h h h h h hh h h

1Nu -

nu

 
Figure 1.  Discretization of the interval [0  into N  equal intervals  , ]T = /h T N

Eq. (7) can be solved numerically within a time interval [0  as following. , ]T

The interval [0  is divided into N  equal intervals , , in which  

is assumed to vary according to a certain law, e.g. constant, linear etc. In this analysis  

is assumed to be constant and equal to a weighted value in the interval h . That is  

, ]T D =t h = /h T N ( )q t

( )q t

  (8) -= +1m
r rq qa b rq

where  are constants satisfying a constraint of the form ,a b

 =( , ) 1f a b  (9) 

The values of these constants influence the stability, the convergence and the accuracy of 
the resulting numerical scheme. 

Hence, Eq. (7) at instant  can be written as =t nh

 

 (10) 

-

= +
é ù+ - + - + + -ê úê úë ûò ò ò





0 0

2

1 2
0 ( 1)
( ) ( ) ( )

n

h h nh
m m m

n
h n h

u u nhu

q nh d q nh d q nh dt t t t t t

which after evaluation of the integrals yields 

  (11) 

-

=
-

-
=

é ù= + + - + +ë û

= + + +

å

å





1

0 0 1 1

1

1

1 0 1 1

1

2( ) 1

2

n
m m

n r

r

n
m m

n r n

r

u u nhu c n r q c q

u hu c q c q

n

where 

 =
2

1
2

h
c  (12) 

The velocity is obtained by direct differentiation of Eq. (7) making use of the Leibnitz rule 
for the integral. Thus we have 
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 =+ +ò 
0

( ) (0) ( )
t

u t u q dt t  (13) 

Using the same discretization for the interval [0  to approximate the integral in Eq. (13), 

we have 

, ]T

  (14) 

-

=

-

= + +

= +

å 



1

0 2 2

1

1 2

n
m m

n r

r

m
n n

u u c q c q

u c q

n

1 n

-1 1

-2 1a

n

where 

  (15) =2c h

Solving Eq. (14) for  and substituting in Eq. (11) gives 
-

=
å
1

1

n
m
r

r

q

  (16) -= + -
1

m

n n n
u u hu c q

By virtue of Eq. (8), Eqs (16) and (14) can be further written as 

  (17) -- + =- +1 1n n n n nc q hu u c q ub a

  (18) -- + = + 2 1n n n nc q u u c qb

Moreover, Eq. (4) at time  is written as =t nh

  (19) + + =
n n n

mq cu ku p

Eqs (17), (18) and (19) can be combined as 

 
-

-

-

é ù ìì ü ì üé ù ï ïï ï ï ï ï ïï ï ï ïê úê ú ï ïï ï ï ïê ú ï ïï ï ï ïê ú- = - +í  í  í ê úê ú ï ï ï ï ï ïê úê ú ï ï ï ï ï ïï ï ï ï ï ï- ê úê ú ï ï ï ï ï ïî  î ë û ë û 

 
1

11 1

12 2

0 0 0 1

1 0 1

1 0 1 0 0

n n

n n n

n n

q qm c k

u uc h c p

u uc c

b a
b a

ü

î

0

n

) m

 (20) 

Since , the coefficient matrix in Eq. (20) is not singular for sufficient small h  and 

the system can be solved successively for  to yield the solution  and the 

derivatives ,  at instant t n . For , the value  appears in the 
right hand side of Eq. (20). This quantity can be readily obtained from Eq. (4) for . 
This yields 

¹ 0m

nu
= 1,2,n

£h T n

nu

=nu q = = 1 0q
=t 0

  (21) (= - -0 0 0 0 /q p cu ku

Eq. (20) can be also written as 

 -= +1n n pU AU b n N,        (22) = 1,2,n
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in which 

 ,        

ì üï ïï ïï ïï ï= í ï ïï ïï ïï ïî 


n

nn

n

q

u

u

U

-é ù é ù
ê ú ê ú
ê ú ê ú= - -ê ú ê ú
ê ú ê ú-ê ú ê úë û ë û

1
2

1

2 2

1 2 0 0 0

1 0

1 0 1 0

c h c

c c

xw w
b a
b a

A 1 1

ì ü

î

 (23a,b) 

    (23c) 

-é ù ï ïï ïê ú ï ïï ïê ú= - í ê ú ï ïê ú ï ïï ï-ê ú ï ïë û 

1
2

1

2

1 2 1

1 0

1 0 0

c h

c

xw w
b
b

b

where = /n np p m ; = /m kw  is the eigenfrequency and  the damping 

ratio. The recurrence formula (22) can be employed to construct the solution algorithm. 
However, the solution procedure can be further simplified. Thus, applying Eq. (22) for 

 we have 

= / 2c mx w

= 1,2,n

 

- -

= +
= +
= + +
= + +
=
= + + +

 


1 1

2 1 2

1 2
2

1 2

1 2 0

1 2

( )

( )

o

o

o

n n n

n o n

p

p

p p

p p

p p p

U AU b

U AU b

A AU b b

A U Ab b

U A U A A A b

h

 (24) 

Apparently, the last of Eqs (24) gives the solution vector  at instant  using only 

the known vector  at . The matrix  and the vector  are computed only once. 

nU =nt n

0U = 0t A b

2.2 Stability of the numerical scheme 
 

The matrix  is the amplification matrix. In order that the solution is stable  must be 
bounded. This is true if 

A nA

  (25) 
¥

= 0n

n
imA

which is satisfied if the spectral radius of A  

 { }= 1 2 3( ) max , , 1r r r rA £  (26) 

If  the method is strongly stable. <( ) 1r A
We examine the case where Eq. (9) is of the form , that is the constraint is 

linear. The eigenvalues of  are 
+ = 1a b

A

  (27a) =1 0r
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- + - + - - - - -= +
+ + + +

2 2

2

2

2 2

4(2 1) 4 16(1 ) 8 (1 2 ) (1 2 )

4 2 8 4 2 8

b s s s s b s b
i

bs s bs s

x x xr
b x b x

2

 (27b) 

 
- + - + - - - - -= -
+ + + +

2 2

2

2

3 2

4(2 1) 4 16(1 ) 8 (1 2 ) (1 2 )

4 2 8 4 2 8

b s s s s b s b
i

bs s bs s

x x xr
b x b x

2

 (27c) 

where it has been set . =s hw
 

0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

1.2

1.4



 (
A

)

 

 

s=1
s=5
s=10

 
Figure 2.  Spectral radius  versus parameter  for various values of  ( ). ( )Ar b =s hw = 0x

We distinguish the following cases 

(i) . It can be shown that for  we have = 0x = 1/ 2b

 = =2 3 1r r  (28a) 

while for  > 1/ 2b

 = <2 3 1r r  (28b) 

This is shown in Fig. 2. 

 (ii) . Fig. 3 shows the variation of the spectral radius versus the values of  for 

various values of . We see that for  the method is strongly stable for any value 

of  in the interval [0 . Apparently, for a given set of values of s  and  a region of 

values of  can be established for which strong stability is ensured. 

< <0 x

b
b

1 b
x > 0.125x

,1] x
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Figure 3.  Spectral radius versus parameter b  for various of the damping  

ratio ( ). x = 5s

2.3 Error analysis and convergence 
 
The error is due to the approximation of the integrand in the integral of Eq. (7) in the n  
integration interval  -[( 1) , ]n h nh

 ò 1

0

( )
t

t
f dt t ,     (29) = - =

0 1
( 1) ,t n h t nh

t

t

where 

  (30) = -
1

( ) ( )( )f q tt t

which in this analysis is approximated as 

  (31) = -
1

( ) ( )mf q tt

Expanding ( )f t  and ( )f t  in Taylor series at  and evaluating the integral of =
0
tt

- ( ) ( )f ft t  in the interval  we find 
0 1
[ , ]t t

 
- = - + - +

=

ò 1

0

2
2

0 0 1 0 0

2

0

[ ( ) ( )] ( ) ( )
2

3

2

t
m m

t

m

h
f f d q q h q q q

q h

t t t
 (32) 

Therefore the convergence of the  algorithm is . 2( )hO

2.4 Accuracy  
 
For free vibrations, the numerical solution can be written in terms of the eigenvalues  
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0)

q

  (33) 
1 2 2 3 3

(n n

n
u c cr r r¢ ¢= + =

It can be shown that for ,  and  the eigenvalues  are 
complex conjugate and the solution of Eq. (33) can be written as 

£ <0 1x £ <0.5 1b <0 s
2 3
,r r

  (34) = +
1 2
( sin cos )n

n
u r c n c nq

where -= + =2 2 1, tan (r a b b aq / ) ,           = =
2 2

Re( ), Im( )a br r

The corresponding exact solution is given as  

 -= +
1 2
( sin cos )nt

n D n D n
u e c t c txw w w ,  = - =21 ,

D n
t nw x h  (35) 
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Figure 4.  Period elongation versus s  for various values of the parameter ( ). = 0x

Comparison of these two solutions could show the accuracy of the numerical scheme. 
However, to avoid a rather complicated investigation, the period elongation and the 
amplitude decay of the free undamped vibration can be defined as measures of the relative 
accuracy. Thus, if T  and T  are the exact and the approximate periods, respectively, we 
define the period elongation 

 
-= = 1

T T s
pe

T q
-

h

 (36) 

Fig. 4 shows the dependence of the period elongation on  for various values of . 
Apparently, s  should be small to avoid period elongation. Since for  it is 

=s w b
= =0, 1/ 2x b

= = 1
2 3

= 1/ 2b
r r , we obtain . Thus, there is no amplitude decay, provided that 

. 
= 1nr

2.5 Numerical examples 
 
Following the steps of the previous solution procedure a MATLAB program has been 
written and various example problems have been solved. 
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Figure 5. Displacement, velocity, acceleration and respective errors in Example 1, Case (i) 
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Example 1. Free and forced damped vibrations. Error discussion 
Eq. (4) has been solved with data: , , , , , , 

, . Case (i) ; case (ii) , ;  is the 
Heaviside function. 

= 1m
=( ) 0p t

= 0.07x = 2w
=

0
( )p t p

=
0
1u

( )H t p
=

0
20u

=
0
10

= 25T
( )H t= 1/ 500h = 0.5b

The analytical solution is 

 

-

-

é ù+ê ú= +ê úê úë û
é ùæ ö÷çê ÷ç ÷+ - +ê ç ÷ç ÷ê úç ÷-è øê úë û



0

2

(0) (0)
( ) sin (0)cos

1 cos sin
1

t

D D

D

t

D D

u u
u t t u t e

p
t t

k

xw

xw

xw w w
w

xw w
x

ú
úe  (37) 

where = - 21
D
w w x . Fig. 5 and Fig. 6 show the obtained solution together with the error 

 for the two load cases. Moreover, in Fig. 7 the variation of the computed 
error ,  has been plotted, which verifies that the 
convergence is of . 

= -
exact

e u u
= (e e )h = = ( ) 1/ 500 , 1,2, , 8h k k k

2( )O h
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Figure 6.  Displacement and error in Example 1, Case (ii) 
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Figure 7. Computed and expected error  in Example 1;   

, c e . 

= ( )e e h

= 2e ch

= = ( ) 1/ 500 , 1,2, , 8h k k k

)= (1)/ (1h
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3. Variable coefficients 
 
So far we have developed the method for the solution of the equation of motion with 
constant coefficients. Obviously, if the coefficients  and k  are functions of the 
independent variable t , the previously described solution procedure remains the same 
except that the elements  in the first row of the coefficient matrix in the left hand 
side of Eq. (20) depend on time. Therefore, this coefficient matrix in the respective solution 
algorithm must be reevaluated in each step. In the following, the efficiency of the method is 
demonstrated by solving an equation with variable coefficients. 

,m c

, ,m c k
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Figure 8.  Solution u  and error  in Example 2. -

exact
u u

Example 2. 
We consider the initial value problem 

 ,             (38) ++ + + = 2 1/(1 )(1 ) ( )tt u tu e u p t = = -
0 0
1, 0.1u u

where 

. 

The equation admits an exact solution . The solution for  is 

shown in Fig. 8 as compared with the exact one. 

- += - + + + - + - -0.1 2 2 1/(1 )0.01 [(99 10 99 )cos ( 20 100 20 )sin 100( cos )]) t tp e tt t t t t t
-= 0.1( ) costt

exact
u t e = 20T

e t

 

4. Multi-degree-of-freedom systems 
 
The developed solution algorithm can be applied to systems of  linear equations of 
motion describing the response of multi-degree-of-freedom systems. The initial value 
problem is described by Eq. (3) with initial conditions (2) 

N
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The solution procedure described in Section 2 may be also applied to this case provided that 

the coefficients  and the quantities  are replaced with the 

coefficients matrices  and the vectors , respectively, and the 

scalar operations by matrix operations. Thus Eqs (17), (18) and (19) become 

, ,m c k

M C

 
0 0
, , , , ,

n n n n
u u u u q p

 
0 0
, , , , ,

n n n
u u u u q, ,K n

p

 
-

-

-

é ù
é ù ê ú ì üì ü ì üê ú ê ú ï ïï ï ï ï ï ïï ï ï ïê ú ê ú ï ïï ï ï ï ï ïê ú ê úï ï ï ï- = - +í  í  í ê ú ê úï ï ï ï ï ïê ú ê úï ï ï ï ï ïï ï ï ï ï ïê ú ê úï ï ï ï ï ïî  î  î ê ú ê ú-ê ú ê úë û ë û

 
1

1 1
1

1
2 2

0
2 2

0

2 2

n n

n n n

n n

c c
h

c c

M C K 0 0 0
q q I

u uI I I I 0 I

u u
I I 0 I I 0

p

) 0¹

 (39) 

  (40) 1

0 0 0 0
( ), det(-= - -q M p Cu Ku M

Eq. (39) is solved for  = 1,2,n
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 u3 
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 exact

 
Figure 9.  Solution  in Example 3. =

1 2 3
{ Tu u uu }

u

Example 3. 
We consider the initial value problem for the system of three equations 

 

ì ü ì üé ù é ùï ï ï ïï ï ï ïê ú ê úï ï ï ïï ï ï ïê ú ê ú+í  í ê ú ê úï ï ï ïê ú ê úï ï ï ïï ï ï ïê ú ê úï ï ï ïë û î  ë û î 

+

 
 
 

1 1

2 2

3 3

52 10 20 31.3093 26.0236 72.3331

10 150 30 26.0236 176.1373 60.5706

20 30 441 72.3331 60.5706 579.9713

1472 407 5553

407 1001 4

u u

u u

u u

ì ü ì üé ù ï ï ï ïï ï ï ïê ú ï ï ï ïï ï ï ïê ú =í  í ê ú ï ï ï ïê ú ï ï ï ïï ï ï ïê ú ï ï ï ïë û î  î 

1

2

3

1

154 1 10 ( )

5553 4154 43516 1

u

u H

u

t

 (41) 
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T


0
u

u

n

with initial conditions 

  (42) = - =
0 0
{ 10 1 5} , {0 50 20}Tu u

A proportional damping matrix  has been constructed with modal damping coefficients 

1 2
. This ensures orthogonality of the damping matrix with 

respect to the modes 
i
 of the free undamped vibrations. Thus the exact solution can be 

obtained using the modal superposition method. Results for  are shown in Fig. 9. 

C
= = =

3
0.3, 0.05, 0.09x x x

f
= 5T

 

5. Nonlinear equations of motion 
 
The solution procedure developed previously for the linear equations can be straightforward 
extended to nonlinear equations. 
The nonlinear initial value problem for multi-degree of freedom systems is described as 

  (43) + = ( , ) ( )tMu F u u p

  (44) = =
0

(0) , (0)u u u

where  is  known coefficient matrix with ;  is an 

vector, whose elements are nonlinear functions of the components of ;  is 

the vector of N  given load functions and  given constant vectors. 

M ´N N ¹det( ) 0M ( , )F u u
,u u´1N ( )tp


0 0
,u u

The solution procedure is similar to that for the linear systems. Thus Eq. (43) for  
gives the initial acceleration vector 

= 0t

  (45) 1

0 0 0 0 0
[ ( , )],-= - =q M p F u u q

Subsequently we apply Eq. (43) for  =
n

t t

  (46) + =( , )
n n n

Mq F u u p

Apparently, the second and third of Eqs (39) are valid in this case and can be written as 

 -
-

-

é ù é ù
ê ú ê ú-é ù ì ü é ù ì üï ï ï ï- ê ú ê úï ï ï ïï ï ï ïê ú ê ú= + +ê ú ê úí  í ê ú ê úï ï ï ï ê ú ê úê ú ê úï ï ï ïï ï ï ïë û î  ë û î  ê ú ê ú-ê ú ê úë û ë û

 
1 1

1

1
1 2 2

2 2

2 2

n n

n
n n

c c
h

c c

I II I u 0 I u
q

I 0 u I 0 u
I I

n
q  (47) 

Eqs (46) and (47) are combined and solved for  with .. , ,
n n n
q u u = 1,2,n

Example 4. 
The method is employed to solve the initial value problem for the Duffing equation 

  (48) + + + =  30.2 ( )u u u u p t

 ,      (49) =(0) 0u =(0) 1u
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For  

Eq. (48) admits an exact solution . The solution for  is shown 

in Fig. 10.  

- -- - - - + +2 2 3( ) [( sin 2 cos sin ) ( sin cos ) si n ) ]si(nt tp t e t t t C t t B t Ae tx xx x x
-= 0.1( ) sintt

exact
u t e = 25T

0 5 10 15 20 25
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t

 

 

Computed
Exact

error X103

 
Figure 10.  Solution u  and error  in Example 4. -

exact
u u

 

Example 5. 
In this example we solve the initial value problem 

 0
2 2 2

0 0

1 1
2 0

(1 ) (1 )
ml u EAu

x v x vd d

é ù
ê ú+ - -ê ú
ê ú+ + - + + +ë û


2
=  (50a) 

 0 0
0

2 2 2
0 0

1 1
2 0

(1 ) (1 )

v v
ml v EA v

x v x v

d d

d d 2

é ù+ - + +ê ú+ + -ê ú
ê ú+ + - + + +

=
ë û

  (50b) 

 ,      (51) 
ì ü ìï ï ïï ï ï=í  í ï ï ïï ï ïî  î 

(0) 0.066

(0) 0.050

u

v

üïï
ïï

üïï
ïï

ì ü ìï ï ïï ï ï=í  í ï ï ïï ï ïî  î 



(0) 0

(0) 0

u

v

The employed data are: , , , 

, , . Fig. 11 shows the time 

histories of and  as compared with those obtained with the mean acceleration 

method. 

2cm= 3.14A

m = ´2 1E

m=0 3.00l
2kN / m

-1 2kNm sec= 3m
2m / sec= 9.81g

( )u t

d =0 0.065

( )v t

70
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Figure 11.  Displacements  and  in Example 5 ( )u t ( )v t

 

6. Conclusions 
 
An integral equation method has been developed for the numerical solution of second order 
linear and nonlinear differential equations. The coefficients may be variable. The resulting 
numerical scheme is applied to  the solution of the equations of motion arising in structural 
dynamics. The method is simple to implement. It is unconditionally stable and accurate. 
Several examples are presented, which illustrate the method and demonstrate its efficiency. 
The method can be readily extended to equations of order higher than two. 
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Abstract. A mechanical system consisting of rigid bodies and material particles, of which 
some particles are with variable masses, is considered. Laws of variation of the masses of 
the points and relative velocity of particles separating from the points are well-known. The 
system is moving in an arbitrary field of known potential and nonpotential forces. Applying 
Pontryagin’s Maximum Principle and singular optimal control theory, brachistochronic 
motion is determined. A two-point boundary value problem, due to nonlinearity of equations 
in a general case, is needed to be solved using some of the numerical procedures. Here the 
Shooting method is used, where the missing boundary conditions are chosen so as to be the 
physical variables (velocity and mass). The field where they are found can be approximately 
estimated, which is not the case with the conjugate vector coordinates being of purely 
mathematical nature. The paper also presents the manner of brachistrochronic motion 
realization without the action of active control forces. It is realized by subsequent imposition 
to the system a corresponding number of independent ideal holonomic mechanical 
constraints. The constraints must be in accordance with the previously determined 
brachistochronic motion of the system. The method is illustrated by an example of 
determining the brachistochronic motion of the system with three degrees of freedom and 
method of its realization. The system consists of one rigid body to which two points of 
variable masses are attached, where the system is moving in a vertical plane. 
Brachistochronic motion is realized by the help of two ideal holonomic constraints. 

 
 

1. Introduction 
 
The problem of a brachistochronic motion of mechanical systems is a very topical area of 
research as evidenced from literature cited. Research is inspired not only by the expansion 
of existing fundamental knowledge in this area, but also by various engineering 
applications (see e.g., [1-7]). Thus in [8-16] the brachistochronic motion of a particle in the 
presence of resistance forces (forces of dry friction, viscous friction) is analyzed, while in 
[6,17,18] the brachistochronic motion of a particle on a surface is considered. In [18] it was 
shown that results from [8,10,13] represent special cases of the brachistochronic motion of 
a particle on a surface. Note that in [6] the problem of optimization of a bobsled travelling 
on a path was solved as the problem of a brachistochronic motion of a particle on a surface, 
whereas [7] considers the brachistochrone problem for a steerable particle moving on a 1D 
curved surface 
with application to ski racing. The next important group of references comprises the papers 
that consider the problem of brachistochronic motion of a rigid body [1-3,5,19] and system 
of rigid bodies [21-23]. Furthermore, in [24-27] the brachistochronic motion of mechanical 
systems with nonholonomic constrains is analyzed. Also, a certain number of references 
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can be singled out [14,28-31], where the solution of the classical brachistochrone problem 
(cycloid) was used with the aim of testing various numerical methods in solving nonlinear 
engineering optimization problems. References [32,33] consider the problem of 
brachistochronic motion of a variable mass particle. 
This paper considers the mechanical systems that consist of constant-mass rigid bodies and 
variable-mass particles. It is started from the assumption that such mechanical systems are 
moving in the arbitrary field of known potential and nonpotential forces. Pontryagin’s 
Maximum Principle [34] and singular optimal control theory [35] is applied in solving the 
brachistrochrone problem. Considerations in this paper represent a continuation of research 
commenced in paper [27]. 
  

2. Problem statement 
 
The motion of mechanical system with n -degrees of freedom within which there are   
variable-mass particles is considered. The system configuration is determined by 

generalized coordinates )nq,,,( 21 qqq  . Laws of variation of the masses are well-

known: 

 ,,1),(   tmm                            (1) 

as well as relative velocity of particles separating from the points 

 .,,1,),,( 
  tqqvv relrel                    (2) 

Since the system motion is under the imposition of holonomic scleronomic mechanical 
constraints, kinetic energy has the form 

 njiqqaT ji
ij ,,1,,

2

1                       (3) 

where covariant coordinates of metric tensor, taking into account (1), are 

 .,,1,,),( njitqaa ijij                             (4) 

Let the system move in the field of known potential forces with potential energy 

 ),( tq                                                                      (5) 

and let the system be also acted upon by arbitrary known nonpotential forces, whose 
generalized forces are  

 .,,1,),,( nitqqQQ w
i

w
i                   (6) 

Differential equations of motion of such variable-mass system in the form of Lagrange’s 
equations of the second kind [36] have the form  

 c
ii

w
iiii

QQQ
qq

T

q

T

dt

d











 var


                      (7) 

where generalized forces  have the following form var
iQ
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 ,)(),,(
1

var
i

rel
i

q

r
vvmtqqQ

















                              (8) 

while  represent generalized control forces. Their determination represents an essential 

part of solving the problem of brachistochronic motion of the mechanical system. They can 
be generalized active forces and/or reactions of constraints, depending on the manner of 
brachistochronic motion realization. In accordance with the original postulates of 
brachistochronic motion [20] their power equals zero  

c
iQ

 .                                             (9) niqQ ic
i ,,1,0  

Thus based on (3), (7) and (9), there exists linear dependence of the second derivatives of 
generalized coordinates  

 .,,1,,var njiqQQ
qq

T
qaqqa i

i
w
iii

j
ij

ij
ij  



















         (10) 

Let the initial values of generalized coordinates and total mechanical energy of the system 
be specified  

 000000000 ),(),,(,)(,0 EtqtqqTqtqt                            (11) 

as well as terminal values of generalized coordinates at unknown instant of time  1t

 .)( 11 qtq          (12) 

Solving the problem of brachistochronic motion of a variable-mass mechanical system, 
whose differential equations are (7), consists in determining the control forces 

and the system motions corresponding to them, so that the system transfers for 

the shortest time from the state described by (11) into the state described by (12).  

)(tQQ c
i

c
i 

 

2. Brachistochronic motion as a problem of optimal control 
 
Linear constraint (10) allows for another derivative of generalized coordinate to be 
expressed via the others. Let it be, without limiting the generality 

                                                      (13) 1,,1  nsqq s
s

n 

where: 

 ,),,(

var

i
in

i
i

w
iii

j
ij

qa

qQQ
qq

T
qa

tqq
























  

 .1,,1;,,1,,),,( 


 nsnji
qa

qa
tqq

i
in

s
is

s 

  (14) 

Introducing the control 
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                                   (15) 1,,1  nsqu ss 

differential equations of the first kind in the problem of optimal control can be, 
incorporating the rheonomic coordinate, written in the form 

                             (16) .,,1, 1 s
s

nssnii uyuyqyq   

Taking into account the form of functional in a time minimization problem 

                                                                               (17) ,
1

0


t

t

dtJ

In solving the problem by the help of Pontrryagin’s Maximum Principle [34], it is necessary 
to form Pontryagin’s function  

1,,1,,,1,)( 10   nsniuuyH n
s

sn
s

s
i

i         (18) 

where 0 , i , ,1n and i  are coordinates of the conjugate vector. A costate system of 

differential equations corresponds to them  

 

1,,1,,,1,

1111





































































nsniu
yyy

H

u
qqq

H

u
qqq

H

s
i
s

iniii

s
n

s
nnnn

s
i
s

inii













. (19) 

Pontryagin’s function (18) depends linearly on the control 

                                                  (20) 1,,10  nsuHHH s
s 

In the optimal control theory such case is referred to as singular [35] because the 
corresponding condition of a maximum principle   

 1,,10 



nsH
u

H
ss

                                                  (21) 

does not allow for determining the optimal controls. Instead, one obtains a constraint 
between parts of the conjugate vector coordinates   

 1,,1  nssns                                                    (22) 

In order to determine optimal controls, it is necessary to further differentiate the relation 
(21) with respect to time in accordance with (16) and (19). Applying the formalism of 
Poisson brackets [36] 

       1,,1,,0,,, 0  nzsuHHHHHHH z
zssss           (23) 

and taking into account the fact that for multidimensional singular controls [35]  
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   1,,1,,0,  nzsHH zs                    (24) 

it is obtained that 

   1,,1,0, 0  nsHH s                         (25) 

From (25), taking into account (22), another constraint between the coordinates of 
conjugate vector can be established 

 1,,1),,,,(  nstyq nnss                                     (26) 

Further differentiation yields: 

              (27) 1,,1,,0}},,{{}},,{{ 000  nzsuHHHHHH z
zss 

Limiting to the singular controls of the first order [35], the linear system of equations (27) 
using the relations (22) and (26) yields optimal controls 

 1,,1),,,,,(  nstyquu nn
ss                                 (28) 

Substituting (28) in (16) and (19) one obtains the system of (2n+2) differential equations of 
the first kind in normal form 

 

nityq

tyq

tyqyy

tyqqq

nnnn

nnnn

nn
ii

nn
ii

,,1),,,,,(

),,,,,(

),,,,,(

),,,,,(






















                                             (29) 

where differential equations, whose solutions are (22) and (26), were eliminated from (19). 
In a general case, due to nonlinearity (29), a two-point boundary value problem should be 
solved by applying some of the numerical methods. If the Shooting method is used [37], it 
is necessary to adjust the choice of the missing boundary conditions such that one can 
approximately estimate their field. In this regard, it should be avoided, whenever it is 
possible, having any of the coordinates of conjugate vector among them, because they are 
of purely mathematical character and as such difficult to estimate the field. Therefore, it is 
suitable here to perform backward numerical integration in the interval . At terminal 

point the maximum principle can be utilized for the case of unspecified interval  

],[ 10 tt

],[ 10 tt

                                                     (30) 0)( 1 tH

Since final velocities are not specified, nor is the rheonomic coordinate , it 

follows from the transversality conditions that: 

)( 1ty i )( 1
1 tq n

 0)(,,,1,0)( 111   tnit ni                                 (31) 

Taking into account that 10   (according to the maximum principle 00  const ) as 

well as the relations (12),(18),(26),(30) and (31), it is possible to establish in the analytical 
form the dependence 

 ),()( 111 tyt nn                                       (32) 
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which, along with the fact that  

 0)( 1 tn                                        (33) 

completely excludes the necessity to estimate the fields for )( 1tn    and   )( 1tn in 

backward shooting procedure. 
The backward shooting procedure consists of choosing n+1 values of generalized velocities 

and duration  of the time interval , so that n+1 values (11) of generalized 

coordinates and mechanical energy are shot.  

)( 1tyi
1t ],[ 10 tt

There remains the discussion on transversality conditions at the initial point: 

  .    (34) nitqttyttqt n
n

i
i

i
i ,,10)()()()()()( 0

1
010000  

 

Based on specified values (11) it follows 

 . (35) nijtytytatqtq ii
ij

ni ,,1,,0)()()(,0)(,0)( 0000
1

0   

Substituting (14) in (22), it is obtained  

  .      (36) njitytytattyt ij
ijn

i
i ,,1,)()()()()()( 000000  

Directly substituting (35) and (36) in (34), it is evident that transversality conditions at the 
initial point are satisfied. Numerical solving of the system (29) yields  

 )(),(),(),( tttqqtqq nnnn               (37) 

and based on (13), (28) it is also obtained 

 )(tqq                                                 (38) 

which enables too final determination of the control forces (7) 

                                           (39) )(tQQ c
i

c
i 

Control forces (39) can be realized in various ways, combining active forces and/or 
reactions of constraints. The most approximate to the original brachistochrone problem is 
realization of motion by subsequent imposition to the system a corresponding number of 
independent ideal stationary constraints, without the action of active forces. The constraints 
must be in accordance with the brachistochronic motion (37).  
Let the ideal holonomic stationary independent constraints, in accordance with (37), be 
imposed to the system 

 1,,1,1,0)( 















 nsn
q

rankq
i

s
s         (40) 

In that case, generalized control forces read 

 1,,1;,,1, 



 nsni
q

Q
i
s

s
c
i              (41) 
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where from, if necessary, based on (37), (39) and (40), multipliers of constraints can be also 
determined 

 1,,1)(  nstss                                        (42) 

More information on such manner of control can be found in []. The form of constraints 
(40) is most often chosen to be performed by the simplest construction.  One of the manners 
for the case of motion control of mechanical systems, especially of a rigid body, is 
imposition of guides to the specified number of particles whose motion is determined by 
numerical relations.  
 

3. Example 
 
The rod AB of mass m, of length  and radius of inertia 2 Czi  moves in a vertical plane, 

where the Oy axis is directed upward (see Fig.1).  

 

Figure 1. Variable-mass mechanical system 
 
At both ends of the rod there are two variable-mass points, whose masses change according 
to the Law  

 ktmtmtm BA  )()(                                      (43) 

where . The particles are separating by relative velocities of constant 
intensities  

0 constk
(  constv )0

                                                          (44) vvv A
rel

B
rel 

It is needed to determine the brachistochronic motion of the system and present its 
realization without the action of active forces if at the initiation of motion (11) is 

specified: 

)0( 0 E

  ,0)()()(,0 0
3

0
2

0
1

0  tqtqtqt

x

V
A

y

A0

A

C0

O

B0

B

C(q ,q )
1 2

V
B

rel

g
rel

q
3

m
A

m
B
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        0

2

0
32

0
22

0
1 )()()(

2

3
Etqtqtq

m
  ,                             (45) 

while at the end of motion (12) 

 
2

)(,)()(?, 1
3

1
2

1
1

1


 tqtqtqt                             (46) 

Differential equations of motion (7) of this system are: 

                      (47) 
c

c

c

Qkvqktm

Qgktmqqkvqktm

Qqqkvqktm

3
32

2
332

1
331

)3(

)3()sin(cos)3(

)sin(cos)3(













so that the relations (14) obtain the form 

 
  

32

2

232

1

1

3123213
332

,

,)(sin)(cos
1

q

q

q

q

qqqqqqqg
q ktm

kv












 
          (48) 

The problem is solved for the following numerical values of the parameters: 

 
s

kg
k

s

m
vJEkgmm 1,1,30,1,1 0  . (49) 

The missing values of boundary conditions are: 

 

ststq

s

m
tq

s

m
tq

532857.0,94686.2)(

,30177.1)(,14877.1)(

1
1

3
1

2
1

1
1







 . (50) 

 
The trajectories of points A , B , and C  are shown in Fig.2.   
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Figure 2: Trajectories of points A, B, and C 

 

4. Conclusions 
 
This paper is a continuation of research from [27] for the case of brachistochronic motion 
of a variable-mass system. Like in [27], the manner of motion control is presented without 
the action of active forces. The novelty in this paper is the numerical solving procedure for 
the two-point boundary value problem of maximum principle, based on shooting method, 
where costate variables were avoided as the missing boundary conditions. The number of 
missing boundary conditions is the least possible, such as n generalized velocities and 
time , which yields  conditions. Their values can be approximately estimated. 1t 1n
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ABSTRACT. The paper is based on an analysis of vibro-impact system motion based on 
oscillator with two degrees of freedom moving in a parabola rough line in the vertical plane. 
Oscillator consists of two heavy mass particles whose free motion is limited by two fixed 
elongation limiters. Analytical and numerical results for the specific kinetic parameters of 
observed vibro-impact systems are the basis for visualization of the energy analysis which 
was subject of this analytical research. This paper deals with the methodology study of 
energy transfer between elements of the observed  vibro-impact system. The process of 
determining time interval and angle at which there is an impact of heavy mass particles 
appeared and the determination of their incoming and outgoing velocities immediately 
before and after the impact was studied here. 
Free movement of heavy mass particles was divided into appropriate intervals. Each motion 
interval corresponds to the differential equation of motion which belongs to a group of 
ordinary non-linear homogeneous second order differential equations with variable 
coefficients. These differential equations are solved in analytical form. Differential 
equations of motion for the corresponding motion intervals are matched with the 
corresponding initial conditions of motion, impact conditions to the elongation limiters, 
impact conditions of heavy mass particles, and alternation conditions of the direction that 
cause an alternation of friction force direction. By the analytical solution of differential 
equations of motion, we came to the analytical expression for the equation of phase 

trajectory in plane   2,1,, iii    -number of degrees of freedom, with energy equation 

curves necessary for energy analysis of the dynamics of vibro-impact system. Graphical 
visualization and analysis of the energy curves and representative kinetics state point of the 
system during the kinetics (dynamics) was performed using the software package MathCad 
and the users package CorelDraw. 
 
Keywords: Heavy mass particle, rough parabola, friction, two impact limiters, pellet, vibro-
impact, phase trajectory, singular points, large initial conditions, total energy, kinetic and 
potential energy, analytical expression, graphical presentation, representative point. 

 
1. Introduction 
 
 Investigation of the vibro-impact system dynamics and nonlinear phenomena in 
the presence of certain discontinuity represents the area of interest of numerous researchers 
from all over the world. Theoretical knowledge of vibro-impact systems (see references [1-
5]) are of particular importance to engineering practice because of the wide application of 
vibro-impact effects that are used for technological process. Based on knowledge of the 
theory of vibro-impact systems and relying on the original works on this subject by the 
authors: František Peterka [6-8], Katica (Stevanovic) Hedrih [9-16], Alz Nayfeh and his 
associates [17,18], Fool S., Bishop S. [19], Luo G.W., Xie JH [20], Nordmark A.B. [21], 
Pavlovskaia E., Wiercigroch M. [22,23] et al., we can say that today there is an increasing 
interest for the study of energy transfer within complex systems and non-linear modes. This 
is the reason for importance of vibro-impact processes dynamics analysis in vibro-impact 
systems with one or more degrees of freedom of motion. 
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 The necessary theoretical knowledge, which leads us to this paper are from the 
books by D. Rašković [24-25] in which he analyzes the motion of mechanical systems in 
ideal conditions and without constrains, as well as curvilinear oscillators motion in the 
presence of sliding Coulomb-type friction and from the paper published by Katica 
(Stevanovic) Hedrih [13-14] related to the heavy mass particle motion along the rough 
curvilinear paths. In these papers, there is a basic mathematical description of the 
movement of heavy mass particles by rough curvilinear line, and special cases of motion of 
heavy mass particles along the circular rough line, cycloid rough line and parabolic rough 
line. 
 In previous works [26-31] authors analyzed several variants of vibro-impact 
system with one and two degrees of freedom, based on the oscillator moving along a rough 
circle, sliding Coulomb-type friction and limited elongation. Referring to them, the vibro-
impact system with two degrees of freedom, moving along rough parabola in the vertical 
plane and sliding Coulomb-type friction Coulomb's coefficient with limited angular 
elongation (Figure 1) was studied in this paper.  
 Oscillator consists of two heavy mass particles (pellets 1 and 2) mass  i , 

exposed to gravity. These mass particles are moving along rough parabola in vertical plane 
on which the two sided impact limiters of elongation (constraints) were placed. The impact 
limiter positions were determined by the angle 

1m 2m

1  for the limiter of elongation set on the 

right, and 2  for the impact limiter of elongation positioned on the left side. The angles 1  

and 2  were measured from the equilibrium position of the mass particles, through the 

vertical center of the circular line. The angular elongations of the first and second mass 
particles at arbitrary time t were marked by 1  and 2  and measured from the equilibrium 

position. At the initial time the material points were at position 10  and 20  from the 

equilibrium position 0-0, with initial angular velocities, 10  and 20 . 

 
Fig. 1. Oscillator moving along rough parabola in vertical plane, with limited elongations  

11,  ul  and 22,  ul :  a* initial heavy mass particles position, b* active, reactive 

and innertial forces plan. 
 

 Let’s discuss the properties of the oscillation of the first and second heavy mass 
particles in a parabola rough line with limited elongation, so the system becomes vibro-
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impact with two-sided impact limiter. The differential equations of motion of heavy mass 
particles for each interval of motion are requested. The motion interval is interval from 
impact to impact, from collision to collision and motion interval when the friction force 
direction alternation appears. The friction force direction alternation is associated with the 
alternation of angular velocity direction alternation of motion of heavy mass particle, as 
well as impact velocity alternation of heavy mass particles into angular elongation limiter 
and heavy mass particles mutual impacts.  Differential equations are matched to the initial 
motion conditions, system elongation limitation conditions, heavy mass particles impact 
conditions, and friction force direction alternation conditions. Also, it was necessary to 
determine, for heavy mass particles in particular, the equation of phase trajectories in phase 
planes  11,   and  22 ,    , and the equation curves for constant energy with the 

corresponding graphical visualization and motion analysis of the same representative point 
of the kinetic state of the system during the kinetics (dynamics). It was also necessary to 
conduct the analysis of total mechanical energy alternation for each heavy mass particle as 
a part of the system as a parameter of mechanical energy decrease in each characteristic 
motion interval. 

The operating conditions for such observed vibro-impact system are: 

2010   ; 2010    .   (1) 

 
2.  Differential Equation of Vibrations of a Mass Particle Motion along Curvilinear 
Rough Parabola 
 
  The obsreved vibro-impact system has two degrees of freedom, so the 
corresponding governing non-linear differential equations of motion are presented 
as: 

    








0

0
,0cossin

cos
3

1

1
11

1
3

2
111 vfor

vfor

p

g
tg 


    

       (2) 

   








0

0
,0cossin

cos
3

2

2
22

2
3

2
222 vfor

vfor

p

g
tg 


 

       (3) 
for 0 tg - sliding Coulomb-type friction coefficient, 21,  - generalized 
coordinates for monitoring the motion of first, second and third heavy mass 
particles. 
 This system of double differential non-linear equations is coupled by inital 
motion conditions: 
  a* the first heavy mass particle (pellet 1), in further text marked with 
subscript -1      1001    and  10)0(1    ;  

         (4) 
  b*  the second heavy mass particle (pellet 2), in further text marked with 
subscript -2 
     2002    and 20)0(2    ;   (5) 
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 At the initial moment of motion, heavy mass particles were given the 
positive initial angular velocity  0,0 21    . 
 The first integral of governing non-linear differential equations (2) and (3) 
are representing the phase trajectory equations of heavy mass particles moving 
along the rough parabola line. 
 For the first heavy mass particle 1 


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
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12
1

1
21

62
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vfor
eC

p
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
   

 For the second heavy mass particle 2 



















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2

22
2

2
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62
2

2
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eC

p

g 


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where  and  are integration constants depending of the initial conditions of 
motion. 

1C 2C

 
3.  Motion analysis of vibro-impact system 
 
  The analysis of heavy mass particles vibrations was conducted for each motion 
interval. For the certain motion interval the corresponding vibration of the first and second 
mass particles were analyzed.  
  Pellet 1, with mass , is moving in the interval from impact to the pellet 2 with 

mass , to the impact to the angular elongation limiter, or to direction alternation point of 

the first mass particle 1 (when it appears).  

1m

2m

  Pellet 2,  is moving within the interval of motion from the impact 

with pellet 1, m

 kgm 2,02 
 kg2,01   to the impact to the angular elongation limiter positioned on the 

left side, or to the direction alternation point of heavy mass particle 2 motion (when it 
appears).  
    HHeeaavvyy  mmaassss  ppaarrttiiccllee  11  ––tthhee  ffiirrsstt  mmoottiioonn  iinntteerrvvaall  represents the interval from the 
initial moment to the first impact of the pellet 1 to the angular elongation limiter positioned 
to the right side. 
 Heavy mass particle 1 is moving according to the rule 
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
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 By using the initial conditions (4) we get 
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 The impact conditions are 
  , 

111 ultt 111 )(
11

 ulul t ,   
111 111 )( ululul t   . 
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 After the determination of constant , the conditions for phase trajectory 

visualization were created (Fig.2) 
11C

)( 111  f  in the first  interval to the first impact of 

heavy mass particle 1 into angular elongation limiter.  
Parameter values are : 

      ,15,0,1,7,0,
4 010101 



  mp

s

rad
radrad 

 






2
81,9

s

m
g

 and 

.  kgm 2,01 

 
  

Fig. 2.  Phase trajectory curve of heavy mass 
particle 1 in the first motion interval until first 
impact 

Fig. 3.  Heavy mass particle impact 
time into elongation limiter  

 Angular velocity of the firts impact to the limiter is determined as: 
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.  
The first impact appears at the moment  is analytically represented by 

11ult
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  (6) 
 Time  (Fig.3) was determined by numeric method or by using MathCad software 

for solving equation (6) and function 
11ult

 ft   graphic presentation. 

 HHeeaavvyy  mmaassss  ppaarrttiiccllee  22--  tthhee  ffiirrsstt  mmoottiioonn  iinntteerrvvaall represents the interval form the 
initial time to the first impact of the heavy mass particle 2 to the heavy mass particle 1. 
 Heavy mass particle 2 is moving according the expression 
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 By using the initial conditions (5) we get the following expression:  
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 After the determination of the constant , the conditions for phase trajectory 

visualization were created (Fig.4) 
21C

)( 221  f  in the first interval to the first impact of 

heavy mass particles.  
Parameter values are: 

      ,15,0,1,5,
12

,
6 020202 



  mp

s

rad
radrad 

 






2
81,9

s

m
g

 and 
 kgm 2,02  . 

 

         
Fig. 4.  Heavy mass particle 2 phase trajectory 

curve, until the first impact 
Fig.5  Time alternation vs angle 2  

 For further analysis the position of heavy mass particle 2 has to be determined 
when heavy mass particle 1 reaches elongation limiter. For this position the value of time 

 is determined (from the graphic presented on Fig.3).  Time alternation  as a function 

of the angle 
11ult 21t

2  is defined by the equation 
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  (7) 
 Time alternation curve  221 ft   (Fig.5) is defined by using MathCad software 

for function (7) graphic presentation. 
 On the graphic presentation  221 ft   given  in Fig.5., value for time  is 

subtracted (by absolute value) from the time value 
11ult

 2021 t . Angle  
112 ult  was defined on 

the x axis of a diagram of function  221 ft  . Angle  
112 ult  represents the requested 

position of the heavy mass particle 2, when heavy mass particle 1 reaches the elongation 
limiter. 
 After the position  

112 ult  was defined, from the graphic presentation of the phase 

trajectory )( 221  f  (Fig.4) we can read the angular velocity of heavy mass particle 2, 

when heavy mass particle 1 comes to the elongation limiter. 
  HHeeaavvyy  mmaassss  ppaarrttiiccllee  11--  tthhee  sseeccoonndd  mmoottiioonn  iinntteerrvvaall  represents the interval from the 
first impact into the elongation limiter to the first impact of heavy mass particles 1 and 2.  
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 Phase trajectory equation for the second motion interval is 
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The initial angular velocity for this interval is  
   ,  

111 111 ululodl k  

with  k – impact coefficient in the range from 0k , for ideal plastic impact to, , for 
ideal elastic impact (referring to ideal elastic impact). 

1k

 By using the initial conditions for this period 
   ,)(,)(,

11111 111111111   ulodlululul tttt    

The integration constant can be determined 
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Fig. 6.  Phase trajectory branch for heavy 
mass particle 1 in the second motion interval 

Fig. 7. Time alternation vs angle 
  112 ft   

 After the definition of constant  the conditions for the phase trajectory 12C

)( 112  f

1

 (Fig.6), for the second motion interval were defined.  The time for the second 

motion interval of heavy mass particle 1 can be expressed as a function of generalized 
coordinate   as: 
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 The function  112 ft   can be presented by using MathCad software (Fig.7) 

 The first heavy mass particles impact happened in the second motion interval of 
mass particle 1 and in the first motion interval of mass particle 2.  
 Further analysis is focused on the definition of time necessary for the first impact 

appearance. After the first impact time definition  angle was determined, 

representing the basis for further heavy mass particles motion. 
1sudt

1sud

 The condition for time definition  is 
1sudt

    
11 2112 sudsud tstss   or          

111 2112121 sudsudul ttt   .               (8) 

 Time  was defined by relation  
1sudt
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Here the accelerations 12  and 21  were approximatelly determined, with enough 

accurance, as arithmetic mean values of average accelerations at subintervals of the given 
interval. For this specific case the interval   

1121 ult   was divided into six equal 

subintervals. 

 For the obtained value of   from the graphic presentation presented in Fig.7. or 

Fig.5 (the values must be corresponding) the angle of the first impact was defined . 

1sudt

1sud

 Value for angle  is used for determination of angular velocities of heavy mass 

particles 1 and 2 immediately before the first impact  and , from phase 

trajectories for the second motion interval for heavy mass particles 1 (Fig.6) and the first 
motion interval of heavy mass particle 2 (Fig.4). 

1sud

ulsud ,1 1
 ulsud ,2 1



 Mass centres of material points are positioned on rough circle line, i.e., impact 
centers are positioned on the same axis. This is about the central impact.  
 The expressions for the explicite definition of angular velocity immediately after 
the impact by using amount of motion alternation law and Newton’s hypotesis of relative 
angular velocities of mass particles are:  
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 Generalized coordinate  for the first impact, and velocities of heavy mass 

particles immediatelly after the impact represent the initial conditions of 

heavy mass particles in the following motion intervals. 

1sud

odlsudodlsud ,2,1 11
,  

 Graphic visualization of conducted motion analysis for analyzed vibro-impact 
system based on oscillator moving along rough parabola, which consists of two ideal smooth 
pellets, will be shown in Fig.8 and Fig.9. Phase portrait of heavy mass particle 2 was given 
in Fig.8 and phase portrait of heavy mass particle 1 was given in Fig.9. 
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 Based on the phase portraits of heavy mass particles, it can be seen that the value of 
angular velocities of heavy mass particle 1 impact into the elongation limiter placed on the 
right side and heavy mass particle 2 impact into the elongation limiter placed on the left 
side, alternately decreasing and increasing, and in general, if only even or only odd motion 
intervals were matched, it can be observed that the values of the initial angular velocity 
decreased. 
 
4.  Energy analysis of vibro-impact system  
 
 Energy analysis of the observed vibro-impact system consisting of heavy mass 
particles 1 and 2 was conducted so the graphic representations of alternations Ek, Ep and E 
for each branch of the phase portraits were performed. Graphic visualization of the energy 
alternations will be presented by figures (Fig.10) and (Fig.11) for the kinetic energies of the 
second and first heavy mass particle, (Fig.12) and (Fig.13) for the potential energy 
alternations of the second and first heavy mass particle and (Fig.14) and (Fig.15) for  total 
mechanical energy of the second and first heavy mass particle. 

     
Fig. 10.- 11. Kinetic energy of heavy mass particle 2-1 in plane  ,Ek . 
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Fig. 12.- 13. Potential energy of heavy mass particle 2- 1 in plane  ,Ep  

 

    
Fig. 14.-15. Total mechanical energy of heavy mass particle 2-1 in plane  ,E  

 
5. Concluding Remarks 
 
 Non-linearity of the analyzed vibro-impact system is a result of discontinuity of 
heavy mass particles angular velocities moving along rough parabola. Discontinuities of 
angular velocities appeared at the moment of impact of first mass particle into elongation 
limiter set on the right, than at the moment of the motion direction alternation of the first and 
two heavy mass particles (when it appears) causing angular velocity  and friction force 
alternations, and at the moment of heavy mass particles impact. This non-linearity is 
mathematically described for heavy mass particles by the system of governing non-linear 
differential equations, by the second part representing angular velocity square of generalized 

coordinate . This corresponds to the case of “turbulent” supression.   2
2

2
1 , 

 It shoud also be noted that in analyzed vibro-impact system with two degrees of 
freedom, there is a trigger of coupled sigularities, i.e. phenomena of bifurcation of 
equilibrium positions, because of the influence of sliding Coulomb’s friction force and 
angular velocities alternation of heavy mass particles.  
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 Using analytical expressions for the phase trajectories branches of heavy mass 
particles, and after determining the integration constants, graphic visualization of heavy 
mass particles oscillation in the observed vibro-impact system with two degrees of freedom 
was presented. For graphic visualization, we used a software program MathCad. 
  The combination of analytical and numerical results in the process of getting the 
graphical performance of phase trajectories in different motion intervals of heavy mass 
particles, by using MathCad software and Corel Draw, phase portraits of heavy mass 
particles were obtained. On the phase portraits there are clearly visible phenomena of non-
linearity of  vibro-impact system with two degrees of freedom. 
 Furthermore, the energy analysis was performed for the observed vibro-impact 
system. The alternation of kinetic energy, potential energy and the total mechanical energy.  
It can be concluded that the observed vibro-impact system dissipation of the total 
mechanical energy is present, reduced pressure on the rough circle line and decrease the 
force that comes from the force of friction. 
 At the end, it is necessary to point out that using a software program MathCad and 
analytical expressions for the branches of phase trajectories at intervals between impacts and 
graphical determination of kinetic parameters of the state kinetics, in the process of impacts 
and velocity alternation, the visualization of vibro-impact dynamics is presented. A 
methodology that is easily applicable in engineering practice to analyze the dynamics of real 
vibro-impact systems is based on various visualizations. This methodology is gaining 
importance as an algorithm that facilitated the analysis of kinetic parameters of the dynamics 
vibro-impact system with two degrees of freedom. 
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Abstract. Dynamic suspension system for high-rise buildings has a role to reduce the 
oscillation of the highest floors of the effects of wind or the earthquake, and other adverse 
effects. It is a complex mechanical and mathematical problem.  
The suspension system, which can be active and passive, to absorb and suppress all 
components of the forces that would lead to reduced life of the structure, comfort, housing 
and disruption of stability and security. Modeling of dynamic suspension system is reduced 
to the formation of physical and mathematical models that most adequately describes the 
real system. This paper presents a dynamic model for tall buildings. Given the numerical 
solution and the appropriate comments.  
  
Key words: modeling, dynamic, intelligent building, dumping system. 

 

1. Introduction  
 
In recent years there are a lot of discussion about the category and the concept of 
"intelligent building", "smart buildings" or " the next generation buildings". This includes 
the use of technology and processes to create buildings that are safer and more productive 
for their users and that can apply all kinds of loads during the scheduled lifetime. 
 
The concept of "intelligent building" was first introduced in the eighties in Australia, 
Canada, China, Japan and the United States. In fact, there is a race along with the 
construction of skyscrapers whose peaks are found in complex wind. Although to careful 
design in terms of aerodynamics, the problem of protection against the effects of weather is 
not solved. Intelligent design implies, in addition to the use of new standards such as XML 
and AEC-GB-XML and other system models to be tracked throughout the lifetime of the 
building and updated as necessary. 
 
High buildings belong to the group of dynamical systems that influence the stability of the 
building in case of sudden, shock loads. The most common causes of horizontal and 
vertical oscillations of tall buildings are wind and tremors, i.e. earthquakes (Melbourne & 
Palmer, [27], 1002nd). Most unstable part of the tall building is its top - the highest 
intensity of oscilations is on the top floor. By adding the masses and building elements for 
depreciation or damping system such oscillations can be reduced. 
In order to determine the boundaries of individual endurance, in terms of oscillations, 
experiments were carried out based on simulation of movement (Chen & Robertson, [6]. 
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1973, Irwin [15] 1981, Goto [11], 1983, Shioya et al. 1992). In most cases the observed 
sinusoidal reasons. Isyumov, [14], 1993. showed that there are significant differences 
between these tests and the actual conditions. In fact there are axial, transversal and 
torsional oscillations, which can not adequately show the sine wave.  
 
Based on these studies are conducted especially in North America, because it is subject to 
frequent hurricanes and typhoons, which set the limits can be exceeded because a certain 
period, the condition stabilizes and returns to its original (Isyumov, [14], 1993, Kareem 
[18.19] 1988th, Irwin, [16] 1986.etc.). 
 
Structural systems that can mitigate the effects of wind are very different. For example, by 
adding a system of pillars, Figure 1a, one can increase the resistance of buildings, 
especially the effect of torque caused by lateral loads caused by wind. The building of 30 ... 
40 floors, typically relying on a "shear wall" and the focal steel struts that are very effective 
in confronting the forces caused by earthquakes. For more solitary, central systems are 
becoming scarce. In these cases, installation of load-bearing walls or bars, usually at a 
distance of 2 ... 3 floors, it can be to alleviate that problem as one of the cargo transferred to 
the external structure. Installation of such systems has proven to be efficient in the world's 
highest buildings, such as the Melbourne Tower (500 m).Later, these systems have been 
modified using the band walls / grid as a "virtual carriers", Figure 1b. so that achieves the 
same transmission power, but much simpler structure. This system was applied at the 
highest world of reinforced concrete building with 77 floors of Plaza Rakyat, (office 
building in Kuala Lumpur). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

      Figure 1. (a) Schematic representation of outrigger system. (b) Illustration of “virtual 
outrigger” system using belt trusses (Model of Plaza Rakyat) 
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Vierendeel 
bandage 

 
 

Super column 
   
 
 
 
 

 

A similar system was implemented with the so-called. 
Vierendeel pads, Figure 2, placed at 775 feet high 
building, at the First Bank Place in Minneapolis 
(Dorris, [9], 1991). The tower carried by the skeleton 
is in the form of a cross with four pillars of reinforced 
steel which is effective when it comes to large 
torsional moments. Vierendeel installation and trim, 
structural strength is more increased by 36%. Lining 
of the upper floors receive the cargo and transfer it to 
the massive pillars between the columns and beams 
(the Sears Tower, World Trade Towers and Center 
John Hancock Center). This concept has become 
popular and was applied and the Shanghai World 
Finance Center. 
 
The combination of tube ("tube in tube") or a double 
system of pipes of steel and reinforced concrete 
(composite pipes) has proven very effective in 
protection from typhoons. 

             Figure 2. Schematic of 
            Vierendeel bandage 

 
Other solutions mainly based on increasing the mass of the upper floors. This method is 
applied to the Washington National Airport Control Tower so the rotation of the building 
(and Banavalkar Isyumov, [5], 1998).is neglected. 
 
Aerodynamic modifications of the building proved to be very effective (Kwok and 
Isyumov, [24], 1998.) and it is usually called "Cross-sectional" shape. Researches (Kwok, 
[23], 1995.) have shown that various modifications can deliver significant reduction in the 
harmful effects of wind. Aerodynamics effect tests showed that there is some adjusting in 
the angles inside the building (Hayashida and Iwasa, [12], 1990.), Figure 3. The angle 
modification reflected a favorable angle to reduce the effects of weather along and inside 
the building. It is shown that the larger rounding buildings (closer to a circular shape) is 
very convenient. 
 
 
 
 
 
 

  
 
 

   

Basic Fins Vented Fins SlottedCorners Chamfered Corners 

 

Figure 3. Aerodynamic Modifications to Square Building Shape 

 
This method was applied at a height of 150 m, the Yokohama Mitsubichi Heavy Industries 
Building, and wind power is considerably reduced. But still there is a certain consensus 
(agreement) about the advantages of angular geometric modification, since some studies 
have also shown that modifications at the corners in some cases have been ineffective and 
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even had negative consequences (Miyashita et. al., [29], 1993, Kwok & Isyumov, [24], 
1998). 
 

Improved response in relation to the cross 
wind, in tall buildings, is given by reduction 
in cross section with increasing altitude 
(Shimada & Hibi, [33], 1995), Fig. 4. This 
was confirmed in some other works and the 
general conclusion is, if the top of the 
building more sculpted, the greater the 
influence of longitudinal and transverse 
wind is less (Jin Mao building (Figure 4a) 
in China and Petronas Towers (Figure 4b) 
in Malaysia.          
         a)                                  b) 

Figure 4. (a) Sketch of Jin Mao Building. (taken from Skidmore,                                 
Owings, and Merrill, LLP); (b) Photo of upper plan of Petronas Towers 

 
One method in order to improve 
aerodynamics is to add designed holes 
(Miyashita, [29], 1993. Irwin, [17], 1998.), 
Figure 5. The holes completely through the 
building, especially those near the top, 
significantly reduce whirling wind power 
(Dulton & Isyumov, [10], 1990., Kareem, [18, 
19], 1988). Effectiveness of this modification 
is impaired if the holes are on the lower levels 
of buildings. 
 
However, this method may have a negative 
impact in terms of increasing whirling sound 
resonance imaging (Tamura, [36], 1997).
Adding a hole was applied and the Shanghai 
World Finance Center. Diameter hole at the 
top of the tower is 51 m. In this case, is 
reached and the previous effect of reducing 
the cross section at the top of the building. 

 

 Figure 5. Shanghai World Financial Center) 
 
The tall buildings Model can be represented as a system of two masses with two springs 
and ballasts (P. Horan, [31]) where the second mass, the mass of the last floor of a 
characteristic element of depreciation which is tied to it will depend on which elements are 
applied. This system works as a passive truck. 
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2.   Display oscillator model 
 
The tall buildings Model can be represented as a system of two masses with two springs 
and ballasts (P. Horan, [31]) where the second mass, the mass of the last floor of a 
characteristic element of depreciation which is tied to it will depend on which elements are 
applied. This system works as a passive truck.. 
 
If beside bearings, springs, ballasts, there is a system 
for control and automation at any time determines 
the output value depending on the size of input and 
previous output we get active tipper. System with 
passive tipper will give better acceleration and 
displacement reduction system in relation to the 
controlled system but worse results in the case of 
loads such as earthquake in comparison with the 
controlled system. Therefore, in practice, 
uncontrolled systems are rarely used. This example 
was first exposed to passive systems analysis and 
control system is carried out. In Figure 6 simplified 
model of a six-building is shown.  

 
 

Figure 6. Model of a six- store building 

System parameters are chosen based on the weight relationship μ.  
m2μ =
m1

  
 

(2.1)

The optimal damping ratio for the mass m1 (ξ1opt) is chosen among these three 
recommended values from the literature [2, 28, 31], 0; 0.02; 0.05. 
 
Based on the weight relationship μ and adopted the optimal damping relationships ξ1opt for 
m1, one can calculate the optimal damping ratio and the optimum ratio ξ2opt frequency 
setting for the mass damper f2opt, i.e. mass m2 in the equation (Sadek): 
 

1 μ
f = 1-ξ ,[-]12opt 1+μ 1+μ

ξ μ1ξ = + ,[-]2opt 1+μ 1+μ

 
  
 


 

 

(2.2)

 
The next step is reading the value of the optimal damping and optimal stiffness b2opt and 
c2opt for mass m2 on the basis of weight relationship μ on diagram which is shown in Figure 
7, (M. H. Chey, [28]). 
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Figure 7. Diagram of the stiffness coefficient, damping coefficient - weight relationships 

 
By using obtained optimal values for f2opt, ξ2opt, b2opt and c2opt frequency ω1 for circular mass 
m1 and damping ratio ξ2 of the mass m2 are obtained from equation:: 

 
 

2
μ2m ω ξ -1 22 11 c c 1+μ1+μ 2opt 2opt2 2 2c = m ω f = ω = =2opt 2 1 2opt 12 2m f1+μ 2 2opt μ

m ξ -12 1 1+μ

c c1 1+μ2opt 2optω = =1 f μm m2opt 2 2ξ -11 1+μ

b2opt
b = 2m ξ ω f ξ =2opt 2 2 1 2opt 2 2m ω f2 1 2opt

 
  
 

 
  
 







2

 

 

(2.3)

It was necessary to determine the angular frequency ω2 of mass m2 from the equation: 

ω2f = f = ω = ω f2 2opt 2 1 2optω1

   
 

(2.4)

Finally, the values of stiffness and damping parameters for both mass are obtained from the 
equation: 

22111111iiii

2
222

2
i11

2
iii

i

i2
i

mω2ξb;mω2ξb;21,i,mω2ξb

ωmc;ωmc;21,i,ωmc
m

c
ω




 

 

(2.5)

In this case, approved the masses m1=203t i m2=32.277t that gives μ=0.159. The optimal 
damping coefficient ξ1opt for mass m1 is 0.05. 
 
By applying the above-described procedure, the following parameters were obtained for the 
system to be analyzed, Table 1, [2, 28, 31]. 
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Table 1. System characteristics 

mass 
spring stiffness 

coefficient 
damping coefficient 

m1 
[t=103kg] 

m2 
[t=103kg] 

c1    

[kN/m] 
c2    

[kN/m] 
b1 

[kNs/m] 
b2 

[kNs/m] 

203 32.277 245.63 28.0185 22.33 16.6 
 
 
2.1 Mathematical modeling of the system 
 
For the oscillatory model, Figure 6, it can be written Lagrange second kind equations, [22, 
32, 37] in the form of: 
 

EE Ed p(N)k k- = Q - , i = 1, ..idt q q qi i i

(N)
Q = -i q i

 
  
 





∂∂ ∂

∂ ∂ ∂

∂
∂

, s

 
(2.6)

 

where s is the number of degrees of system freedom. For the given system there are two 
degrees of freedom, i.e. s = 2. 
Independent movement of the mass are vertical movement so as adopt generalized 
coordinates are y1 and y2. 
It is necessary to determine the kinetic, potential and dissipation energy of systems in order 
to write the Lagrange equations of motion. 
The kinetic energy of the system is equal to the sum of the kinetic energies of bodies with 
mass m1 and m2 and it is a function of generalized speeds:: 

2
22

2
11

2
222

2
11121 2

1

2

1

2

1

2

1
ymymE;ymE;ymE;EEE kkkkkk    

 
 (2.7) 

The potential energy of the system is a function of displacement, i.e. reflected in the 
generalized coordinates as follows: 
 2

122
2
11p

2
122p2

2
11p1p2p1p )y(c

2

1
yc

2

1
E;)yy(c

2

1
E:yc

2

1
E;EEE y

 

 
    (2.8) 

and the damping energy is: 

2
22

2
11

2
222

2
11121 yb

2

1
yb

2

1
;yb

2

1
;yb

2

1
;    

 
(2.9) 

Furthermore, it is necessary to find partial derivatives of the calculated energy. Partial 
derivatives of kinetic energy (2.7) per generalized speeds are: 

22
2

k
11

1

k ym
y

E
;ym

y

E 













 
 
 (2.10) 

and their derivatives by time: 

1265



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 M2-20 

 

22.

2

k
..

11.

1

k ym
y

E

dt

d
;m

y

E

dt

d 










































y  

 
(2.11) 

Partial derivatives of kinetic energy in generalized coordinates are zero because the kinetic 
energy is not dependent on displacement; it depends from mass velocities only:  

0;0
2

k

1

k 







y

E

y

E
 

 
(2.12) 

Partial derivatives of potential energy (3.3) in generalized coordinates are:  

 
Ep

= c y + c (y - y ) -1 = (c + c )y - c y1 1 2 2 1 1 2 1 2 2y1

Ep
= c (y - y ) 1 = -c y + c y2 2 1 2 1 2 2y2





∂

∂

∂

∂

 

 
 
 

(2.13) 

It is necessary to determine the generalized forces on the basis of statements of partial 
energy damping (2.9) by the generalized speeds:  

 

-
(N)

Q = - = -b y b (y - y ) (-1) = -(b + b )y + b y1 1 1 2 2 1 1 2 1y1

N
Q = - = -b (y - y ) 1 = b y - b y2 2 2 1 2 1 2 2y2









   


   


∂
∂

∂
∂

2 2

 

 
 
 

(2.14) 

Based on the calculated energies and partial statements of their respective sizes Lagrange 
equations can be written in the form of: 

EE Ed pk k( ) - = Q -1dt y y y1 1 1

EE Ed pk k( ) - = Q -2dt y y y2 2





∂∂ ∂

∂ ∂ ∂

∂∂ ∂

∂ ∂ ∂ 2

= 0

1 2 2

2 2





 
 
 
 

(2.15) 

Substituting the calculated values it is obtained Lagrange equations that describe the 
monitored system: 

(1) 

(2) 

m y + (b + b )y - b y + (c + c )y - c y = 01 1 1 2 1 2 2 1 2 1 2 2

m y - b y + b y - c y + c y = 02 2 2 1 2 2 2 1 2 2

  

  
 

 
(2.16) 

The equations of motion can be written in matrix form as: 
 
 

m 0 y y c +c -c yb +b -b1 1 1 1 2 2 11 2 2+ +
0 m y y -c +c y-b +b2 2 2 2 2 22 2

               
          

                   

 
 

 
 

(2.17) 

where M, B i C are mass matrix, damping and stiffness matrix, respectively, ie.: 
m 0 c +c -cb +b -b1 1 2 2= , = , =
0 m -c +c-b +b2 2 2

   
   

      
M B C  

 
(2.18) 

Hamilton's equations, [22, 32, 37], are: 
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 

 

L
d( p y -L) = Q -p dy +y dp - dti i i i i i i ti=1 i=1

L = E - Epk

E -Ek pL Ekp = = =i y y yi i i

     

  

∂
∂

∂∂ ∂
∂ ∂ ∂

 

 
 
 

(2.19) 

where L is a function of Lagrange and pi is generalized impulse. Hamilton function H is 
represented by the expression: 

 

H = p y -Li i
i=1

L
dH = Q -p dy +y dp - dti i i i i ti=1

  







  ∂
∂

 

 
(2.20) 

Characteristic functions for the reference system are still determined and that is:  
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(2.21) 

The Hamilton function (2.20) derivatives by generalized coordinates and generalized 
impulses are: 

H
= c y + c (y - y ) (-1) = (c + c )y - c y1 1 2 2 1 1 2 1 2 2y1

H
= c (y - y ) 1 = -c y + c y2 2 1 2 1 2 2y2

H 1 p1= 2p =1p 2m m1 1 1
H 1 p2= 2p =2p 2m m2 2 2









∂

∂

∂
∂

∂
∂
∂

∂

 

  
 
 
 
 (2.22) 

Hamilton's equations in canonical form are obtained based on terms: 

i
ii

i
i y

H
Qp;

p

H
y








   (2.23) 

 
For the considered system the canonical form of equations is obtained in a form: 
 

H p1y = =1 p m1 1
H p1 2p = Q - = -(b + b )y + b y - (c + c )y + c y = -(b + b ) + b - (c + c )y + c y1 1 1 2 1 2 2 1 2 1 2 2 1 2 2 1 2 1 2 2y m1 1

H p2y = =2 p m2 2
H p p1 2p = Q - = b y - b y + c y - c y = b - b + c y - c y2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2y m m2 1 2



  



  

∂
∂

∂
∂

∂
∂

∂
∂

p
m2

 

 
 
 
(2.24) 

The state matrix of system by taking into account the main coordinates are determined by 
the Hamilton generalized coordinates and generalized momentum: 
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                                          

 

q = y1 1

q = y2 2

q = p3 1

q = p4 2

q = y1 1

q = y2 2

q = p3 1

q = p4 2

 

 

 

 

 
 
 

(2.25) 

The state matrix of system is: 

   q = A q  (2.26) 

So the state matrix of system based on the canonical Hamilton equations for modeled 
system can be written: 

1
0 0 0

m1
1q q1 10 0 0

mq q22 2=
-(b + b ) bq q1 2 23 3-(c + c ) c1 2 2 m mq q1 24 4

b -b2 2c -c2 2 m m1 2



 
 
 
    
                       
 
 
 









 

 
 
 
 
 

(2.27) 

Substituting the data of the mass, stiffness coefficients and damping coefficients from Table 
1 in equation (2.26) the matrix A becomes: 

0 0 4.926e-6 0

0 0 0 3.0982e-5
A =

-273.65e+3 28.0185e+3 -0.1918 0.5143

28.0185e+3 -28.0185e+3 0.0818 -0.5143

 
 
 
 
 
 
 

 

 
 

(2.28) 

To determine the stability of the system Ljapunov stability method [22, 32, 37] is used. 
According to Ljapunov criteria it is necessary to determine the matrix D such that satisfies 
the condition: 

TA D + DA = Q  
(2.29) 

The matrix Q in previous equation is non positive unit matrix, i.e.,  

1 0 0 0 -1 0 0 0

0 1 0 0 0 -1 0 0
Q = -I = - =

0 0 1 0 0 0 -1 0

0 0 0 1 0 0 0 -1

  
  
  
  
  
  
  









 

 
 
 

(2.30) 

It is known that the system is stable if the determinant of the matrix D and all major minors 
are greater than or equal to zero [7, 8, and 30]. 

The matrix D is obtained by solving matrix equations or it can be easily obtained in MatLab 
by using the command: 

D=lyap(A,I) where the identity matrix I is  I = – Q. I = eye (4.4).  
For analyzing system it is obtained that the dynamic matrix D is matrix with following 
values: 
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


0.0000 0.0000 -0.0000 0.0000

0.0000 0.0000 -0.0000 -0.0000
D = 1e +10

-0.0000 -0.0000 9.55005 0.1503

0.0000 -0.0000 0.1503 0.4281

 
 


 
 
 

  

 
 

(2.31) 

The matrix D determinant is:  
21det D = 1.2908 10 > 0  

(2.32) 

and order appropriate major minors determinants are respectively: 

D0 = 1.9909 > 0  ;     D1 = 8.8730  > 0    ;    D2 = 5.9811 · 1011 > 0         (2.33) 

So it can be concluded that analyzed system is stable. 

 

2.2 Own system frequency definition  

By solving the frequency equation their own system frequency are obtained. Frequency 
equation is in the form, [20, 26, and 34]: 

det(λI - A) = 0  (2.34) 

0 0 4.926e-6 0λ 0 0 0 λ 0 -4.926e-6 0

0 0 0 3.0982e-50 λ 0 0 0 λ 0 -3.0982e-5
- =

-273.65e+3 28.0185e+3 -0.1918 0.51430 0 λ 0 273.65e+3 -28.0185e+3 λ+0.1918 -0.5143

28.0185e+3 -28.0185e+3 0.0818 -0.51430 0 0 λ -28.

   
   
   
   
   
   

   0185e+3 28.0185e+3 -0.0818 λ+0.5143

 
 
 
 
 
 
   

 
λ 0 -3.0982e-5 0 λ -3.0982e-5

det(λI - A) = λ -28.0185e+3 λ+0.1918 -0.5143 - 0.000004926 273.65e+3 -28.0185e+3 -0.5143

28.0185e+3 -0.0818 λ+0.5143 -28.0185e+3 28.0185e+3 λ+0.5143

 

 
4 3 2det(λI - A) = λ + 0.7061λ + 2.2726λ + 0.7178λ +1.0503   

(2.35) 
 
Thus we obtain the characteristic determinants of polynomial (2.35) by an unknown λ. 

The characteristic polynomial can also be obtained on an easier way via MATLAB if one 
enters values for the matrix A in the main window and press command:  

characteristic polynom = poly (A)  

By solving the characteristic polynom by λ its own frequency (2.36) are obtained. 

Own frequencies, we can also determine from Matlab using the command:                  
frequency = eig (A) 

The obtained values of its own frequency for a given model are: 

1= -0.2086 + 1.1664 i  ;  2= -0.2086 - 1.1664 i ; 3= -0.1445 + 0.8528 i ;    
4= -1445 -0.8528  

(2.36) 
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2.3 The transfer function of the system 
 

In order to define the system transfer function, it is necessary to determine the damping 
factors and appropriate frequencies. By using MatLab programs and commands: 
 

[w , ξ] = damp(A)n  
damping factors are obtained: 

1 = 0.1760   ;  2 = 0.1760   ¸3 = 0.1671  ;   1 = 0.1671 (2.37) 
 
The appropriate frequencies for the system are respectively: 
 

wn1 =1.1849  ;  wn2 =1.1849 ;  wn3 =0.8649  ;  wn1 =0.8649 (2.38) 
 
By using obtained values for the frequency and damping of the observed system transfer 
functions can be written in the form of polynomials based on the formula: 

1
H(S) = 2 2S +2ξw S+wn n

 
 
(2.39) 

The transfer functions of the observed model are: 

0.74805S0.28905S

1
(S)H;

0.74805S0.28905S

1
(S)H

1.404S0.4171S

1
(S)H;

1.404S0.4171S

1
(S)H

2423

2121













 

 
 

(2.40) 

To express transfer function through the transmission zeros and poles, it is necessary to 
determine the zeros and poles first of all: 

z1 = 0  ;   p1= -0.20855 +1.1651  ;  p1
*= - 0.20855 - 1.165i  ;   k1 =1 

z2 = 0  ;   p2= -0.20855 +1.1651  ;  p2
*= - 0.20855 - 1.165i  ;   k2 =1 

z3 = 0  ;   p3= -0.1445 +0.853 i   ;  p3
*= - 0.1445 - 0.853 i   ;   k3 =1 

z4 = 0  ;   p4= -0.20855 +1.1651  ;  p4
*= - 0.20855 - 1.1651  ;  k4 =1 

 
 

(2.41) 

Now, the transfer function is: 

kiH (S) =i *(S - p ) (S - p )i i
 

 
(2.42) 

By applying calculated zeros and poles at the above formula transfer functions are obtained: 

1270



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 M2-20 

 
k 11H (S) = =1 * (S+0.20855-1.165i) (S+0.20855+1.165i)(S - p ) (S - p )1 1

k 12H (S) = =2 * (S+0.20855-1.165i) (S+0.20855+1.165i)(S - p ) (S - p )2 2

k 13H (S) = =3 * (S+0.1445-0.853i) (S+0.1445+0.853i)(S - p ) (S - p )3 3

k4H (S) =4
(S - p ) (S - p4









1
=* (S+0.1445-0.853i) (S+0.1445+0.853i))4



 

 
 
 
 
 
 
 

(2.43) 

To draw a layout of the poles in MatLab 
one need to enter the transfer function and 
the set commands: 
zeros = roots (num); poles = roots (den); 
hold on; 
plot(real(poles), imag(poles),'x');
It can be seen on Figure 8. that all poles 
are in the left side and it is concluded that 
the observed system is stable. 
 

 
Figure 8. Pole transfer functions layering   

Based on the derived transfer function, system responses to unit step function are shown in 
Figure 9. 

 

 

                                                   Time t, s                                     Time t, s 

Figure 9.  System responses to unit step function 

It can be seen in Figure 9 that in the case without loads there is a big jump and a relatively 
long time to reach steady state - about the 40s. 

That is why it is necessary to automate the system to reduce overshoot and oscillatory 
interval shortening and achieving faster response system and reach steady state. In further 
work in this field, it may review the effects of management on the first transmission 
function and automating and semi-automating dumping systems..  

Semi–active type works by changing the coefficient of viscous damping system on various 
ways. Basic characteristic of semi-suspension system is that it is activated only in the time 
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interval when the relative velocity of the piston dampers and the required force are of the 
same sign. 

Differential control can reduce the overshoot but leads to zero steady state which is also 
undesirable. Proportional control can reduce the oscillation amplitude to such an extent as 
is permissible reduction in output. Responses to the appropriate management systems are 
shown in Figure 10. 
  

 
 
 
 
 
 
 
 
 
 
 

                                                                         Time t, s                                           Time t, s 
Figure 10. Semi–Active  System responses to unit step function 

It can be seen that there is a smaller jump and a shorter time during system reaches steady 
state - about the 20s (twice shorter). 

The active suspension system achieves the effect of management present whenever the 
movement of suspension system. Active systems differ from passive by the presence of 
actuator which generates a variable force that compensates disturbances acting on the 
system.  
This system is achieved by placing the order PID 
controller with transfer functions and the closure of 
the unit negative feedback. The parameters of the 
proportional, integral and differential control and 
simulation are combined to test the response until 
the shape does not get as close as first-order system 
is so skip it and eliminate the oscillations. System 
response is shown in Figure 11 and it can be seen 
that system became stable very fast.  
                                                                                           Figure 11.  Active System responses to unit step function 

 

Conclusion 
 
This paper has presented a number of different techniques used to reduce vibration 
(movement) of objects. It was shown how to control the movement of the object, in order to 
improve the performance of high buildings, under the gusts of wind. 
Among the numerous methods it may be listed damping systems, i.e. oscillatory systems 
that are installed in building. 
One such system is shown in this work and for it are derived the appropriate equations and 
obtained solutions for the oscillation frequency, transfer functions and responses of the 
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system.  
Based on the results, it can be concluded that the proposed model describes the real 
problem and that the system is stable. This means that it can recommend the installation of 
such oscillatory systems in real facilities to protect against wind and earthquake shock 
caused by the earthquake.  
Since the time of the stabilization system is relatively long (40s), for further research it is 
recommended to applicate of more sophisticated damping system (automated) where 
corrections can be made during working life. 
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Abstract. Numerical solution of incompressible laminar flow in square curved duct with
90◦ bend is performed in order to better understand the flow phenomena present in this
type of flow. Simulation of flow was done in OpenFOAM, an open-source CFD software.
Essentially, OpenFOAM is large C++ library which can be used to create application for
solution of various problems in continuum mechanics. Besides object-oriented approach,
the main advantage of OpenFOAM is that it is extendable, i.e. users can add their own
applications and utilities. The solution for the flow investigated in this paper is for Reynolds
number Re= 790. We used experimental results from literature as a validation tool for our
simulation. The results of simulation showed very good agreement with experimental results.
They also showed that centrifugal force convects the quickly moving fluid particles towards
the outer wall. As a result, the axial velocity has peaks in curved region, and secondary
flow with various number of vortices is also present. Development of flow in vertical straight
section after the bend is also analyzed, where presence of swirl is detected.

1. Introduction

Fluid flow in curved ducts are practically inevitable thing in most devices and systems in
mechanical engineering. We could only mentioned a few of them: turbomachines, ducts for
air ventilation, heat exchangers, aircraft intakes, etc. Their practical importance motivated
considerable research effort in the past decades, and it’s still a motive today. In curved ducts,
centrifugal and viscous (Tollmien-Schlichting) instabilities may exist and interact strongly
[1]. The resulting nonlinear interaction between these two type of instabilities may cause the
flow to evolve to exhibit turbulence. Advancing of knowledge about this three-dimensional
curved flow is, thus, of fundamental importance. Nowadays, a large computer power, even on
ordinary PC, enables efficient numerical simulations of flow in various engineering devices
or systems. Results of simulations help us to better understand the flow phenomena by
predicting flow structure and values of significant flow quantities.

We can say that main flow characterics in curved channels or pipes is formation of so
called secondary flow. This was first pointed out by Eustice, [2] in his experimental work with
flow in curved pipes. Main reason for formation of secondary flow is presence of centrifugal
force and it has great influence on primary flow development. Also, centrifugal force causes
that velocity is skewed towards the outer wall. This experimentally observed phenomenon
was analytically confirmed by Dean, [3]. Presence of secondary flow increases dissipation
of fluid mechanical energy, which implies a larger pressure drop. Also, wall shear stress
distribution along the wall is not uniform, in contrast with straight channel or pipe.
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Advance of PIV experimental equipment and techniques in past years enables
visualization of these secondary flows. Jarrahi et al., [4] studied process of mixing by
secondary flow in a developing laminar pulsating flow through a circular curved pipe. They
noticed different secondary flow patterns during an oscillation period due to competition
among the centrifugal, inertial, and viscous forces.

Besides experimental and analytical studies of these kind of flows, numerous numerical
investigations are performed. Some relevant papers in that spirit are Patankar et al., [5],
Humphrey, [6], Soh & Berger, [7], Tsai [8]. In papers by Soh [9] and Bara [10] studies
of flow development in curved ducts with square cross-sections have been addressed on
the determination of critical Dean number, above which the formation and disintegration
of secondary flow can lead to multiple vortex pair solutions.

In this paper, we made a contribution to numerical studies of flow in curved duct. An
open-source CFD software named OpenFOAM is used. OpenFOAM is essentially a large
collection of C++ libraries which can be used to create application for solution of various
problems in continuum mechanics. There are numerous advantages of open source software
over commercial ones. First one is, of course, the fact that code is open; it is extendable
and user can create their own applications and utilities, in contrast to “black-box” principle
of commercial codes. Secondly, open-source principle implies formation of community in
which people can freely communicate, cooperate and help each other in solving particular
problems. They are not limited by software licenses, inability to adopt the software to their
needs, etc. On the other hand, most open-source software have a lack of documentation, but
on global scale every user of software give a small contribution to development of software
and documentation.

The fact that OpenFOAM is written in C++ has big advantage over CFD codes
written in procedural programming languages like FORTRAN and C. Object oriented
approach in programming involves abstraction, inheritance and polymorphism. That enables
implementation of complicated mathematical and physical models in code to be similar to
high-level mathematical expressions, [11].

2. Problem description and governing equations

In this paper we simulated the flow which was studied experimentally by Humphrey, [6]. The
sketch of duct is shown in Fig. 1. The flow configuration is a 90◦ bend of mean radius 92mm
attached to the end of the 1.8m long squared channel with cross-section of 40× 40mm.
Experiments in [6] were done by LDA technique and the measurements of all velocity field
are available at three cross-sections before the bend, and also in three cross sections in the
bend itself. These experimental results is a validation tool for our simulation. On the Fig.
1 characteristic coordinate systems are shown. Angleθ is measured along the bend, and
coordinatex∗ = 0 corresponds to the cross-section withθ = 0◦. When we sayx∗ = −2.5 we
are thinking on cross-section at the distanceL = 2.5·40= 100mm before bend.

Reynolds number in experiment, based on bulk velocityV = 1.98 · 10−2m/s and
hydraulic diameterDH = 40mm was Re= 790. The Dean number of the flow was De=
Re(1

2d/Rc) = 368, whereRc = 0.5(Ri +Ro) is the mean radius of curvature.
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Ro −Ro
, x∗ = x

a

Figure 1. Sketch of computational domain, dimensions and non-dimensional coordinates.

2.1. Governing equations

The flow in channel and bend is incompressible, laminar and steady and it is described with
continuity and momentum equations, which are, under that conditions

∇ ·~U = 0 (1)

~U ·∇~U = −
1
ρ

∇P+ν∇2~U , (2)

whereP is generalized pressure. Form of continuity equation (1) for incompressible fluid
enables that convection term in momentum equation can be written in following form:∇ ·~U~U ,
where~U~U is second-order tensor, whose component isuiu j. Constant density of fluid enables
that we define kinematic pressurep∗ = P/ρ . Now the momentum equation have the form

∇ ·~U~U = −∇p∗ +∇ · (ν∇~U) (3)

This form of momentum equation is calledstrong conservation form, which is suitable for
discretisation by finite-volume method.

We need to add the following boundary condition to the equations in order to solve them
for particular problem. For chosen coordinate system we can define componentsur, uθ and
uz of vector~U . Now the boundary condition are:

xH = −10(inlet plane): u = fullydevelopedductflow, v = w = 0,
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walls : u = v = w = 0 (4)

xH = 10 (exit plane) : ∂θ uθ = ∂θ ur = ∂θ uz = 0

for velocity field, and

xH = −10(inlet plane): ∂θ p∗ = 0

walls : ∂n p∗ = 0 (5)

xH = 10 (exit plane) : p∗ = p∗0

for pressure field. Indexn in wall boundary condition for pressure designates a direction
perpendicular to wall andp∗0 is specified, constant value of kinematic pressure in exit plane.
With this boundary conditions it is possible to solve the system of equations (1)-(2), using
numerical methods. It is done is next section.

3. Set-up of the problem and solution procedure in OpenFOAM

OpenFOAM, as mentioned before, is first and foremost a C++ library. It is divided into a set
of precompiled libraries that are dynamically linked during compilation of the solvers and
utilities. Libraries such as those for physical models are supplied as source code so that users
may conveniently add their own models to the libraries, [12], [13].

At the top-level of OpenFOAM code are the solvers, each designed to solve a specific
problem in computational continuum mechanics. Each solver is based on finite-volume
method of discretisation, which consists of three steps:

• spatial discretisation where solution domain is defined by a set of points that fill and
bound a region of space when connected - generation of numerical mesh. In that space
points, face, cells and connection between them is defined.

• equation discretisation where system of algebraic equation is defined in terms of discrete
quantities defined at specific locations in the domain. Starting equation is partial
differential equation that characterize the problem.

• temporal discretisation where time is divided into a finite number of time intervals
(steps) - for unsteady problems

Geometry in this problem is rather simple, and OpenFOAM applicationblo
kMesh
is used for mesh generation. This geometry also implies that mesh is orthogonal, so we
don’t need to introduce some non-orthogonal correctors in discretised equations. The mesh
is shown in Fig. 2.

In our problem we have laminar, stationary and steady flow of incompressible fluid, and
the solver designed for that type of flow issimpleFoam. Object-orientated approach enables
the representation of the equations in code in their natural language. So, the momentum
equation insimpleFoam solver for laminar flow is represented asfvm::div(phi, U) - fvm::lapla
ian(nu, U) == - fv
::grad(p)
The syntax of the equation is straight-forward and clear;fvm, FiniteVolumeMethod desig-
nates implicit method of discretization of equation terms, whilefv
, FiniteVolumeCalculus
designates explicit method.
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Figure 2. Numerical mesh for the problem.

Finite volume discretisation of each term is formulated by first integrating the term over
a cell volumeV . Most spatial derivative terms are then converted to integrals over the cell
surfaceS bounding the volume using Gauss-Ostrogradski theorem∫

v
∇⋆φ dV =

∮
s
~n⋆φ dA, (6)

whereφ represents any tensor field and the star notation⋆ represents any tensor product,
i.e. inner, outer and cross and the respective derivatives: divergence∇ ·φ , gradient∇φ and
∇×φ . Volume and surface integrals are then linearized by some differencing scheme. Result
of discretisation is set of algebraic equations for each cell and it can be expressed in matrix
form as

[A]{x} = {b} (7)

where[A] is a square matrix,{x} is the column vector of dependent variable and{b} is the
so-called “source vector”, [13].

For velocity, we prescribed fully developed profile at inlet from previous simulation for
straight channel, non-slip conditions at the walls and zero gradient at the outlet. For pressure,
we prescribed zero gradient at inlet and walls, and fixed valuep∗ = 0m2/s2 (gage pressure)
at the outlet. Outlet was placed long enough after the bend so that we have developed,
unidirectional flow at the outlet. We used upwind differencing scheme for convective therm,
and central differencing scheme for gradient and laplacian therm in equation (3). For solution
of Navier-Stokes equation (3) characteristic thing is that there is no independent equation for
pressure, whose gradients contribute to each of three momentum equations, [14]. These
difficulties are overcomed by use of numerical procedure called SIMPLE algorithm, [15],
which is implemented in OpenFOAM. Preconditioned conjugate gradient methods are used
for iterative solutions for system of linear equations.

Three different meshes were used. First mesh had 36000 cells, second 72000 cells and
third had 200000 cells. In order to achieve faster convergence results from first mesh were
prescribed to mesh with greater density by use ofmapFields application, and after that
results from mesh with 72000 cells were prescribed to the mesh with 200000 cells. At the
end, simulation on mesh with 300000 cells gave the same results as the simulation on mesh
with 200000 cells, and solution independence of mesh resolution is obtained. We used non-
uniform mesh, by increasing the grading near the wall, in order to capture small vortices
which are formed in the corners of the inner and the end walls.
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4. Numerical results

From the simulation, we can see that flow is symmetric over ther,θ plane, which is expected,
and it’s also confirmed by experiments. It can be seen the movement of the fluid away from
the inner radius wall towards the outer radius wall in bend. This movement progresses
throughout the bend and it’s accompanied by secondary motion directed towards the side
walls and along the outer-radius wall and towards the symmetry plane along the inner-radius.

Figure 3. Velocity and pressure magnitude in middle plane of the channel -z∗ = 0.

(a) (b) (c) (d) (e)

Figure 4. Contours of velocity magnitude in various cross-sections: (a)θ = 0◦; (b) θ = 30◦;
(c) θ = 60◦; (d) θ = 90◦; (e) x∗ = 12.5 after cross-section withθ = 90◦

Also, upstream of the curved duct, the flow is accelerated in regions near the inner-radius
wall due to the favorable longitudinal pressure gradient. Conversely, the decelerated flow is
observed in regions near the outer-radius wall because of the developed adverse pressure
gradient downstream ofθ = 0◦.

The comparison between experimental results in [6] and results of numerical simulations
for axial velocity in (in direction of curvilinear coordinatex∗) is shown in Fig. 5. Results
of simulation have very good agreement with experimental results, and all trends are well
captured. We may argue that at cross-section of the bend forθ = 60◦ that agreement is not
good. Also, with comparing measured results of velocity for constantr∗ along the coordinate
z∗ similar trend is visible for cross-section aroundθ = 60◦. Some explanation for that remains
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unclear. One of possible explanations can be that error of measurement results in that section
are too high.
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Figure 5. Comparison between measured and computed velocity profiles. Ordinate
corresponds to non-dimensional velocityU/V ; left columnz∗ = 0.5, right columnz∗ = 0.

From Fig. 5 the shifting of axial velocity peak towards the outer wall is also clearly
visible. This is happening because of centrifugal effect. This degree of velocity skewness
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increases with the increasing turning angle of the flow and such a skewed axial velocity can
persist very far downstream. Our simulation showed that distance needed to obtain fully
developed profile after the bend isL ≈ 50DH .

Figure 6. Some streamlines in the bend. It it visible that fluid particles are exhibited to
swirling motion.

It is also very interesting to show the streamlines in such flow. Figure 6 shows some
streamlines in 3D in the bend, and the presence of swirling motion is clearly visible. That
swirling flow, like skewness of velocity profile, is maintained far downstream.

5. Concluding remarks

In this paper we made a numerical simulation of laminar flow of incompressible fluid in a
curved duct with 90◦ bend in OpenFOAM. OpenFOAM is open-source CFD software, written
in C++, and it’s main advantage is that users can create their own applications and utilities.
Results of numerical simulation show very good agreement with experimental results given
in [6], which was used as validation tool for numerical results. They also give us a deeper
insight in complex flow structure which is formed in bend. Also, effect of centrifugal force
on flow structure is also spreading after the bend itself. We came to the conclusion that it
takesL ≈ 50DH after to bend to have fully developed velocity profile.
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Abstract. Harmonically excited oscillators with a purely non-linear non-negative real-power 
restoring force and van der Pol damping are considered in this paper. The case of 
entrainment of frequency is analyzed. It corresponds to the behaviour when the free 
vibration frequency, which can be found from the energy conservation low of the related 
conservative unforced oscillators, falls in synchronism with the excitation frequency. The 
solution for motion is assumed in the form of a Jacobi cn elliptic function and a new elliptic 
averaging method is developed. Frequency response curves of the harmonic entrainment are 
determined. The validity and accuracy of the analytically obtained results are confirmed 
numerically. 

 
 
 

1. Introduction 
 
In this paper harmonically excited generalized van der Pol oscillators are considered, 
governed by the following non-dimensional equation of motion 
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
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 (1a,b) 

where   is the non-dimensional displacement; is non-dimensional time;   is a small 

constant, i.e. 1 ; F  and
  

are the magnitude and frequency of harmonic excitation, 

respectively, with the former being of order 


  ( FF  );  is the power of the restoring 

force that can be any non-negative real  number.  
The non-linear damping force defined by Eq. (1b) corresponds to van der Pol 

damping, which dissipates energy for large displacements and supplies energy to the system 
for small displacements. As such, it gives rise to limit cycle oscillations of free oscillators 
modelled by Eq. (1a,b) with F=0. When these systems are periodically excited, one can 
expect that the steady-state forced response might include both the unforced limit cycle 
oscillations as well as a response at the excitation frequency. However, if the magnitude of 
the excitation force is chosen appropriately and the frequency of the unforced limit cycle 
oscillations and the excitation frequency synchronize, then the response can occur only at 
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the excitation frequency. This represents the entrainment (quenching) phenomenon, when 
the excitation is said to have entrained the limit cycle oscillations or the limit cycle 
oscillations are said to have been quenched [1].  

The phenomenon of entrainment was originally recognized and studied in a linear 
oscillator, which corresponds to Eq. (1a,b) with=1 [1,2]. Conditions for this phenomenon 
to exist were determined by applying the method of multiple scales and the corresponding 
frequency-amplitude curves were plotted. A pure cubic oscillator governed by Eq. (1a,b) 
with=3 was also investigated from this point of view in [3], where the first-order 
harmonic balance method was used. The aim of this paper is to carry out quantitative 
analysis of the non-linear oscillators governed by Eq. (1a,b) for any non-negative real 
power of the restoring force  and to investigate the behaviour associated with the 
entrainment phenomenon, which, as far as the authors are aware, has not been examined so 
far. This study, thus, provides a general insight into the effect of the van der Pol damping 
force on the behaviour of forced oscillators with a purely non-linear power-form restoring 
force. This type of restoring force has recently attracted considerable attention, as it appears 
in different physical and engineering systems [4]. Conservative oscillators with a fractional-
order restoring force have been the subject of extensive research in the last decade (see, for 
example, [5] as well as the references citied therein), unlike non-conservative oscillators, 
which have not been studied so extensively. In [4], a general method is provided to found 
free oscillations of purely non-linear non-conservative oscillators. To that end, elliptic 
functions are used and a new method of averaging developed. The limit cycle oscillations 
of the oscillators modelled by Eq. (1a,b) with F=0 are also obtained. The study given below 
is a natural continuation of the work presented in [4], for the case when these oscillators are 
harmonically excited. A new elliptic averaging method is developed, enabling one to 
investigate the entrainment phenomenon. 
 

2. Novel elliptic perturbation method 
 

2.1. Motion of conservative oscillators  
 
According to the assumptions introduced, both the non-conservative term   ddf ,  and 

the harmonic force cosF  represent small perturbations of the conservative oscillators 

   .0sgn
2

2

 



d

d
 (2) 

Hence, the solution of Eq. (2) needs to be determined first, which will serve as a generating 
solution for the motion of the forced non-conservative oscillators (1a,b). 

In order to encounter for the non-linearity, i.e. the fact that the power  can take 
any non-negative real value, the approximate solution for motion and velocity of Eq. (2) are 
assumed in the form of the Jacobi elliptic functions instead of usual trigonometric functions 

    ,,cn ma    (3a) 

    ,,dn,sn mma
d

d 



   (3b) 
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where a is a constant amplitude of motion,  is a complete phase and the parameter m is the 
square of the modulus [6]. The complete phase  is defined by 

    ,   (4) 

where  and  are the phase and the frequency of the response, respectively.  
To obtain the frequency  and the square of the modulus m, the energy integral 

corresponding to the oscillators (5) is considered 

 ,
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d
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where the initial velocity is assumed to be zero. It should be emphasized that by a proper 
parameterization, the value of the amplitude a can always be made equal to unity (see [4] 
for details), which will be used later on for simplification. 

By using Eq. (5), the following expression for the period of oscillations can be 
derived 
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and  representing the Euler Gamma function [6].  
Further, the fact that the period of the Jacobi elliptic function  m,cn   is known 

is used. It is given by T=4K(m), where K is the complete elliptic of the first kind [6]. Thus, 
equating 4K(m) with Eq. (6) for the amplitude equal unity, i.e. with Eq. (7), the following 
expression is derived 

     
  .

1
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1
444

1
1

2
1

1
1











 mKK  (8) 

This equation defines the parameter m implicitly as a function of the power . Some of 
these values corresponding to different  are calculated numerically and given in Table 1. It 
can be seen that the values of this parameter are negative for 1  and positive for 1 . 
This is in general agreement with the findings presented in [4], where the values of the 
parameter m are calculated from Hamilton's variational principle. However, there are some 
quantitative differences between the values calculated here and in [4], but the expression 
(8) is considered to be more simple and convenient for the subsequently derived method 
than the one given in [4]. It should be noted that in a special case 0 , i.e. when the 
oscillator is linear, one has m=0, so that the elliptic cn function turns into the trigonometric 
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Cosine function. For a pure cubic oscillator 3 , the parameter m is equal to 0.5, which 
agrees with some existing results from the literature [7].  

The frequency of the elliptic function is TK4 , which due to Eqs. (6)-(8), 

gives 

 .2
1




 a  (9) 

This expression implies that there is a specific non-linear power-form relationship between 
the amplitude of free oscillations and the frequency of the elliptic function. 

Note that the solution defined by Eqs. (3a,b) and (4) is the solution of the equation 
of motion (2) provided that the following equation is satisfied 

   ,0cncnsgncn2  asndncn 222   ama  (10) 

where the arguments of the elliptic functions are omitted for brevity. 
 

  m  1a  1d  6d  D  P  

   0 506160.0 138383.1 15522. 801715.0 92144.   651587.0   0    0   
4/1   353627.0      1002.1 607119.0    14637.0 865627.0  907209.0   

   3/1 307134.0   088058.1  593378.0  143634.0  884476.0     94263.0

5/   158067.0      04715.1 548666.0  134721.0  942677.0  965569.0   
5/4   081307.0      02479.1 525209.0  130038.0  971148.0  980711.0   

 1      0  1      2/1  0    1    1   
2/   1921473.0   935912.0  438686.0    11271.0   03272.1    06463.1

   2 3058305.0   893363.0  401005.0  105123.0    09159.1    12228.1

   3    5.0 809093.0     3/1 091389.0  125626.1     28507.1

   4 629107.0   740723.0  285029.0  081446.0    12668.1    4849.1
Table 1. Values of some parameters for certain values of the power  

 

2.2. Motion of forced non-conservative oscillators 
 
Using the analogy with the generating solution given by Eq. (3a,b), a trial solution of the 
slightly perturbed oscillators (1a,b) can be assumed in the same form, but with the 
amplitude, the complete phase and the parameter m slowly varying in time, i.e. 
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This implies that the change of these parameters needs to be taken into account. However, 
due to the fact that the parameter m and  are both related to the period, the variation of the 
solution assumed is performed with respect to m only. 
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Equating the period 4K(m) with the last expression in Eq. (6), differentiating it 
with respect to time, the following time variation of the parameter m  can be derived 
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  (12) 
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where E is the complete elliptic integral of the second kind, E=E(,m), and   is the elliptic 
amplitude function  = am[4K,m] [6].  

Further, it should be noted that based on Eq. (11a), the solution for the velocity has 
the form given by Eq. (11b) if the following constraint is satisfied 
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where the arguments of the elliptic functions are again omitted for brevity, but are defined 
in Eq. (11a,b). 

Differentiating Eq. (11b) and substituting it into Eq. (1a), as well as substituting 
Eq. (12) into Eq. (14), one obtains 
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The variations of the elliptic functions with respect to the parameter m that appear in Eq. 
(15) can be expressed in the forms given in Appendix, Eqs. (A1)-(A3). Using them and 
solving Eqs. (15)-(16) with respect to dda  and  dd , one follows 
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where 
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and 
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Further, the term on the right-hand side of Eq. (18) can be written down as 
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wher
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e m/1    and where the periodic Jacobi zeta function has been introduced as given 

endix, Eqin App . (A4).  
In order to perform an averaging procedure, the elliptic function cn, the products 

sn dn, Z 2sn and sn  dn are expanded into the Fourier series, and only the first terms of these 
expansions are retained (see Appendix, Table A1). On the basis of that, the last term in Eq. 
(21) can be approximated as follows 
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where a1 is defined in Appendix, Table A1.  
t Sin function in Eq. (22) is the motivation for The form of the argument of the firs

a new variable to be introduced 
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h represents a difference betwe

 

whic en the phase of the system response and the phase of 
excitation.  

Taking this into account and performing an averaging procedure over a period 4K, 
the general equations for the amplitude and the new phase become 
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where D is an averaged value of D given by Eq. (19) 

  ,2 43211 ddddD    (26) 

nd where d1-d4 stand for the non-zero averagea d values of the products existing in Eq. (19), 
and are defined in Appendix, Table A2. Besides this, the following notation has been 
introduced in Eq. (25)  

 cP   ,1111 msz   (27) 
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w coefficients given in Appendix, Table A1.  here c1, z1 and s1 are the first Fourier 
Also, while deriving Eqs. (24) and (25), the fact that the frequency of the free 

requency oscillation modelled by the Jacobi elliptic function is close to the excitation f
  

implies

has been used, which is due to the case of synchronization considered here. This 

 that 


Ka 22 2
1

 . Hence, the response of the system defined in Eq. 

(11a) has the

 

 form 
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re the amplitude a can be obtained from Eq. (24), 



whe the phase difference   from Eq. (25) 

and the parameter m from Eq. (8). 
 

.3. Motion of forced oscillators with van 2
 

der Pol damping 

 Eq. (1b), the first order 
ifferential equations (24) and (25) for the amplitude and the phase difference become 

For the case of the van der Pol damping force defined by
d
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where the values of parameters 1a , 1d , 6d , D and P  are given in Table 1 for certain 

urs hen
values of the power . 

The steady-state motion occ w  0da d  and 0 dd . It corresponds 

to the solutions of 
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Squaring and adding these equations, the amplitude-frequency equation is obtained 
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Dividing Eq. (31) with Eq. (32), the expression for the steady–state value of   is derived 
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The local stability of the steady-state response can be checked by introducing small 
perturbations   and   to the steady-state values  and  0a 0  satisfying Eqs. (31) and (32), 

i.e. by letting  0aa  and   0  [2]. By keeping linear terms in  and  in Eqs. 

(29) and (30), one derives 
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The stability of the steady-state response depends on the eigenvalues of the coefficient 
matrix on the right-side of (35) and (36). The corresponding determinant det and the trace tr 
are 
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Depending on the sign of the determinant, trace and the expression tr2-4det, qualitatively 
different eigenvalues can occur, which yield conclusions about the stability of steady-state 
solutions [1].  
 

3. Example 
 
In this section the use of the equations derived previously for the study of the entrainment 
phenomenon in the generalized van der Pol oscillator (1a,b) is illustrated. The case when 
the power of the restoring force is  = 4/5 is considered. The corresponding values of the 
parameters , , , 1a 1d 6d D and P  are given in Table 1 in a row which is highlighted for 

the convenience of the reader. 
In Figure 1, several frequency-response curves are plotted for a fixed value of the 

ordering parameter  = 0.2 and for different values of the magnitude of the force F. For the 
sake of that, the amplitude-frequency equation (33) is used. For higher values of F, such as 
for example F=0.3 shown in Figure 1, the frequency-response curve in continuous, with the 
apparent maximum. As F decreases, the left and right branch become closer to each other, 
as is plotted for F=0.2. There is a value of the magnitude F when they coalesce, and then 
separate into two parts as plotted for F=0.1: one running near the frequency axis 
corresponding to lower amplitudes, labelled by the points L and N, and the other one that is 
detached and closed, surrounding the point (a*, *). This point, marked by a star in Figure 
1, characterizes the free limit cycle oscillations. This point lies on the backbone curve 

Ka 22
1




 , the expression for which was derived by equating the frequency-amplitude 

relationship (9) with the frequency of the cn function in the steady-state response (28).  
In order to define the parts of these frequency-response curves that are stable and, 

thus, attainable, the use is made of the expressions for the determinant (37) and the trace 
(38) [1]. If the determinant is negative, a saddle occurs, which is always unstable. This 
region is shaded in the -a plane in Figure 1. When the determinant is positive (outside the 
shaded region), unstable solutions can also occur, which happens for a positive trace. 
Positive values of the trace are related to the part of the plane below a dotted, almost 
horizontal line in Figure 1, corresponding to the zero value of the trace (38). There is also 
one more regions of interest plotted in Figure 1: it is a tongue between the dotted lines tr2-
det=0. Inside this tongue the values of tr2-4det are negative. The region of this tongue with 
the shaded part excluded is associated with unstable (stable) foci below (above) the zero-
trace line. Outside the tongue, a positive (negative) trace is related to unstable (stable) 
nodes. Consequently, steady-state solutions are stable when det>0 and tr<0 [1]. The line 
dividing the frequency-amplitude plane into two parts with respect to this conclusion is 
emphasized in Figure 1 and plotted as a thick solid line. Hence, all the parts of the 
frequency-response branches that correspond to unstable steady-state solutions are below 
this thick line and are shown as dotted or dashed lines; the parts with stable steady-state 
motions are above it and are plotted as solid lines. This implies that along the frequency-
response curve A-B-C-D-E-H-J corresponding to F=0.2, for example, the parts A-B and H-
J are associated with unstable nodes, B-C with unstable foci,  C-D with saddles, D-E with 
stable foci and E-H with stable nodes. Therefore, only the part D-E-H is realizable. These 
findings are checked numerically by carrying out direct integration of the equation of 
motion (1a,b). Steady-state numerical results are depicted as dots, confirming very good 
accuracy of the analytical results. 
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Fig 1 Frequency-response curves of the oscillator governed by Eq. (1a,b) for  = 4/5,  = 0.2 and 
different values of F. 

 
It can be concluded that the entrainment phenomenon can occur in a very narrow 

range of the excitation frequency. For F=0.2, this region is between the frequencies 
corresponding to the points D and H. This region becomes wider if the magnitude of the 
force increases. Unlike in the linear systems with van der Pol damping, whose frequency-
amplitude plane consists of the curves symmetric with respect to the vertical axis, in the 
systems with a non-negative power-form restoring force, these curves are bent to the left-
hand side for the powers lower the unity (as shown in Figure 1 for  = 4/5) and to the right-
hand side for the powers higher than unity, which is not shown here, but have been verified. 
Thus, the corresponding behaviour is softening in the former case and hardening in the 
latter, shifting slightly the entrainment frequencies accordingly and bringing asymmetry 
into the frequency-amplitude plane.   

Finally, in order to check the accuracy of the analytical approximate solution for 
the steady-state solution given by Eq. (28), the case  = 4/5,  = 0.2, F = 0.2, shown in 
Figure 1 is considered, but for  = 0.95. The approximate solution obtained is 

     .0.951.915-0.98055cn394.2    (39) 

This solution is plotted in Figure 2 together with the numerical solution of the equation of 

motion (1a,b) for   10   and   00  . This comparison illustrates excellent accuracy of 

the solution obtained. 
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Fig 2 Comparison of the steady-state analytical solution for motion Eq. (39) (dashed line) and the 
corresponding numerical solution (solid line) of the equation of motion (1a,b) for  = 4/5,  = 0.2, F 

= 0.2,  = 0.95,  and   10    00  ; dotted line depicts the steady-state amplitude calculated 

from Eq. (33). 

 

4. Conclusions 
 
In this paper, oscillators with a non-negative real-power restoring force and van der Pol 
damping have been considered. The entrainment phenomenon has been investigated, when 
the frequency of the unforced limit cycle oscillations and the excitation frequency 
synchronize, so that the response occurs only at the excitation frequency. A new elliptic 
averaging method has been developed, which does not have any limitations regarding the 
value of the power of the non-linear restoring force, as this power can be any non-negative 
real number. The solution for motion is expressed in the form of the Jacobi cn elliptic 
function and has excellent accuracy with respect to the numerical solution.  
 Frequency-response curves for the steady-state motion have been found and the 
corresponding stability investigated. Parts of the frequency-response curves that are stable 
are determined, which correspond to the case when the excitation entrains the limit cycle 
oscillations. The frequency region associated with the entrainment is shifted to the lower 
frequencies for the powers of the restoring force lower than unity, and to the higher 
frequencies for the powers of the restoring force higher than unity. This region becomes 
larger if the magnitude of the excitation is increased. 

The application of the elliptic averaging method presented is wider than the case 
reported for van der Pol damping, as the equations derived have a general form that 
includes the influence of any type of non-conservative forces. Thus, these equations can 
also be used to study other non-conservative forced non-linear oscillators, such as those 
with a polynomial damping force (dry friction, linear and quadratic viscous damping, etc). 

 

Appendix 

This Appendix contains some expressions and approximations related to the elliptic 
functions used in this paper. 
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Variations of the cn, sn and dn Jacobi elliptic functions with respect to the 
parameter m are given by: 
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The Jacobi zeta function is defined by 

         ,,/,, 1 mFmKmEmEZ    (A4) 

where E(,m) and F1(,m) are the incomplete elliptic integral of the second and first kind, 
respectively, =am[4K(m),m] is the elliptic amplitude function and K=K(m) is the complete 
elliptic integral of the first kind. 

Fourier series expansions for certain elliptic functions and their products are given 
in Table A1. The approximation for the cn function is given as infinite, while those for the 
products of some elliptic functions are given in the first approximation only. The 
corresponding Fourier coefficients are also tabulated.  
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Table A1. Fourier series expansions (approximations and Fourier coefficients) for certain 

elliptic functions and their products. 
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Averaged values of the products of certain elliptic functions are presented in Table 2. These 
products are defined as the integrands Ii, where i=1, 2, 3 and 4, and the domain of 
integration corresponds to one period 4K.  
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Table A2. Averaged values  (i=1, 2, 3, 4) of some integrands  that are the products of 

certain elliptic functions. 
id iI
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